FINE STRUCTURE OF THE ABSORPTION AND EMISSION SPECTRA OF Ni$^{2+}$-IONS IN BaLiF$_3$

*IPEN/CNEN, Sao Paulo—Brazil; 1Department of Fisica—Università di Roma Tor Vergata Via della Ricerca Scientifica 1, 00133 Roma—Italy; 2ENEA, Dipartimento Innovazione, Settore di Fisica Applicata, 00044 Frascati (Roma)—Italy; 3Research School of Chemistry—Australian National University, Canberra 0200—Australia

The optical properties of Ni$^{2+}$-ion impurities in a new crystal, the inverted fluoroperovskite BaLiF$_3$, have been studied. In particular, we have investigated the fine structure of the transition by means of absorption and emission spectra. By analogy to previous results we have assigned the structured absorption band around 1200 nm to the $^5T_2 \rightarrow ^3T_1$ transition. Four zero-phonon lines are clearly visible in the absorption spectrum. The emission in the region 1250-1600 nm, due to the same $^5T_2 \rightarrow ^3T_1$ transition, consists of two sharp lines with their vibrational sidebands.

Key words: Spectroscopy, Ni$^{2+}$, Perovskite.

1 INTRODUCTION

The development of tunable solid-state lasers has renewed the interest in the study of impurity ions in solids whose electronic transitions are broadened by strong electronphonon coupling.

In order to have different laser systems available to cover the interesting near infrared spectral region it is important to study the spectroscopic properties of specific impurity ions in several materials. In particular, host crystals doped with Ni$^{2+}$ (d^8 configuration) show broad vibronically allowed absorption and emission bands.

Although the laser emission of the Ni$^{2+}$ ion has been investigated since 1965, c.w. laser operation at room temperature has not yet been achieved. However the chemical stability of the Ni$^{2+}$ ion and the presence of several pump bands stimulated the interest in the search for new crystals as hosts for Ni$^{2+}$. In this work, the basic spectroscopic properties of Ni$^{2+}$ in BaLiF$_3$ perovskite will be described.

The fluoroperovskite type materials, described by the general formula AMF$_5$ (A and M monovalent and divalent cation, respectively), crystallize in the cubic system; they belong to the space group O_{h}^4 or $Pm3m$. The coordination number of the monovalent ion is 12 while that of the divalent ion is 6. BaLiF$_3$ is an inverted perovskite compared to the normal perovskite (KMgF$_3$) with the Ba and Li in exchanged position and therefore with the monovalent Li$^+$ surrounded by an octahedron of 6 F$^-$ ions and the divalent Ba$^{2+}$ surrounded by 12 F$^-$ ions at the corner of a cube-octahedron (see Figure 1a and 1b). The symmetry of both metal sites is O_h and the Ni$^{2+}$ ion could occupy either of them. However the crystal

1 Permanent address: Dip. Matematica e Fisica—Università di Camerino, Via Madonna delle Carceri, 62032 Camerino—Italy.
field that \(\text{Ni}^{2+} \) ion would experience in the two lattice sites should be very different: the field splitting between the \(e_g \) and \(t_{2g} \) d-orbitals in the two cases would be

\[
\Delta_{\text{cube-oct}} = -\frac{1}{2} \Delta_{\text{oct}}.
\]

2 RESULTS AND DISCUSSION

The absorption spectrum of BaLiF₃:Ni²⁺ for the sample 0.3 mol% Ni concentration and 5.3 mm thick is shown in Figure 2. The general structure of the spectrum is quite similar to those of KMGF₃:Ni²⁺ and KNI,F₂, and three main, broad, absorption bands peaking at 1180 nm, 700 nm and 390 nm are displayed. Moreover there is a narrow structure at about 650 nm, that overlaps the 700 nm band and a weaker absorption band peaking at 500 nm.

The similarity of this spectrum of BaLiF₃:Ni²⁺ with that of KMGF₃:Ni²⁺ where the Ni²⁺ is known to replace the Mg²⁺ in octahedral site 3, suggests the same Ni²⁺ coordination in both systems. At first sight one could suppose that Ni²⁺ should replace the equally charged Ba²⁺. However the preference of Ni²⁺ for the Li²⁺ rather than the Ba²⁺ site could be attributed to the similar ionic radii of Ni²⁺ (0.69 Å) and Li²⁺ (0.68 Å) while that of Ba²⁺ is very different (1.34 Å). The Ni²⁺ ion in the Li²⁺ site requires charge compensation which may be provided by either a Li²⁺ vacancy or by a Ba²⁺ vacancy, charge compensating for two Ni²⁺ ions.

The main absorption bands were thus attributed to transitions to levels originating from crystal field splitting of the d-orbitals and from the electron-electron interaction of Ni²⁺ ion in an octahedral environment, according to the classical Tanabe—Sugano diagram. These
bands correspond to electronic transitions between the ground state, \(^3\)A\(_{2g}\), and four excited states of symmetries \(^3\)T\(_{2g}\), \(^3\)T\(_{1g}\), \(^1\)E\(_g\), and \(^3\)T\(_{1u}\), respectively.

Figure 3 shows part of the absorption spectrum on an expanded scale. Following the same arguments given in reference 2, we attribute the 1150 nm band (\(^{1}\)A\(_{2g} \rightarrow \)^{3}\)T\(_{2g}\)) to a magnetic dipole transition containing superposition of zero-phonon lines and broader phonon side bands. In the octahedral symmetry, the first excited level (\(^3\)T\(_{2g}\)) splits in four spin-orbit components while the ground state remains degenerate. The lines at 1222 nm (8183.3 cm\(^{-1}\)), 1247 nm (8099.3 cm\(^{-1}\)), 1302 nm (7680.5 cm\(^{-1}\)) and 1330 nm (7518.8 cm\(^{-1}\)) can be interpreted as the no-phonon transitions to the \(\Gamma_2\), \(\Gamma_5\), \(\Gamma_2\), \(\Gamma_5\) spin-orbit components of the state \(^3\)T\(_{2g}\), respectively.

The spin-orbit splitting between the 1222 nm and the 1247 lines is 164 cm\(^{-1}\) and between the 1302 nm and the 1330 lines is 161.7 cm\(^{-1}\). The related lines in KMgF\(_3\)Ni\(^{2+}\) and KZnF\(_3\)Ni\(^{2+}\) systems have a spin-orbit splitting very close to the above values. 3

The above interpretation for the four zero-phonon lines is also supported to some extent by the calculated magnetic dipole oscillator strengths of the four spin-orbit lines. 5,6

However, experimental assignment of the observed \(^{1}\)A\(_{2g} \rightarrow \)^{3}\)T\(_{2g}\) transition of Ni\(^{2+}\) in octahedral sites\(^5,5,6\) point to much larger intensities for transitions into the \(\Gamma_5\) and \(\Gamma_4\) states, while those into the \(\Gamma_5\) and \(\Gamma_2\) states are almost completely obscured by the overlapping phonon sidebands.

A different interpretation can thus be the assignments of the more intense 1222 nm and 1247 nm lines to the \(\Gamma_4\) and \(\Gamma_5\) no-phonon lines of the Ni\(^{2+}\) in octahedral site while the two less intense lines (with the same energy separation) could be due to Ni\(^{2+}\) in a different lattice site or with different neighbours producing a lower crystal field.

Figure 3 shows also the infrared emission spectra at 10 K. It is evident the coincidence of the zero-phonon emission lines at 1247 nm and 1330 nm, with two of the
absorption lines. This observation could be explained by assuming the presence of two emitting sites, with transitions from the lowest level of the 3T_2 multiplet at 1247 nm and 1330 nm respectively.

The same emission bands are excited by pumping either in the $^3A_g \rightarrow ^3T_2$ absorption (Nd-YAG laser) or in the $^3A_g \rightarrow ^3T_1$ absorption (He-Ne laser); we could not determine if the relaxation $^3T_1 \rightarrow ^3T_2$ is radiative or nonradiative.

Magnetic circular dichroism and excited state absorption experiments are presently in progress to obtain a more complete description of Ni$^{2+}$ in this system.

REFERENCES