Smart Dental Fillings with Ruthenium Nanoparticles-enhanced Photobiomodulation Therapy for Pulp-Dentin Regeneration

Young, NC1, Mosca RC1,2, Zeituni CA2, Arany PR1

IOral Biology & Biomedical Engineering School of Dental Medicine, Engineering & Applied Sciences, University at Buffalo, NY, USA; 2 Energetic and Nuclear Research Institute (IPEN/CNEN-SP)-CTR- Radiation Therapy Center, Sao Paulo, Brazil;

Statement of Purpose: Dental pulp trauma, especially in deep carious lesions, is a formidable challenge in clinical dentistry. The use of calcium hydroxide has had a long clinical history as a biocompatible liner and hermetic restorer. Other options include Mineral Trioxide aggregate and nanocalcium silicate that are often still very expensive. A new class of smart dental biomaterials and biotechnologies are enabling regenerative dentistry.1 The use of low dose laser treatments, termed Photobiomodulation (PBM) therapy, has been shown to promote dentin formation.2 Ruthenium [Ru(bipy)\textsubscript{3}]2+ is a red-emitting chromophore (620nm) that absorbs strongly at (450 nm) blue light, a wavelength commonly used for light curing dental composites.3

Objectives: To develop a Ruthenium-based dental biomaterial system to promote dentin induction by odontoblasts using PBM therapy

Methods: Polylactic-coglycolide (PLG) microspheres containing ruthenium (Ru-PLG) were synthesized using a double emulsion technique. Microspheres were analyzed using SEM-EDS for effective composition. Tissue culture plates were coated with the Ru-PLG microspheres, washed and UV sterilized followed by seeding with an odontoblast, MDPC-23 cell line.

Figure 1: PLGA [Ru(bipy)\textsubscript{3}]2+ in a 12 well plate illuminated by a blue (~450 nm) light before cell insertion.

Plates were treated with blue and red LED and near-infrared (NIR) laser. After 24 hours, cells were lysed and assessed for total protein with Bradford’s assay and analyzed for mineralized tissue differentiation using Alkaline Phosphatase (ALP) enzyme assay.

Results: SEM-EDS analyses demonstrated inclusion on Ruthenium in PLGA microspheres (Figure 1). Average microsphere diameter ranged from 25-100u.

Figure 2: (A) SEM (20kV) and (B) EDX of PLGA [Ru(bipy)\textsubscript{3}]2+

We observed significant odontoblastic mineralized differentiation with blue LED assessed with normalized ALP levels (p < 0.05). Treatments with Ru-PLG and Red LED treatments also demonstrated a similar significant increase in normalized ALP levels indicating their ability to promote mineralized differentiation in MDPC-23 cells (p < 0.05).

Conclusions: Several technologies are enabling a new era of biomaterials for pulp-dentin regeneration.4 Our results demonstrate the functionality of the Ru-PLG systems for PBM treatments beyond the initial clinical pulp exposures. These novel light-emitting biomaterials could enable sustained PBM therapy beyond initial clinical pulp exposure and treatments.

References: