Yb:Er-doped LiLa(WO$_4$)$_2$ single crystal fiber growth

Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil

Rare earth doped tungstate single crystals have early gained attention because of their suitable properties for laser media application. However, many of the tungstate compounds have a phase transitions, mainly the ones based on potassium ions (as KYW and KGdW) and they cannot be grown directly from their melt. The LiLa(WO$_4$)$_2$ compound is among the tungstate crystals that have a relatively low melting point (1065 °C), and no phase transitions upon cooling. Their growth, doped with rare earth ions, was reported by Czochralski and micro-pulling-down method. Single crystal fibers are attested as a low cost and reduced dimension alternative for laser devices [1] and an ideal method for crystallization studies. In this work, we investigate the growth process of Yb$^{3+}$/Er$^{3+}$:LiLa(WO$_4$)$_2$ single crystal fibers. The material’s synthesis and the effect of different dopant concentrations on the melting properties were studied by thermal analysis, x-ray diffraction and Rietveld analysis aiming to optimize the crystal growth. Fibers were characterized by x-rays diffraction and absorption and emission spectroscopy.

The starting materials LiLa(WO$_4$)$_2$ (LLW) and LiYb(WO$_4$)$_2$ (LYbW) were previously synthesized by the solid-state reaction method. The appropriate mixtures were weighted directly on the DTA crucibles for thermal analysis. Runs were performed under air atmosphere with heating/cooling rates of 5°C/min. Experimental X-ray powder diffraction patterns were measured at room temperature in the 10o to 100o range. The Rietveld method was used to analyze the obtained phases using the General Structure Analysis System (GSAS) program. Fibers were prepared in a resistive micro-pulling down furnace. The obtained DTA curves are in agreement with previous study of Li$_2$W$_2$O$_7$ – La$_2$W$_2$O$_9$ phase diagram for the compound LLW [2]. The addition of Yb modified the melting behavior of this compound as can be noted on Fig. (1a). LiLa$_{(1-x)}$Yb$_x$(WO$_4$)$_2$ fibers with 1 mm in diameter and 10mm long were prepared with fixed Er concentration (0.5 mol%) and variable Yb concentration (x = 1, 2, 5 and 10 mol%) (see Fig.1b). The observed results will be discussed.

![Fig. 1(a): DTA curves: (A) LLW; (B) LYbW and (C) 50%LLW:50%LYbW.](image1)

(A) LiLa(WO$_4$)$_2$
(B) LiYb(WO$_4$)$_2$
(C) 50%LLW:50%LYbW.

![Single crystal fiber of LiLa$_{(1-x)}$Yb$_x$(WO$_4$)$_2$ grown by micro pulling down method.](image2)

Acknowledgements to CNPq for financial support (project n. 308736/2014-1).