Insights into anomalous magnetic hyperfine field at Ce impurity in LaMn$_2$X$_2$ (X=Si, Ge): a study from first principles calculations

Luciano Fabricio Dias Pereira1, José Mestnik-Filho1, Gabriel Adolfo Cabrera-Pasca, Brianna Bosch-Santos, Wanderson Lobato Ferreira1, Vítor Cavalcanti Gonçalves1, Levy Scalise1, Frederico Antônio Genezini1, Rajendra Narain Saxena1 and Artur Wilson Carbonari1

1 Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, Brazil.

E-mail: lpereira@ipen.br

The LaMn$_2$X$_2$ (X=Si, Ge) intermetallic compounds doped with cerium exhibit the interesting physical effects that are typical of the REMn$_2$X$_2$ (RE=rare earth) series (such as magnetocaloric, superconductivity) or are originated from cerium in specific electronic environment (e.g. Kondo, intermediate valence, strongly correlated electron). Recently, the magnetic hyperfine field (mhf) at 140Ce-doped LaMn$_2$(Si$_{1-x}$Ge$_x$)$_2$ was determined by perturbed gamma-gamma angular correlation spectroscopy. The 140Ce mhf follow the host magnetization in LaMn$_2$Si$_2$, while in LaMn$_2$(Si$_{1-x}$Ge$_x$)$_2$ (with x = 0.2 up to 1), it has anomalous behaviour, which was associated with 4f cerium mhf contribution. In this work, first principles band structure simulations were used to improve the understanding of the distance role (generated by interchange of Si and Ge) on mhf cerium contribution.