failure mode (chi-square, p=0.008), while using higher concentration resulted in highest amount of type I failure. In absence of cariogenic challenge (control), no difference was observed between the different concentrations of MADQUAT. In opposite, adhesives containing 10% of MADQUAT resulted in lowest demineralization around the bracket, while no difference was observed between the other concentrations when the specimens were submitted to cariogenic challenge. Except for the concentration of 10%, the cariogenic challenge significantly increased the demineralization around the brackets.

Conclusions: MADQUAT was effective to reduce the ΔS only when added to adhesive at concentration of 10% despite the reduction on bond strength.

http://dx.doi.org/10.1016/j.dental.2016.08.014

Shear bond strength and antibacterial properties of different luting cements

T.D. Bora1,2, R.E. Tirali1, S.B. Çehreli1, B.C. Balcik2, J.S. Göçmen3

1 Baskent University, Faculty of Dentistry, Ankara, Turkey
2 Baskent University, Faculty of Engineering, Ankara, Turkey
3 Baskent University, Department of Microbiology, Ankara, Turkey

Purpose/Aim: The purpose of this study was to compare four different kinds of dental luting cements [Conventional glass ionomer cement (GIC), Resin modified GIC, Glass Carbomer and Dual Cure Resin Cement] shear peel bond strength, assess the remnant characteristic and antibacterial characteristics.

Materials and methods: In the shear peel bond strength test part of the study, stainless steel bands were cemented to 80 extracted permanent molar teeth randomly by using one of four tested cements (20 per group). The force needed for debanding was evaluated by using a universal testing machine. The amount of cement remaining on the teeth after band removal was scored. The antibacterial effect of cements on selected bacteria (S. mutans and C. albicans) was tested with agar diffusion test.

Results: Molar bands cemented with Dual cure resin cement showed the highest and bands cemented with Glass carborner cement showed the lowest shear peel bond strength among all luting cements. Conventional GIC specimens failed mostly at the enamel/cement interface. As for the antibacterial effects, resin modified GIC cement group was the only cement which showed antibacterial effect on C. albicans. All cements showed some antibacterial effect on S. mutans, dual cured resin cement being the least effective.

Conclusions: The findings show that different types of luting cements may be preferred according to the characteristics of the individual.

http://dx.doi.org/10.1016/j.dental.2016.08.015

<table>
<thead>
<tr>
<th>Cement</th>
<th>N</th>
<th>Mean (MPa)</th>
<th>Std. Dev.</th>
<th>Median</th>
<th>Int. range</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketac-Cem</td>
<td>20</td>
<td>1.20*</td>
<td>0.36</td>
<td>1.19</td>
<td>0.52</td>
<td>0.45</td>
<td>1.75</td>
</tr>
<tr>
<td>Unitek Multicure Glass Ionomer</td>
<td>20</td>
<td>1.19*</td>
<td>0.33</td>
<td>1.17</td>
<td>0.41</td>
<td>0.68</td>
<td>1.97</td>
</tr>
<tr>
<td>Glass Carbomer</td>
<td>20</td>
<td>0.97b</td>
<td>0.42</td>
<td>0.94</td>
<td>0.52</td>
<td>0.25</td>
<td>2.10</td>
</tr>
<tr>
<td>Rely X</td>
<td>20</td>
<td>1.84c</td>
<td>0.67</td>
<td>1.65</td>
<td>1.15</td>
<td>0.83</td>
<td>3.25</td>
</tr>
</tbody>
</table>

* Different letters indicate significant difference (P < 0.05). Lower-case letters indicate differences in vertical directions.
two-way ANOVA/Tukey, always considering a global level of significance of 5%.

Results: Data for DC ranged from 46% to 60%, the group with 10% MMT/CHX presented a statistically lower value than the others. Data for E and FS at 24 h the 10% concentration presented the higher values, but after 2 months of storage this concentration showed the lower values of all when the CHX was present. For the three bacteria tested the composites with CHX loaded presented inhibition of growth for all concentrations, except for 2.5% that did not inhibit the growth of P. gingivalis. BF was lower for the groups with CHX, but when compared to the commercial composites, all groups presented BF, even those without CHX loaded. All concentrations presented release of CHX during all 10 days analyzed.

Conclusions: Within the limitation of this study it can be concluded that: all concentrations tested presented release of CHX and reduced BF. All concentration presented antibacterial activity for the three bacteria tested, except for 2.5% that did not inhibit the growth of P. gingivalis. The concentration of 10% resulted in a reduction of DC and the flexural properties after 2 months of storage.

http://dx.doi.org/10.1016/j.dental.2016.08.017

16

Light transmittance through esthetic monolithic CAD/CAM materials

N. Ilie *, B. Stawarczyk
Ludwig-Maximilians-University of Munich, Germany

Purpose/Aim: To determine the amount of light (360–540 nm) passing various monolithic CAD/CAM-materials, in dependency of material thickness, initial curing unit irradiance, and exposure distance (distance between curing unit and specimen’s surface).

Materials and methods: Nine different CAD/CAM monolithic materials were selected: TC: TelioCAD (PMMA-based), VCT: VITA CAD-Temp (PMMA-based and 10% filled with pre-polymers), TEC: exp. nanocomposite (filled composite), LU: LAVA Ultimate (filled composite), VE: VITA ENAMIC (inter-penetrating network ceramic), VM: VITA Mark II (feldspar ceramic), IEC: IPS EmpressCAD (leucite glass-ceramic), IEM: IPS e.max CAD (lithium disilicate glass-ceramic), and CD: CeltraDuo (zirconia-reinforced lithium silicate ZLS). CAD/CAM blocks were cut using a low-speed diamond saw in 1 and 2 mm thick slices (n = 10) resulting in 180 specimens.

The transmitted irradiance was assessed in real time by means of a Spectrometer and a blue-violet LED unit (VALO; Ultradent Products Inc), which was used in three curing programs (standard power, high power, and plasma). The curing unit was placed directly on specimen’s surface as well as at 2 and 4 mm distances from it. Data were analyzed using a multivariate analysis and 1-way ANOVA with post-hoc Scheffé test (p < 0.05).

Results: The highest influence on the transmitted irradiance was exerted by the curing mode (n²p = 0.991), closely followed by specimen thickness (n²p = 0.989), CAD/CAM material (n²p = 0.966), and exposure distance (n²p = 0.904). All binary combinations of the above-mentioned parameters were also significant (p < 0.05). The highest transmitted irradiance was measured for VM and LU, followed by VCT and IEC, while the lowest values showed VE, followed by IEM and CD. The highest transmitted irradiance was recorded by exposing the material to the plasma mode, followed by the high and standard power modes. The transmitted irradiance related to the incident irradiance amounted only 16% to 39.2% by passing 1-mm thick slices, while only 4.5% to 19.4% for 2-mm thick slices. Fewer difference were measured when the curing unit was placed at 0 or 2-mm from the specimen’s surface, while the transmitted irradiance was lower at an exposure distance of 4-mm.

Conclusions: Transmitted irradiance through VITA ENAMIC restorations might not allow for sufficient light passing through the material. Less light-sensitive dual-curing cements must therefore be used for cementation.

http://dx.doi.org/10.1016/j.dental.2016.08.017

17

WITHDRAWN

18

Effect of shade and ageing on strength of translucent Y-TZP

K.N. Monteiro1, Y.P. Correia1, L.A. Genova2, P.F. Cesar1,∗
1 University of São Paulo, Brazil
2 Nuclear and Energy Research Institute, Brazil

Purpose/Aim: To evaluate the effect of shade and ageing on the strength of a translucent yttria-stabilized tetragonal zirconia (Y-TZP) for monolithic restorations.

Materials and methods: A granulated Y-TZP powder (Zpex, Tosoh) was used to produce translucent zirconia specimens. Pigmentation of specimens was achieved by combining seven commercial dyeing solutions (Lava Frame Shade, 3M-ESPE), which were mixed according to manufacturer’s instructions to achieve eight distinct shades (Table 1) of the Vita Classical guide (Vita Zahnfabrik). A control group without pigmentation was also tested. The ceramic powder was pressed to form discs (2.0 mm in thickness/12 mm in diameter) by uniaxial pressing (112 MPa/30 s). These discs were pre-sintered (furnace N1100, Jung) at 900 °C for 2 h (heating rate: 5 °C/min). Presintered discs were immersed in a staining solution for 2 min. After pigmentation, final sintering occurred at 1500 °C for 1 hour (heating rate: 8 °C/min, Furnace Hot Spot 110, Zircar). The biaxial flexural strength was determined using the piston-on-three-balls design, in distilled water (37 °C at 0.5 mm/min). Flexural strength was calculated according to ASTM-F-39478. Half of the specimens of each shade (n = 10) had their strength measured after being aged in an autoclave (AHCM-10, Sercon) for 5 h at 134 °C/2 bars. The data were analyzed by means of two-way analysis of variances and Tukey’s test with global significance level of 5%.