

AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

MEDIDA DE DISTRIBUIÇÃO DA DENSIDADE DE POTÊNCIA RELATIVA DO NÚCLEO DO REATOR IPEN/MB-01, PELA TÉCNICA DE VARREDURA GAMA DA VARETA COMBUSTÍVEL.

ALVARO LUIZ GUIMARÃES CARNEIRO

Dissertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Ciências na Área de Reatores Nucleares de Potência e Tecnologia do Combustível Nuclear.

Orientador: Dr. Adimir dos Santos

São Paulo

1996

Aos meus pais Álvaro e Dulce, minha esposa Janete e minha filha Luíza, e a minha irmã Céia.

Instituto de Pesquisas Energéticas e Nucleares Autarquia associada à Universidade de São Paulo

MEDIDA DE DISTRIBUIÇÃO DA DENSIDADE DE POTÊNCIA RELATIVA DO NÚCLEO DO REATOR IPEN/MB-01, PELA TÉCNICA DE VARREDURA GAMA DA VARETA COMBUSTÍVEL.

Alvaro Luiz Guimarães Carneiro

Dissertação apresentada como parte dos requisitos para obtenção do grau de Mestre em Ciências na Área de Reatores Nucleares de Potência e Tecnologia do Combustível Nuclear.

Orientador: Dr. Adimir dos Santos

PEA VRO

São Paulo

1996

AGRADECIMENTOS

Ao Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear (IPEN/CNEN-SP), pelo fornecimento das instalações, equipamentos e pelos cursos de Pós-Graduação oferecidos.

Ao Centrro Tecnológico da Marinha em São Paulo, pelo fornecimento das instalações e equipamenmtos.

Ao Prof. Dr. Adimir dos Santos, pela orientação segura, pelo incentivo, amizade en auxílio no desenvolvimenmto e elaboração desse trabalho.

Aos colegas da Divisão de Física de Reatores especialmente ao Dr.Paulo Rogério Pinto Coelho pelo apoio na parte experimental e a MSc.Leda Cristina Cabelo Bernardes Fanaro pelo levantamento dos cálculos teóricos.

Aos colegas do Reator IPEN/MB-01, MSc.Rinaldo Fuga, Cesar Luiz Veneziani, Ademir das Dores Peres e em especial ao Rogério Jerez e Anselmo Ferreira Miranda pelo apoio no desenvolvimento experimental.

Ao amigo e colega Gelson Toshio Otani, um agradecimento especial pelo auxílio e assessoria no desenvolvimento dos programas computacionais para processamento dos dados.

A todos enfim que direta ou indiretamente contribuiram para a realização deste trabalho.

"MEDIDA DE DISTRIBUIÇÃO DA DENSIDADE DE POTÊNCIA RELATIVA DO NÚCLEO DO REATOR IPEN/MB-01, PELA TÉCNICA DE VARREDURA GAMA DA VARETA COMBUSTÍVEL"

ALVARO LUIZ GUIMARÃES CARNEIRO

RESUMO

Este trabalho apresenta uma metodologia de medida para determinação da distribuição axial e radial da densidade de potência relativa do núcleo do Reator IPEN/MB-01, pela varredura gama da vareta combustível.

A metodologia baseia-se na proporcionalidade entre a atividade gama emitida pelo decaimento radioativo dos produtos de fissão da vareta combustível e a densidade de potência. A técnica de varredura consiste em medir a radiação gama com energia superior a 0,6 MeV ao longo da região ativa do combustível, traçando um perfil de distribuição. Os resultados experimentais servirão como padrões para qualificação da metodologia de cálculo estabelecendo margens de desvio de métodos computacionais utilizados em cálculos de parâmetros nucleares no IPEN. Os resultados calculados comparados aos resultados medidos experimentalmente mostraram concordâncias satisfatórias.

"MEASUREMENT OF THE RELATIVE POWER DENSITY DISTRIBUTION OF THE IPEN/MB-01 REACTOR, USING A FUEL ROD GAMMA SCANNING TECHNIQUE"

ALVARO LUIZ GUIMARÃES CARNEIRO

ABSTRACT

This work presents a measurement methodology for determination of radial and axial relative power density distribution of the IPEN/MB-01 Reactor core by means of the fuel rod gamma scanning. The methodology is based on the proporcionality between gamma activity emmited by the radioactive decay of the fission products and power density. The scanning technique consists of counting gamma radiation above 0,6 MeV along the active area of the fuel rod, getting a distribution profile. The experimental results will be used as a benchmark for qualification and to stablish possible deviations for the calculational methodology currently used at IPEN. The comparison of the calculated and measured results showed good agreement.

SUMÁRIO

CAPÍTULO 1: CONSIDERAÇÕES GERAIS

1.1.INTRODUÇÃO	
1.2.HISTÓRICO	04
1.3.OBJETIVO DO TRABALHO	06
1.4.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 1	07

CAPÍTULO 2: TRANSMUTAÇÃO E ANÁLISE DE ESPECTROMETRIA

2.1.INTRODUÇÃO	10
2.2.ESPECTROMETRIA VIA CÓDIGO ORIGEN	13
2.3.ESPECTROMETRIA EXPERIMENTAL	16
2.4.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 2	18

CAPÍTULO 3: PROGRAMA EXPERIMENTAL

3.1.INTRODUÇÃO	20
3.2. BANCADA EXPERIMENTAL	21
3.2.1.SISTEMA DE MOVIMENTAÇÃO E INDICAÇÃO	
DE POSICIONAMENTO DA VARETA COMBUSTÍVEL	21
3.2.2. COLIMADORES E BLINDAGENS	23
3.2.3.INSTRUMENTAÇÃO NUCLEAR	
3.2.4. VARETA COMBÚSTÍVEL	
3.3.PROCEDIMENTO EXPERIMENTAL	31
3.3.1.PROCEDIMENTO DE OPERAÇÃO	
3.3.2.PROCEDIMENTO DE MEDIDA DO DECAIMENTO RADIOATIVO	32
3.3.3.PROCEDIMENTO DE VARREDURA DA VARETA COMBUSTÍVEL	33
3.4.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 3	34

CAPÍTULO 4: RESULTADOS EXPERIMENTAIS

4.1.INTRODUÇÃO	36
4.2.LEVANTAMENTO DOS DADOS EXPERIMENTAIS	37
4.2.1.MEDIDAS DO DECAIMENTO RADIOATIVO 4.2.2.MEDIDAS DA DENSIDADE DE POTÊNCIA RELATIVA	37 41
4.3.AVALIAÇÃO DOS DADOS EXPERIMENTAIS	60
4.3.1.ANÁLISE DA CONSISTÊNCIA DA CORREÇÃO DO DECAIMENTO 4.3.2.TESTE DE REPRODUTIBILIDADE DAS MEDIDAS EXPERIMENTAIS	60
4.4.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 4	64

CAPÍTULO 5: ANÁLISE DE INCERTEZA

5.1.INTRODUÇÃO	66
5.2.CÁLCULO DA INCERTEZA DAS MEDIDAS EXPERIMENTAIS	67
5.3.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 5	.71

CAPÍTULO 6: RESULTADOS CALCULADOS

6.1.INTRODUÇÃO	73
6.2.LEVANTAMENTO DOS DADOS VIA CÓDIGO CITATION	75
6.3.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 6	76

CAPÍTULO 7: ANÁLISE COMPARATIVA

7.1.INTRODUÇÃO	78
7.2.RESULTADOS COMPARATIVOS CALCULADOS X EXPERIMENTAIS	.80
7.2.1. DISTRIBUIÇÃO AXIAL DA DENSIDADE DE POTÊNCIA RELATIVA	80
7.2.2.DISTRIBUIÇÃO RADIAL DA DENSIDADE DE POTÊNCIA RELATIVA	98

CAPÍTULO 8: CONCLUSÕES E RECOMENDAÇÕES

8.1.CONCLUSÕES	100
8.2.RECOMENDAÇÕES	

APÊNDICE A

A.1.PROCESSAMENTO DE DADOS	103
A.2. DESCRIÇÃO SIMPLIFICADA DOS PROGRAMAS	105
A.3.REFERÊNCIAS BIBLIOGRÁFICAS DO APÊNDICE A	106

APÊNDICE B

APÊNDICE BI: Programa I - "DEC"	
APÊNDICE B2: Programa II - "DECM"	110
APÊNDICE B3: Programa IV - "DESF"	113
APÊNDICE B4: Programa V - "TABS2"	124
APÊNDICE B5: Programa VI - "CITDD3"	129
APÊNDICE B6: Programa VII - "CITTABX2"	131

INDICE DE TABELAS

Tabela 1 : Espectro dos actinídeos	14
Tabela 2 : Principais actinídeos emissores.	15
Tabela 3 : Espectro dos produtos de fissão	15
Tabela 4 : Principais nuclídeos emissores	15
Tabela 5 : Equação de ajuste da curva de decaimento	39
Tabela 6 : Resultado experimental posição M14	42
Tabela 7 : Resultado experimental posição M21	44
Tabela 8 : Resultado experimental posição M27	46
Tabela 9 : Resultado experimental posição J17	48
Tabela 10 : Resultado experimental posição J20	50
Tabela 11 : Resultado experimental posição J22	52
Tabela 12 : Resultado experimental posição C22	54
Tabela 13 : Resultado experimental posição C24	56
Tabela 14 : Resultado experimental posição ab27	58
Tabela 15 : Resultados da posição M27 nos tempos 5min., 40min. e 1h e 15min	60
Tabela 16 : Resultado experimental, teste de reprodutibilidade posição M21	62
Tabela 17 : Resultados da densidade de potência relativa normalizada	
via código CITATION	75
Tabela 18 : Resultados calculados e experimentais, posição M14	80
Tabela 19 : Resultados calculados e experimentais, posição M21	82
Tabela 20 : Resultados calculados e experimentais, posição M27	84
Tabela 21 : Resultados calculados e experimentais, posição J17	86
Tabela 22 : Resultados calculados e experimentais, posição J20	88
Tabela 23 : Resultados calculados e experimentais, posição J22	90
Tabela 24 : Resultados calculados e experimentais, posição C22	92
Tabela 25 : Resultados calculados e experimentais, posição C24	94
Tabela 26 : Resultados calculados e experimentais, posição ab27	96
Tabela 27 : Distribuição radial da densidade de potência relativa	98

DENSIDADE DE POTÊNCIA

ÍNDICE DE FIGURAS

Figura 1 : Curvas características do "yield" de fissão em função do número de massa	11
Figura 2 : Espectro dos produtos de ativação do aço inox da vareta combustível	17
Figura 3 : Foto do motor e servomecanismo	22
Figura 4 : Foto da unidade de movimentação e indicação de posicionamento	22
Figura 5 : Foto de um colimador	. 23
Figura 6 : Foto dos cilindros de blindagem e detector	24
Figura 7 : Foto do arranjo colimador / blindagem	. 24
Figura 8 : Desenho esquemático e dimensional do colimador / blindagem	. 25
Figura 9 : Arranjo experimental da instrumentação nuclear	26
Figura 10 : Panorama geral do aparato experimental montado no	
Laboratório de Medidas Nucleares	. 27
Figura 11 : Desenho esquemático da vareta combustível	29
Figura 12 : Posicionamento da vareta combustível no núcleo do reator	29
Figura 13 : Quadro de distribuição das varetas combustíveis (configuração 34)	. 30
Figura 14 : Resultados experimentais das posições M14, M21, M27 (na cota 180mm) e	
na posição M14 (na cota 380mm)	. 37
Figura 15 : Resultado das curvas normalizadas de decaimento	38
Figura 16 : Curva de decaimento radioativo x tempo	. 40
Figura 17 : Resultado experimental - posição M14 (operação 741)	43
Figura 18 : Resultado experimental - posição M21 (operação 754)	45
Figura 19 : Resultado experimental - posição M27 (operação 742)	47
Figura 20 : Resultado experimental - posição J17 (operação 756)	49
Figura 21 : Resultado experimental - posição J20 (operação 747)	51
Figura 22 : Resultado experimental - posição J22 (operação 749)	. 53
Figura 23 : Resultado experimental - posição C22 (operação 751)	55
Figura 24 : Resultado experimental - posição C24 (operação 761)	57
Figura 25 : Resultado experimental - posição ab27 (operação 765)	59

Figura 26 : Resultados comparativos, posição M27 nos tempos	
5min., 40min. e 1h e 15min.57	61
Figura 27 : Gráfico comparativo do teste de reprodutibilidade	63
Figura 28 : Gráfico comparativo calculado x experimental, posição M14	
Figura 29 : Gráfico comparativo calculado x experimental, posição M21	
Figura 30 : Gráfico comparativo calculado x experimental, posição M27	85
Figura 31 : Gráfico comparativo calculado x experimental, posição J17	87
Figura 32 : Gráfico comparativo calculado x experimental, posição J20	
Figura 33 : Gráfico comparativo calculado x experimental, posição J22	91
Figura 34 : Gráfico comparativo calculado x experimental, posição C22	93
Figura 35 : Gráfico comparativo calculado x experimental, posição C24	95
Figura 36 : Gráfico comparativo calculado x experimental, posição AB27	97

CAPÍTULO 1: CONSIDERAÇÕES GERAIS

- 1.1 INTRODUÇÃO
- 1.2 HISTÓRICO
- 1.3 OBJETIVO DO TRABALHO
- 1.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 1

1.1 INTRODUÇÃO

A determinação da distribuição da densidade de potência de um reator nuclear^{1,2} constitue um dos fatores principais no que diz respeito a análise de segurança nos projetos de instalações nucleares. Como vínculo de projeto, esse parâmetro deve satisfazer limites de segurança para assegurar a não-fusão da vareta combustível como também garantir que o fluxo de calor esteja abaixo do valor crítico "D.N.B."(Departure from Nucleate Boyling).

Dessa forma é imprescindível a determinação precisa da densidade de potência.

No projeto de reatores nucleares a densidade de potência é calculada segundo códigos computacionais de parâmetros nucleares, como exemplo o "CITATION"³. O cálculo é efetuado frequentemente utilizando a teoria de difusão com parâmetros de multigrupo obtidos por meio de um código celular como o "HAMMER-TECHNION"⁴. A análise é geralmente feita em 2 ou 4 grupos de energia em geometria tridimensional.

Para a verificação da precisão desse procedimento é necessário que sejam elaborados experimentos em Unidade Crítica¹. A determinação experimental da densidade de potência para servir como padrão de comparação desses métodos computacionais⁴ e estabelecer margens de desvio, é um dos quisitos fundamentais para a qualificação global de metodologia de cálculo utilizada em projetos e análises de reatores nucleares.

Outros parâmetros de interesse como reatividade das barras de controle, coeficientes de reatividade, mapeamento de fluxo neutrônico servirão como suporte para a interpretação dos desvios e tendências encontradas na comparação da densidade de potência calculada e medida.

Entre as metodologias de medida, destaca-se a técnica de varredura ("scanning") das varetas combustíveis^{5,6,7}, que vem sendo largamente utilizada devido a uma série de vantagens, entre elas destaca-se:

-Técnica de medida não destrutiva;

-Não inserção de dispositivo adicional de medida no núcleo do reator;

-Boa precisão dos resultados.

DENSIDADE DE POTÊNCIA

A metodologia de varredura baseia-se na proporcionalidade da atividade gama emitida pelo decaimento radioativo dos produtos de fissão da vareta combustível e a densidade de potência^{8,9,10,11}. Os produtos de fissão são em geral radioativos e decaem pela emissão β e/ou γ . O espectro final de emissão é uma função complexa do histórico de irradiação e o período de decaimento. Entretanto o comportamento agregado pode ser obtido experimentalmente após a irradiação e utilizado para inferir a densidade de potência no qual a vareta combustível ou um ponto da mesma foi submetido. Se a atividade gama é determinada experimentalmente logo após a irradiação pode-se afirmar que a radiação medida é proporcional à densidade de potência.

A técnica de varredura utilizada no trabalho trata basicamente de medir os gamas emitidos ao longo de toda região ativa utilizando um dispositivo especial de movimentação e posicionamento da vareta combustível dotado de colimadores e blindagens. A medida é feita com detector NaI(Tl) e toda instrumentação nuclear associada.

Para a medida de varredura gama da vareta combustível, são computados somente os gamas com energia superior a 0,6MeV¹² com o intuito de excluir principalmente a radiação gama do ²³⁹Np ¹³, por não ser um produto de fissão e além disso por ser produzido principalmente por ativações eptérmicas no U-238 e não térmicas que é de interesse do trabalho.

1.2 HISTÓRICO

A técnica de varredura gama de vareta combustível tem sido realizada para obter parâmetros experimentais na área de física de reatores desde os primordios do desenvolvimento dos primeiros reatores nucleares como "YANKEE"¹⁴ E "TRX".¹⁵

Inicialmente na década de 50, essa metodologia foi utilizada para a determinação do "Buckling" (medida da curvatura do perfil de fluxo do núcleo do reator) das Unidades Crtíticas¹⁶ através da varredura axial da vareta combustível considerando gamas com energia superior a 500 KeV.

Posteriormente na década de 60 essa metodologia foi aplicada na determinação do "Burnup"^{17,18} (medida de queima de combustível) e da medida da densidade de potência relativa^{8,18,19,20}.

Um dos primeiros trabalhos com aplicação direta no levantamento da distribuição da densidade de potência relativa trata-se do Projeto "SAXTON PLUTONIUM PROGRAM"¹⁸. Esse trabalho foi realizado em uma Unidade Crítica com combustível PUO₂ e UO₂ natural, onde foram considerados os gamas com energia superior a 500 KeV.

Na década de 70 essa técnica de medida foi de grande valia para a determinação experimental da densidade de potência relativa no reator LWBR (Light Water Breeder Reactor) com combustível ThO₂-²³³UO₂ como parte do programa de desenvolvimento e levantamento de dados experimentais básicos para confirmação de métodos de análise nuclear⁹.

Já na década de 80, esta técnica foi utilizada na distribuição de densidade de potência de elementos combustíveis tipo PWR (Power Water Reactor) na Unidade Crítica TCA⁷ do Japão. Considerando-se reatores rápidos menciona-se a determinação de distribuição da densidade de potência na Instalação FCA¹ (Fast Critical Assembly) também no Japão.

DENSIDADE DE POTÊNCIA

Mais recentemente esta técnica foi aplicada para a determinação do "Buckling" para polígonos regulares em sistemas térmicos¹² e também foram obtidos valores experimentais da densidade de potência relativa para várias configurações de núcleos.

Na área de reatores BWR (Boiling Water Reactor) encontram-se resultados experimentais²¹ de distribuição de densidade de potência relativa utilizando-se combustíveis MOX como parte do Programa VENUS²² (Bélgica). Ainda dentro do mesmo programa foram realizados experimentos²³ com combustível PWR com óxido misto. Esses valores experimentais estão sendo de grande utilidade para validação dos códigos CASMO-4/SIMULATE-3²⁴.

Com o histórico até aqui descrito fica evidente a grande utilização da técnica de varredura gama da vareta combustível em reatores nucleares. Ao longo desses anos de utilização a maior evolução observada foi no desenvolvimento tecnológico da instrumentação nuclear associada ao experimento de medida da distribuição de densidade de potência relativa.

1.3 OBJETIVO DO TRABALHO

O objetivo do trabalho consiste no estudo da metodologia, no desenvolvimento e testes do aparato experimental e na implantação da metodologia de medida no Laboratório de Medidas Nucleares do Reator IPEN/MB-01²⁵. Além disso, a metodologia de cálculo comumente aplicada para a determinação de densidade de potência na Divisão de Física de Reatores (RAF) será objeto de comparação para obter possíveis desvios e margens de incerteza, proporcionando uma validação do método de cálculo computacional.

1.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 1

11/ AKIO OHNO, TOSHITAKA OSUGI; <u>"Measurement of Relative Power</u> <u>Distribution at Fast Critical Assembly by Using Gamma Counting Method"</u>, Journal of Nuclear Science and Technology, 22(1(, 76, Jan/85.

/2/ SATOH K., OHNO A., OSUGI T.; "Measurement of Relative Power Distribution in the Simulated Axially Heterogeneous Core by Gamma Scanning Method"; JAERI-M-86-191, Jan/87.

/3/ FOWLER T. B.; VONDY D. R.; <u>"Nuclear Reactor Core Analysis Code:</u> <u>CITATION"</u>; ORNL-TM-2496; Julho/1972.

/4/ BARHEN J.; RHOTENSTEIN W.; TAVIV E.; "*The HAMMER Code System Technion*"; ISRAEL INSTITUTE OF TECHNOLOGY, NP-565, 1978.

/5/ GOUDEY J. L.; CHROMIK J. J.; <u>"Special TIP and Gamma Scan, Comparisons</u> of Simulated Process Computer Thermal Neutron TIP and Gamma TIP Calculations with Gamma Scan Measurements", EPRI NP-561-1979.

/6/ OWEN T. D.; <u>"Measurement of Power and Burn-up in Irradiated Nuclear Reactor</u> Fuel by a Non-Destructive Method", Brit. J. Apl., 1963, Vol.14, 456.

/7/ MURAKAMI K., AOKI I.; "Measurement of Reactivity Effects of Distributed Absorber Rods and Power Distribution in a PWR-Type Fuel Assembly", JAERI-M-84-194, Oct./94.

/8/ KOBAYASHI I., TSURUTA H., HASHIMOTO M., ABE S., KODAIRA T., OGURA S.; "Critical Experiment and Analysis on the Core for Japan First Nuclear Ship Reactor", JAERI-1166, Sept./78.

/9/ SMITH G. G, SEMANS J. P., MITCHELL J. A.; <u>"U233 Oxide-Thorium</u> Detailed Cell Critical Experiments"; WAPD-TM-1101, Oct./74

/10/ LAMARSH J. R., "Introduction to Nuclear Reactor Theory"; Addison Wesley Publishing Company 1.972.

/11/ DUDERSDADT J. J., HAMILTON J. L.; "Nuclear Reactor Analysis"; 1972.

/12/ MYIOSH Y., ITAGAKI M., AKAI M.; "A Geometric Buckling Expression for Regular Polygons: I. Measurements in Low-Enriched UO2-H20 Lattices"; JAERI-3190-11, Jan./93.

/13/ REUS U. and WESTMEIER W.; <u>"Atomic Data and Nuclear Data Tables"</u>; Part I, Vol.29, N.1, July 1.983.

/14/ GARBE R. W., WALCHLI H. E.; <u>"Ouartely Progress Report for the Period July</u> <u>1 to September 30, 1958</u>"; Westinghouse Electric Corp., Atomis Power Department, YAEC-97, November/1958.

/15/ BROWN J. R., HARRIS D. R., FRANTZ F.S., VOLPE J.J.; <u>"Kinetic and Buckling Measurements on Lattices of Slightly enriched Uranium or UO₂ Rods in Light Water"</u>, WAPD-176, 1958.

/16/ DAVISON P. W., BERG S. S.; <u>"YANKEE CRITICAL EXPERIMENTS -</u> Measurements on Lattices of Stainless Stell Clad Slightly Enriched Uranium Dioxide Fuel Rods in Light Water"; YAEC-94, 1958.

/17/ NODVIK R. J.; <u>"Evaluation of Gamma Activity Distributions in Yankee Core 1</u> and <u>II Spent Fuel"</u>; Westinghouse Electric Corp., June/1965.

/18/ TAYLOR E. G.; <u>"Saxton Plutonium Program Critical Experiments for The</u> Saxton Partial Plutonium Core"; Westinghouse Electric Corp., Dec/1965.

/19/ LACEY P. G.; "Local Fission Power Distributions Around Control Rods and Control Rod Followers in Simulated PWR Cores"; Westinghouse Electric Corp., Sep/1964.

/20/ LACEY P. G.; <u>"Fine Structure Power Peaking in a Critical Experiment Mockup</u> of <u>A Chemical Shim Core</u>"; Westinghouse Electric Corp., Mar/1963.

/21/ SAJI E.; <u>"Analyses of Boling Water Reactor Mixed-Oxide Critical Experiments</u> with CASMO-4 SIMULATE-3"; Nuclear Science and Engineering, 121, 52-56 / 1995.

/22/ CHARLIER A., BASSELIER J. and LEENDERS L.; <u>"VENUS International</u> <u>Program (VIP), A Nuclear Data Package for LWR Pu Recycle</u>"; American Nuclear Society French Section, 23-26, Vol. 1, April/1990.

/23/ MASAAKI M., MITSURU K.; <u>"CASMO-4 / SIMULATE-3 Benchmarking</u> <u>Against High Plutinium Content Pressurized Water Reactor Mixed-Oxide Fuel Critical</u> <u>Experiment</u>"; Nuclear Science and Engineering; 121, 41-51 (1995).

(24) EDENIUS M., SMITH K. and PLANCK VER D.; <u>"New Data Methods for</u> <u>CASO and SIMULATE"</u>; Proc. Topl. Mtg. Advances in Reactor Phisics and Safety, Saratoga Springs, New York, Sep. 17-19, Vol.2, U.S. Nuclear Regulatory Commission 1986.

/25/ Documento Interno IPEN/CNEN; <u>"Relatório de Análise de Segurança do Reator</u> <u>IPEN MB-01</u>", Cap. V, 1986.

CAPÍTULO 2: TRANSMUTAÇÃO E ANÁLISE DE ESPECTROMETRIA

- 2.1 INTRODUÇÃO
- 2.2 ESPECTROMETRIA VIA CÓDIGO ORIGEN 2
- 2.3 ESPECTROMETRIA EXPERIMENTAL
- 2.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 2

2.1 Introdução

A operação de um reator nuclear depende fundamentalmente do modo como os neutrons interagem com a matéria. O processo mais importante constitue o nascimento e o desaparecimento dos neutrons, pois a sustentação da reação em cadeia do núcleo do reator depende de um balanço detalhado entre a produção e o desaparecimento dos nêutrons nesse núcleo.

O processo de nascimento ou produção de nêutrons é ocasionado pela reação de fissão. Nesse processo um nêutron interage com um núcleo pesado (como o ²³⁵U), gerando dois ou mais nêutrons, dois grandes fragmentos e considerável liberação de energia¹. A reação em cadeia é perpetuada pelos nêutrons que surgem da fissão e geram cerca de 200 Mev de energia em cada fissão, devido a energia cinética dos fragmentos de fissão, nêutrons e outras partículas. A energia cinética é dissipada como calor quase que instantaneamente. Os produtos da reação interagem com o meio ao redor produzindo ionização e excitação molecular e atômica.

Os fragmentos que surgem na fissão são chamados de produtos de fissão.

O termo produto de fissão é usado para definir tanto os nuclídeos gerados diretamente pela fissão (fragmentos de fissão) como pelo decaimento radioativo (produtos de decaimento radioativo)². Esses produtos de fissão são gerados em quantidades consideráveis.

A formação dos produtos de fissão no núcleo do reator é uma função crescente do nível de potência na qual o reator opera, do tempo de exposição do combustível ao fluxo de nêutrons, e consequentemente, da energia total produzida pelo combustível.

Os fragmentos de fissão podem ter número de massa entre 72 e 160 e podem ser divididos em dois grupos: o grupo dos fragmentos leves com número de massa entre 80 e 110 e o grupo dos fragmentos pesados com número de massa entre 125 e 155 2 .

Os produtos de fissão são gerados em uma quantidade específica para cada núcleo pesado fissionado. Essa quantidade é representada pelo rendimento de fissão ("yield") que é a probabilidade de formação de um dado nuclídeo na fissão ou em uma dada cadeia de decaimento radioativo. O "yield" é função do núcleo a ser fissionado e da energia do nêutron incidente e é sempre expresso pela porcentagem de ocorrência desse nuclídeo pelo seu número de massa. Cada núcleo fissil possui sua curva característica de "yield" e cada fragmento de fissão possui seu "yield" de fissão característico¹.

A figura 1 apresenta um exemplo característico da porcentagem de formação de produtos de fissão.

Figura 1: Curvas características do yield de fissão em função do número de massa³.

Os produtos de fissão são em geral radioativos e decaem pela emissão de radiação β e/ou γ , dependendo da característica nuclear do nuclídeo.

A sequência entre os vários modos de acoplamento entre actinídeos e produtos de fissão é denominada de cadeia de transmutação e é em geral uma matriz complexa interligando vários nuclídeos. Essas cadeias de transmutação foram objetos de vários estudos^{4.5} e estão contidas em vários códigos nucleares como o ORIGEN 2⁶, CINDER 2⁷, etc...

O interesse fundamental nesse trabalho é a emissão gama devido ao decaimento radioativo dos produtos de fissão. Como existem vários produtos de fissão decaindo por emissão gama simultaneamente, o espectro final é a superposição de vários nuclídeos e modos de decaimento. Esses dados já estão incluídos nas bibliotecas de dados nucleares dos códigos de transmutação e em geral representam o estado da arte do conhecimento do evento na época de liberação da revisão do código.

Os produtos de fissão de interesse para a determinação da densidade de potência relativa possuem meia vida em geral pequena comparado ao tempo de irradiação e aquisição de dados, visto que entram em equilíbrio com o fluxo neutrônico e suas atividades são proporcionais à densidade de fissão.

Na próxima seção serão mostradas simulações com o código ORIGEN 2 com o intuito de ilustrar o evento a ser determinado experimentalmente nesse trabalho.

2.2 ESPECTROMETRIA VIA CÓDIGO "ORIGEN 2"

A análise dos nuclídeos predominantes no trabalho da medida da densidade de potência relativa via varredura gama da vareta combustível foi feita pelo código computacional "ORIGEN 2"⁴, uma vez que o levantamento desses dados experimentalmente trata-se de uma operação não factível dentro dos recursos experimentais disponíveis.

O código ORIGEN 2 possue uma biblioteca altamente detalhada de dados de emissão gama para os actinídeos e produtos de fissão que sevirão para ter um conhecimento mais apurado dos fenômenos de transmutação que ocorrem durante a irradiação e decaimento.

A simulação foi efetuada assumindo o reator operando a 1W de potência durante 2 horas ininterruptas; sendo todos resultados normalizados pela massa de urânio por vareta. Após esse período a simulação foi efetuada assumindo somente o decaimento radioativo nos tempos de 10, 15, 20, 25, 30, 35, e 40 minutos que engloba o tempo de aquisição dos dados experimentais.

O código ORIGEN 2 fornece o espectro de emissão gama por nuclídeo em vários grupos de energia; além da emissão total. A tabela 1 fornece o espectro dos fótons devido ao decaimento radioativo dos nuclídeos actinídeos, enquanto que a tabela 2 fornece a mesma grandeza para os produtos de fissão. A energia média das tabelas corresponde à média das energias do grupo⁴.

Pode ser observado de imediato nas tabelas 1 e 3 que os produtos de fissão dominam o espectro dos fotons ao longo do tempo. Nas tabelas 2 e 4 estão apresentadas as contribuições relativa por nuclídeo. Considerando o caso dos actinídeos, pode ser notado que o ²³⁹U e o ²³⁹Np dominam a emissão dos fotons. Por outro lado considerando os produtos de fissão existe uma gama de nuclídeos que contribuem para a fonte total, sendo os principais mostrados na tabela 4.

Nos casos dos produtos de fissão observou-se que os principais emissores gama possuem meia vida relativamente pequena comparada ao evento de tomada dos dados experimentais. Da análise da tabela 2 dos actinídeos surge a razão de descriminar as contagens acima da energia de 0,6 MeV, visto que a parte principal da contribuição do decaimento do ²³⁹U e ²³⁹Np são omitidas; sendo que esses nuclídeos são formados principalmente por capturas eptérmicas radioativas no ²³⁸U e não térmicas que são importantes para esse trabalho.

Energia Média	TEMPO DE RESFRIAMENTO APÓS OPERAÇÃO								
(MeV)	10minutos	15minutos	20minutos	25minutos	30minutos	35minutos	40minutos		
1.000E-02	7.218E+06	6.416E+06	5.725E+06	5.128E+06	4.613E+06	4.169E+06	3.785E+06		
2.500E-02	6.549E+05	5.676E+05	4.924E+05	4.274E+05	3.715E+05	3.232E+05	2.816E+05		
3.750E-02	2.098E+06	9.484E+05	8.193E+05	7.078E+05	6.117E+05	5.287E+05	4.571E+05		
5.750E-02	5.845E+05	5.064E+05	4.391E+05	3.809E+05	3.308E+05	2.875E+05	2.502E+05		
8.500E-02	6.272E+06	5.434E+06	4.712E+06	4.088E+06	3.549E+06	3.085E+06	2.684E+06		
1.250E-01	5.393E+05	5.146E+05	4.933E+05	4.748E+05	4.589E+05	4.451E+05	4.332E+05		
2.250E-01	8.845E+05	8.551E+05	8.298E+05	8.079E+05	7.889E+05	7.726E+05	7.584E+05		
3.750E-01	9.542E+04	8.449E+04	7.505E+04	6.691E+04	5.988E+04	5.382E+04	4.858E+04		
5.750E-01	7.804E+04	6.739E+04	5.820E+04	5.026E+04	4.342E+04	3.751E+04	3.241E+04		
8.500E-01	1.153E+05	9.956E+04	8.594E+04	7.419E+04	6.404E+04	5.529E+04	4.773E+04		
1.250E+00	1.413E+03	1.229E+03	1.071E+03	9.341E+02	8.165E+02	7.154E+02	6.283E+02		
1.750E+00	9.092E+00	9.387E+00	9.683E+00	9.979E+00	1.027E+01	1.057E+01	1.087E+01		
2.250E+00	9.092E-01	9.092E-01	9.092E-01	9.092E-01	9.092E-01	9.092E-01	9.092E-01		
TOTAL	1.754E+07	1.550E+07	1.373E+07	1.221E+07	1.089E+07	9.758E+06	8.778E+06		

Tabela 1: Espectro dos actinídeos (fótons/seg.).

NUCLIDEO	Ē(MeV)	10min.	15min.	20min.	25min.	30min.	35min.	40min.
²³⁹ U	0,010	5.935E+06	5.1 22 E+06	4.421E+06	3.815E+06	3.293E+06	2.842E+06	2.453E+06
²³⁹ Np	0.010	3.258E+05	3.371E+05	3.468E+05	3.550E+05	3.621E+05	3.682E+05	3.734E+05
²³⁹ U	0.025	6.410E+05	5.532E+05	4.774E+05	4.121E+05	3.556E+05	3.069E+05	2.649E+05
²³⁹ Np	0.025	4.257E+03	4.405E+03	4.531E+03	4.639E+03	4.732E+03	4.811E+03	4.879E+03
²³⁹ U	0.038	1.093E+06	9.436E+05	8.144E+05	7.029E+05	6.066E+05	5.236E+05	4.519E+05
²³⁹ U	0.058	5.7 24 E+05	4.940E+05	4.264E+05	3.680E+05	3.176E+05	2.741E+05	2.366E+05
²³⁹ Np	0.058	7.811E+03	8.081E+03	8.313E+03	8.512E+03	8.682E+03	8.827E+03	8.951E+03
²³⁹ U	0.085	6.133E+06	5.293E+06	4.568E+06	3.943E+06	3.403E+06	2.937E+06	2.535E+06
²³⁹ Np	0.085	5.806E+04	6.006E+04	6.179E+04	6. 326 E+04	6.453E+04	6.561E+04	6.653E+04
²³⁹ U	0.125	2.229E+05	1.924E+05	1.660E+05	1.433E+05	1.237E+05	1.067E+05	9.212E+04
²³⁹ Np	0.125	1.675E+05	1.733E+05	1.782E+05	1.825E+05	1.861E+05	1.893E+05	1.919E+05
²³⁹ U	0.225	2.440E+05	2.106E+05	1.817E+05	1.569E+05	1.354E+05	1.168E+05	1.008E+05
²³⁹ Np	0.225	1.161E+05	1.201E+05	1.236E+05	1.265E+05	1.291E+05	1.312E+05	1.331E+05
²³⁹ U	0.375	8.269E+04	7.137E+04	6.160E+04	5.316E+04	4.588E+04	3.960E+04	3.418E+04
²³⁹ Np	0.375	1.119E+04	1.158E+04	1.191E+04	1.219E+04	1.244E+04	1.264E+04	1.282E+04
²³⁹ U	0.575	7.781E+04	6.716E+04	5.796E+04	5.002E+04	4.317E+04	3.726E+04	3.216E+04
²³⁹ U	0.850	1.153E+05	9.948E+04	8.586E+04	7.410E+04	6.396E+04	5.520E+04	4.764E+04
²³⁹ U	1.250	1.358E+03	1.172E+03	1.012E+03	8.733E+02	7.537E+02	6.505E+02	5.614E+02

Tabela 2: Principais actinídeos emissores (fótons/seg.).

Energia Média	TEMPO DE RESFRIAMENTO								
(MeV)	10minutos	15minutos	20minutos	25minutos	30minutos	35minutos	40minutos		
8.500E-01	1.394E+07	1.229E+07	1.113E+07	1.023E+07	9.493E+06	8.867E+06	8.322E+06		
1.250E+00	1.054E+07	9.287E+06	8.301E+06	7.490E+06	6.808E+06	6.225E+06	5.721E+06		
1.750E+00	2.657E+06	2.319E+06	2.070E+06	1.872E+06	1.711E+06	1.576E+06	1.461E+06		
2.250E+00	2,528E+06	2.269E+06	2.058E+06	1.879E+06	1.726E+06	1.593E+06	1.477E+06		
TOTAL	2.967E+07	2.617E+07	2.356E+07	2.147E+07	1.974E+07	1.826E+07	1.698E+07		
Tabala 3 Fanastro das produtas da fissão (fátans/sas)									

Tabela 3: Espectro dos produtos de fissão (fótons/seg.).

NUCLIDEO	T 1/2	Ē(MeV)	10min.	15min.	20min.	25min.	30min.	35min.	40min.
⁹⁴ Y	18,6 min	0.850	1.727E+06	1.441E+06	1.202E+06	1.003E+06	8.363E+05	6.975E+05	5.818E+05
¹³⁰ Sb-m	40 min	0.850	6.441E+05	4.099E+05	2.515E+05	1.511E+05	8.948E+04	5.254E+04	3.067E+04
¹³¹ Sb	23 min	0.850	7.684E+05	6.610E+05	5.685E+05	4.890E+05	4.206E+05	3.617E+05	3.111E+05
¹³³ Te-m	55,4 min	0.850	1.518E+06	1.426E+06	1.340E+06	1.258E+06	1.182E+06	1.110E+06	1.043E+06
¹³⁴ Te	41,8 min	0.850	1.063E+06	9.780E+05	9.002E+05	8.285E+05	7.626E+05	7.019E+05	6.461E+05
¹³⁴ I	52,6 min	0.850	3.762E+06	3.781E+06	3.777E+06	3.754E+06	3.715E+06	3.662E+06	3.598E+06
¹⁴² Ba	10,7 min	0.850	4.085E+05	2.955E+05	2.137E+05	1.546E+05	1.118E+05	8.089E+04	5.851E+04
⁸⁹ Rb	15,4 min	1.250	1.507E+06	1.226E+06	9.846E+05	7.868E+05	6.274E+05	4.998E+05	3.980E+05
⁹² Sr	2,71 h	1.250	1.054E+06	1.031E+06	1.010E+06	9.884E+05	9.675E+05	9.471E+05	9.272E+05
¹⁰¹ Mo	14,6 min	1.250	5.326E+05	4.202E+05	3.315E+05	2.615E+05	2.063E+05	1.628E+05	1.284E+05
¹³⁴ I	52 min	1.250	6.383E+05	6.415E+05	6.409E+05	6.370E+05	6.303E+05	6.214E+05	6.106E+05
¹³⁸ Cs	32,2 min	1.250	3.006E+06	2.883E+06	2.732E+06	2.565E+06	2.391E+06	2.216E+06	2.043E+06
¹⁴² Ba	10,7 min	1.250	6.449E+05	4.665E+05	3.374E+05	2.440E+05	1.765E+05	1.277E+05	9.236E+04
¹⁴² La	1,52 h	2.250	5.663E+05	5.607E+05	5.511E+05	5.388E+05	5.248E+05	5.097E+05	4.940E+05

Tabela 4: Principais nuclídeos (produtos de fissão) emissores (fótons/seg.).

2.3 ESPECTROMETRIA EXPERIMENTAL

Para uma análise particular quanto aos produtos de ativação, foi observado através de um trabalho de simulação com o ORIGEN 2, que a contribuição na emissão γ dos produtos de ativação no aço inox do encamizamento da vareta combustível foi desprezível sendo que o principal emissor gama trata-se do ⁵⁶Mn, que contribui com 98% da emissão total dos produtos de ativação.

Em termos de contagens, o valor correspondente a emissão gama do ⁵⁶Mn é menor que 1% do total das contagens emitidas por todos os nuclídeos da vareta combustível com energia superior a 0,6 MeV.

A título de uma verificação experimental, foi construída uma vareta "oca" especial e posicionada no núcleo na região central (posição M14) irradiada a 1W por duas horas e posteriormente foi feita contagens com detector GeHP para análise dos nuclídeos presentes.

O resultado está apresentado na Figura 2, confirmando a predominância do ⁵⁶Mn.

Figura 2: Espectro dos produtos de ativação do aço inox da vareta combustível

2.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 2

/1/ LAMARSH, J. R.; <u>"Introduction to Nuclear Reactor Theory"</u>, New York, Addison-Wesley, 1966.

12/ LEWIS, E. E.; <u>"Nuclear Power Reactor Safety"</u>, John Waley & Sons, New York,
1977.

/3/ BENEDICT M.; PIGFORD T. H.; LEVI, H. W, <u>"Nuclear Chemical Engineering</u>", Second Edition, McGraw-Hill, Book Company.

/4/ TASAKA K.; <u>"DCHAIN2: A computer Code for Calculation of Transmutation of Nuclides.</u>, Japan Atomic Research Institute, JAERI-M-8727 (March, 1980).

/5/ MARR D.R.; <u>"A Users Manual for Computer Code RIBD-II, A Fission Product</u> <u>Inventory Code</u>", Hanford Engineering Development Laboratory, HEDL-TME-75-26 (1975).

/6/ RSIC COMPUTER CODE COLLECTION, <u>"ORIGEN 2, Isotope Generation</u> and Depletion Code - Matrix Exponential Method", OAK RIDGE NATIONAL LABORATORY, CCC-371,Dec./1985.

/7/ WILSON W. B., ENGLAND T. R., LABAUVE R. J., BATTA M. E., WESSOL D. E., PERRY R. T.; <u>"Status of Cinder and ENDF/B-V Based Libraries for</u> <u>Transmutation Calculations"</u>, Proc. Conf. Waste Transmutation; Austin, TX., p.673 (1981). CAPÍTULO 3: PROGRAMA EXPERIMENTAL

- 3.1 INTRODUÇÃO
- 3.2 BANCADA EXPERIMENTAL
 - 3.2.1 SISTEMA DE MOVIMENTAÇÃO E INDICAÇÃO DE POSICIONAMENTO DA VARETA COMBUSTÍVEL
 - 3.2.2 COLIMADORES E BLINDAGENS
 - 3.2.3 INSTRUMENTAÇÃO NUCLEAR
 - 3.2.4 VARETA COMBUSTÍVEL
- 3.3 **PROCEDIMENTO EXPERIMENTAL**
 - 3.3.1 PROCEDIMENTO DE OPERAÇÃO
 - 3.3.2 PROCEDIMENTO DE MEDIDA DO DECAIMENTO RADIOATIVO
 - 3.3.3 PROCEDIMENTO DE VARREDURA DA VARETA COMBUSTÍVEL
- 3.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 3

3.1 INTRODUÇÃO

Este capítulo trata do aparato experimental desenvolvido e adaptado, assim como todo dispositivo e instrumentação nuclear associada ao experimento. Além disso está descrito o procedimento padrão adotado desde a operação no Reator IPEN/MB-01 até a remoção da vareta combustível e início das contagens no Labaoratório de Medidas Nucleares, incluindo o procedimento estabelecido para medida de decaimento radioativo e de varredura das contagens gama da vareta combustível.

A parte do aparato experimental que foi desenvolvido é composta pelas blindagens, colimadores e dispositivo de acomodação da vareta combustível. Já a parte adaptada é composta pela unidade de acionamento de motor de passo (U.A.M.P.) e o indicador de posição relativa (I.P.R.), sistemas estes utilizados na instrumentação de controle do Reator IPEN/MB-01. Estes módulos utilizados são sobressalentes do conjunto da instrumentação do Retor IPEN/MB-01.

3.2 BANCADA EXPERIMENTAL

3.2.1 SISTEMA DE MOVIMENTAÇÃO E SISTEMA DE INDICAÇÃO DE POSICIONAMENTO DA VARETA COMBUSTÍVEL.

O sistema de movimentação da vareta combustível é composto da unidade de acionamento de motor de passo associado a um servomecanismo onde se dá a movimentação da vareta combustível. O motor de acionamento do sistema de movimentação é dotado de duas velocidades (normal 2mm/s e reduzida 1mm/s). Todo comando de movimentação e chave seletora de velocidade encontra-se no painel frontal da unidade.

Acoplado a esse dispositivo está o sistema de indicação de posicionamento da vareta combustível, dotado de um "display" digital com precisão de décimos de milímetro.

Ilustrações dos dois sistemas estão apresentadas nas figuras 3 e 4.

Figura 3: Foto do motor e servomecanismo.

Figura 4: Foto da unidade de movimentação e indicação de posicionamento.

3.2.2 COLIMADORES E BLINDAGENS

O sistema de colimadores e blindagens de chumbo tem como objetivo garantir as contagens gama somente na região de interesse^{1,2,3}, ou seja na abertura do colimador e passagem para o detector, blindando a radiação externa. A figura 4 indica a geometria do colimador, o qual é composto de quatro discos. É importante observar a vareta posicionada no dispositivo de acomodação e a abertura de 10 mm no primeiro disco do colimador, constituindo a região de interesse nas medidas de varredura da vareta combustível.

A distância da superficie da vareta até a base do primeiro disco é de aproximadamente 1 mm, afim de evitar contagens gama das regiões adjacentes.

Figura 5: Foto de um colimador.

Após os discos do colimador, vem posicionado o detector NaI (Tl) internamente a dois cilindros de chumbo blindados lateralmente com uma parede de tijolos de chumbo como indicam as figuras 6 e 7. A figura 8 mostra um desenho esquemático e dimensional do climador e blindagem.

Figura 6:Foto dos cilindros de blindagem e detector.

Figura 7: Foto do arranjo colimador / blindagem

25

3.2.3 INSTRUMENTAÇÃO NUCLEAR

Para a medida das contagens gama foi utilizado um detector NaI (Tl) de 2"x 2", devido ao maior interesse quanto a eficiência das contagens. O arranjo da instrumentação nuclear⁴ está indicado na figura 9.

A instrumentação nuclear é composta pela fonte de baixa tensão para alimentação do pré-amplificador do detector e a de alta tensão (800V pos.) para polarização do detector. Os pulsos de saída são ligados a um amplificador linear onde se dá a formatação do pulso nuclear, o qual posteriormente é discriminado no analisador monocanal, passando somente os pulsos com energia superior a 0,6 Mev. Estes pulsos são então contados dentro de um intervalo de tempo pré determinado, via contador/temporizador e finalmente registrados na impressora. Toda instrumentação nuclear utilizada é EG&G Ortec e o detector Harshaw Filtrol. O sistema de medida nuclear foi devidamente calibrado em energia utilizando fontes padrões de Cs_{137} e Co_{60} da "Amershan"⁵

Figura 9: Arranjo experimental da instrumentação nuclear.

A figura 10 apresenta um panorama geral de todo arranjo experimental montado no Laboratorio de Medidas Nucleares. O laboratório está localizado no edificio de apoio do Reator IPEN/MB-01 e é dotado de um controlador de temperatura com variação máxima de 2° C, devido a sensibilidade do detector NaI(TI) para variações bruscas de temperatura.

É importante observar a localização do experimentador distante aproximadamente 4 metros da vareta combustível proporcionando um decréscimo significativo em termos de dose de radiação, que durante todo o experimento foi monitorada ficando bem abaixo dos limites recomendados pelas "Diretrizes Básicas de Radioproteção", CNEN-NE-3.01, Julho/88.

Figura 10: Panorama geral do aparato experimental montado no Laboratório de Medidas Nucleares.

3.2.4 VARETA COMBUSTÍVEL

Para as medidas do experimento em caráter definitivo foi utilizada uma vareta combustível sobressalente sob registro UC-058 com as mesmas especificações técnicas⁶ das varetas originais do núcleo. O objetivo em utilizar uma vareta sobressalente é não comprometer o andamento de outros experimentos na Unidade Crítica, uma vez que após a operação a vareta tem que ser removida do núcleo para a medida de varredura.

E	specificações Técnicas da Vareta Combustível								
Vareta Combustivel:									
Tipo: Tubo de aço conte	endo pastilhas sinterizadas de UO2.								
Comprimento 1.194,0 r	nm								
Comprimento ativo: 54	6,0 mm								
Diâmetro externo do en	camisamento: 9,80+/-0,05mm								
Diâmetro interno do en	camizamento: 8,60+/-0,04mm								
Material do encamisam	ento: AISI 304L								
Gás de preenchimento:	Gás de preenchimento: He a 1 bar de pressão								
Combustivel:									
Forma: pastilhas cilindi	ricas com concavidade e chaniro em ambas extremidades.								
Diametro da pastilha: 8	,49+/-0,001mm								
Altura da pastilna: 10,5	$4 - 1.0 \text{mm}^3$								
Temp San de entremide	4 g/cm								
Material: AISI 304I	<i>ie.</i>								
Comprimento: 13.0mm									
Mola de Pressão:									
Material: Inconel 600									
Comprimento: 110 5mr	n								
Pastilhas de Al2O3	••								
Quantidade: 16 pastilha	35								
Altura de cada pastilha	9.0+/-0.02mm								
Diâmetro da pastilha: 8	,47+/-0,07mm								
Tubo espaçador:									
Material: AISI 304L									
Comprimento: 396,0 +/	-0,2mm								
Enriquecimento: 4,3%									
Massa da vareta: 680g	; Massa de UO2: 309,2g								
Composição isotópica	da vareta combustivel:								
pastilha combustivel	concentração(átomos/barn-cm)								
U235	1.00349E-03								
U238	2.17938E-02								
O16	4.55138E-02								
Revestimento, tubo gui									
Fe	5.67582E-02								
Ni	8.64435E-03								
Cr	1.72649E-02								
Mn55	1.59898E-03								
Si	3.34513E-04								
Pastilha de Alumina	4 200 405 02								
Al	4.30049E-02								
016	0.430/4E-02								

Figura 12: Posicionamento da vareta combustível no núcleo do reator.

Todo o trabalho de medida da distribuição de densidade de potência relativa foi realizado com o núcleo na configuração "34" retangular de 26 x 28 varetas⁶, totalizando 680 varetas combustíveis. A figura 13 apresenta o mapa de distribuição e posicionamento das varetas combustíveis e dos elementos de controle e segurança.

LEGENDA: O V

O Vareta Combustível

- Vareta Absorvedora de Controle
- Vareta Absorvedora de Segurança
- Vareta Combustível Medida
- Posição Não Utilizada da Placa Matriz

Figura 13: Quadro de distribuição das varetas combustíveis (configuração 34).

3.3 Procedimento Experimental

3.3.1 Procedimento de operação no reator

Após estudos, testes e análises quanto ao tempo de operação, potência do reator e nível de ativação da vareta combustível, foi padronizado para efeito de medida o seguinte procedimento:

• *Potência de operação* do Retaor IPEN/MB-01 1W estabilizada¹⁶, com monitoração gráfica via canal experimental⁷, (posição da barra de controle 59% e temperatura do moderador 20°C);

• Período de operação 2 horas cronometrado após criticalidade 1W estabilizada;

• Desligamento do reator na forma experimental(*); ou seja somente queda das barras de segurança e controle ⁸;

• Retirada da vareta combustível⁹ do núcleo imediatamente após o desligamento do reator;

• Início das contagens no Laboratório de Medidas Nucleares 5 (cinco) minutos decorridos do desligamento do reator.

(*)Obs.:O desligamento na forma experimental se dá pela queda das barras de segurança e controle, permanecendo por mais alguns instantes a água no tanque moderador, funcionando como blindagem e reduzindo a dose de radiação próximo ao núcleo do reator

3.3.2 PROCEDIMENTO DE MEDIDA DO DECAIMENTO RADIOATIVO

O objetivo de obter uma expressão analítica descrevendo o comportamento da emissão gama em função do tempo é corrigir a contagem medida retrocedendo ao final da irradiação. Certamente essa função é uma função complexa porque descreve o comportamento agregado de vários emissores gama.

O procedimento adotado foi associar a curva de decaimento levantada pelos dados experimentais à somatória de três exponenciais.

Para a medida do decaimento radioativo foram feitas contagens integradas no contador / temporizador a cada 40s e registradas na impressora. O tempo de aquisição se deu ao longo de 5 horas de decaimento dando um total de 423 pontos levantados por posição selecionada.

Foram feitas quatro medidas de decaimento em três posições no núcleo M14, M21 e M27 (*central, intermediária e periférica*), na cota 180mm do comprimento ativo da vareta combustível no sentido inferior para superior. Na posição central M14 foi realizada uma outra medida na cota 380mm. Com isso foi feito um levantamento do decaimento radioativo considerando uma distribuição radial e axial no núcleo.

Todo processamento dos dados de decaimento radioativo foi feito via programa computacional descrito no Apêndice A.

3.3.3 Procedimento de varredura da vareta combustível

A varredura¹⁰ ("scanning") da vareta combustível foi feita em passos de 20mm em 20mm. Foi medido também um ponto fora da região ativa afim de verificar o comportamento do colimador e blindagem. Para efeito de resultado e posterior estabelecimento do padrão para comparação e validação do método de cálculo só foi considerado a varredura da vareta combustível na região ativa entre 20mm e 520mm.

Portanto a cota 20mm (correspondente ao tempo de 460 s, ou seja 7min.que equivale a 420s. + 40s.do tempo de contagem) constitue o terceiro ponto medido na varredura, desprezando-se as cotas -20mm e o zero. O desprezo da cota -20mm é evidente pois não faz sentido a medida da densidade de potência fora da região ativa. A cota zero é um ponto crítico pois não é possível estabelecer uma boa precisão do início da região ativa.

A última cota 540mm também é despresada devido ao fato de que a abertura do colimador é de 10mm e o comprimento ativo da vareta é 546mm, portanto o último ponto ficaria em uma posição intermediária entre o final da região ativa e o início da região sem UO₂, não fazendo sentido a medida nesse ponto.

O tempo de contagem no contador/temporizador é de 40s. O disparo do contador é feito sempre no início do minuto "cheio", ou seja o contador é disparado no início do minuto, conta durante 40s ficando os outros 20s sem contar (nesse intervalo é feito o deslocamento da vareta para a próxima posição) e reinicia a contagem no início do próximo minuto. Todo esse disparo do contador é feito automaticamente, sendo disparado manualmente somente o primeiro ponto "start" que é o estabelecido em 5min. decorridos do desligamento do reator. Os valores das contagens nas posições com os tempos respectivos são anotados em uma planilha de dados. Com isto, as contagens nas respectivas cotas da região ativa da vareta se dão sempre no mesmo tempo após a irradiação da vareta na operação do Reator, e esses tempos serão então considerados na correção do decaimento.

3.4 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 3

/1/ KOBAYASHI I., TSURUTA H., HASHIMOTO M., ABE S., KODAIRA T., OGUIRA S.; "Critical Experiment and Analysis on the Core for Japan First Nuclear Ship <u>Reactor</u>", JAERI-1166, Sept./78.

/2/ MYIOSH Y., ITAGAKI M., AKAI M.; <u>"A Geometric Buckling Expression for</u> <u>Regular Polygons: I. Measurements in Low-Enriched UO2-H2O Lattices"</u>, JAERI-3190, JAN./1993.

/3/ RAMUSSEN N. C. and SOKVA J. A.; <u>"The Non-Destructive Measurement of</u> <u>Burn-up by Gamma-Ray Spectroscopy"</u>, Massachussets Institute of Technology, 1992.

/4/ EG & G ORTEC, <u>"Experiments in Nuclear Science"</u>, AN-34, 1984.

/5/ AMERSHAN, <u>"Product Specification, Gamma Reference Sources"</u>, Amershan International Limited, Oct/1987.

/6/ **Documento Interno IPEN/CNEN-SP R10-IP3-213PR-4EN-001**, *"Especificação Técnica para o Projeto Nuclear da UCRI"*, Agosto/1988

/7/ Documento Interno IPEN/CNEN-SP 16-OP-037, <u>"Rotina de Operação Reator</u> <u>IPEN/MB-01 Partida do Reator</u>", Jan. 1988.

/8/ Documento Interno IPEN/CNEN-SP.,16-OP-038, <u>"Rotina de Operação Reator</u> <u>IPEN/MB-01"</u>, Jan. 1988.

/9/ **Documento Interno IPEN/CNEN-SP.**, <u>"Relatório de Análise de Segurança do</u> <u>Reator IPEN/MB-01, Manuseio da Vareta Combustível"</u>, Cap. V Item 5.2.1.4.,1986.

/10/ Documento Interno IPEN/CNEN-SP., <u>"Rotina Experimental - Medida de</u> Distribuição de Densidade de Potência Relativa do Reator IPEN/MB-01, pela Técnica de Varredura da Vareta Combustível", Comite de Análise de Segurança, Março/1996.

CAPÍTULO 4: RESULTADOS EXPERIMENTAIS

4.1 INTRODUÇÃO

4.2 LEVANTAMENTO DOS DADOS EXPERIMENTAIS

- 4.2.1 MEDIDA DO DECAIMENTO RADIOATIVO
- 4.2.2 MEDIDA DA DENSIDADE DE POTÊNCIA RELATIVA

4.3 AVALIAÇÃO DOS DADOS EXPERIMENTAIS

4.3.1 ANÁLISE DA CONSISTÊNCIA DA CORREÇÃO DO DECAIMENTO

4.3.2 TESTE DE REPRODUTIBILIDADE DAS MEDIDAS

4.4 **REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 4**

4.1 INTRODUÇÃO

Neste capítulo são apresentados os resultados experimentais que servirão como padrões para comparação dos resultados teóricos levantados via código computacional CITATION¹

As posições selecionadas para levantamento do decaimento radioativo foram: M14, M21 e M27 na cota de comprimento ativo 180mm e outra medida na posição M14 na cota 380mm, proporcionando assim uma avaliação na distribuição axial e radial do núcleo quanto ao decaimento radioativo. As posições selecionadas para levantamento da distribuição axial da densidade de potência relativa foram: M14, M21, M27, J17, J20, J22, C22, C24 e ab27.

O objetivo em selecionar estas posições no quadrante onde está posicionado o elemento de controle é exatamente para analisar o efeito que este causa na distribuição da densidade de potência, pelo fato de se tratar de um meio absorvedor de neutrons.

Não foi possível o levantamento dos dados na posição central inferior a barra de controle devido a dificuldade de remoção das varetas nessa posição em tempo hábil para início das contagens no tempo estabelecido em 5 minutos. Nessa posição faz-se necessário a remoção do MAB (mecanismo de acionamento de barras) para a retirada das varetas combustíveis.

4.2 LEVANTAMENTO DOS DADOS EXPERIMENTAIS

4.2.1 MEDIDA DO DECAIMENTO RADIOATIVO

A figura 14 apresenta as curvas de decaimento radioativo levantadas pelos resultados experimentais ao longo de 5 horas de decaimento nas posições selecionadas.

A figura 15 apresenta o resultado das curvas de decaimento normalizadas pelo valor máximo das contagens.

Figura 15:Resultado das curvas de decaimento normalizadas

Os resultados mostraram uma sobreposição das curvas normalizadas de decaimento indicando uma independência quanto a posição do levantamento do decaimento radioativo, o que era previsto uma vez que todas as varetas combustíveis são constituídas das mesmas especificações técnicas quanto a massa, enriquecimento e encamizamento².

Para as curvas não normalizadas de decaimento radioativo ocorreu um deslocamento somente na magnitude da curva devido a diferença do fluxo neutrônico nas posições correspondentes. Sendo assim a equação de ajuste da curva normalizada para correção do decaimento radioativo é válida para qualquer medida de varredura em qualquer posição deste núcleo.

Para efeito de ajuste da curva e levantamento da equação de correção do decaimento radioativo, foi considerada a média dos valores levantados nas quatro medidas (posições) experimentais, chegando-se a uma curva "média" de decaimento radioativo.

O ajuste da curva de decaimento radioativo foi feito via programa matemático ORIGIN Versão 3.0³.

Equação de ajuste da curva de decaimento:

Para ajuste da curva de decaimento radioativo foi possível associar a somatória de três exponenciais, sendo os resultados finais apresentados na tabela 5.

f (t) =
$$A_1 \cdot e^{-E_1 \cdot T} + A_2 \cdot e^{-E_2 \cdot T} + A_3 \cdot e^{-E_3 \cdot T}$$

onde:
Chiquadrado = 5,33333
 $A_1 = 0,57178 + -0,00258$; $E_1 = 0,00184 + -0,00002$
 $A_2 = 0,24009 + -0,00157$; $E_2 = 0,00009 + -4,0733E - 7$
 $A_3 = 0,50124 + -0,00175$; $E_3 = 0,0004 + -2,5852E - 6$

Tabela 5: Equação de ajuste da curva de decaimento.

Para apresentação gráfica da curva normalizada com o respectivo ajuste foram escolhidos somente trinta pontos experimentais para efeito ilustrativo, pois na realidade o total de pontos é 423 ao longo de 5 (cinco) horas de decaimento. Esses resultados são apresentados na figura 16.

4.2.2 MEDIDA DA DENSIDADE DE POTÊNCIA RELATIVA

Nas tabelas de 6 a 14 são apresentadas as densidades de potência relativa com as respectivas incertezas em função da posição axial. O procedimento para obter a densidade relativa de potência é descrito pelas seguintes etapas:

• É feita a diferença entre as contagens integradas após a operação do reator e o valor da contagem de B.G. (antes da operação) evidentemente na respectiva cota (posição da região ativa da vareta); coluna DIF.

 É calculado o valor da função de correção do decaimento para o respectivo tempo da medida; coluna FUNÇÃO.

 O valor da diferença das contagens após operação menos o B.G. é dividido pelo valor da função do respectivo tempo; coluna DIF/FUNÇÃO.

 Finalmente é feita a normalização dos resultados pelo valor máximo da distribuição, obtendo-se a distribuição axial da densidade de potência relativa; coluna NORM.

Obs.: Todo procedimento de correção do decaimento radioativo assim como a normalização dos resultados é feito via programa computacional descrito no Apêndice A.

A última coluna representa a incerteza associada a densidade de potência relativa cuja descrição do procedimento de obtenção será plenamente descrito no capítulo 5.

POSIÇÃO M14

POS.	TEMPO	B.G.	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(S)	annalas d		(cont BG)		•		l(σ)
20.0	460	700	58208	57508	0.89150	64507	0.52780	0.32E-02
40.0	520	743	62455	61712	0.85495	72182	0.59060	0.35E-02
60.0	580	845	67959	67114	0.82129	81718	0.66863	0.39E-02
80.0	640	843	72134	71291	0.79024	90215	0.73814	0.42E-02
100.0	700	914	76137	75223	0.76155	98776	0.80820	0.45E-02
120.0	760	977	78936	77959	0.73499	106067	0.86785	0.48E-02
140.0	820	1076	81125	80049	0.71037	112687	0.92202	0.51E-02
160.0	880	1034	81019	79985	0.68748	116345	0.95195	0.53E-02
180.0	940	1065	80662	79597	0.66617	119484	0.97763	0.54E-02
200.0	1000	1076	79910	78834	0.64630	121978	0.99804	0.55E-02
220.0	1060	1083	77747	76664	0.62772	122131	0.99929	0.56E-02
240.0	1120	1065	75657	74592	0.61032	122218	1.00000	0.56E-02
260.0	1180	1036	72082	71046	0.59399	119608	0.97864	0.56E-02
[.] 280.0	1240	999	67816	66817	0.57864	115473	0.94481	0.55E-02
300.0	1300	1043	64519	63476	0.56417	112511	0.92058	0.54E-02
320.0	1360	982	59403	58421	0.55052	106119	0.8683	0.52E-02
340.0	1420	940	54449	53509	0.53761	99532	0.81438	0.50E-02
360.0	1480	862	50762	49900	0.52537	94981	0.77714	0.49E-02
380.0	1540	865	45915	45050	0.51375	87688	0.71747	0.47E-02
400.0	1600	785	41149	40364	0.50271	80293	0.65697	0.44E-02
420.0	1660	762	37049	36287	0.49218	73727	0.60324	0.42E-02
440.0	1720	704	32832	32128	0.48214	66637	0.54523	0.40E-02
460.0	1780	695	28300	27605	0.47254	58419	0.47799	0.37E-02
480.0	1840	637	24451	23814	0.46335	51396	0.42053	0.35E-02
500.0	1900	566	20762	20196	0.45453	44432	0.36355	0.32E-02
520.0	1960	564	18029	17465	0.44607	39153	0.32035	0.30E-02

Tabela 6:Resultado experimental, posição M14.

Figura 17: Resultado experimental - posição M14 (operação 741).

POSIÇÃO M21

POS.	TEMPO	B.G.	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC.	NORM.	INCERTEZA
(mm)	(s)			(contBG)				1(σ)
20.0	460	387	47829	. 47442	0.89150	53216	0.51267	0.32E-02
40.0	520	375	50590	. 50215	0.85495	58735	0.56584	0.35E-02
60.0	580	436	55207	54771	0.82129	66689	0.64247	0.38E-02
80.0	640	410	59495	59085	0.79024	74769	0.72031	0.42E-02
100.0	700	413	63083	62670	0.76155	82293	0.79279	0.46E-02
120.0	760	435	65644	65209	0.73499	88720	0.85472	0.49E-02
140.0	820	449	67279	66830	0.71037	94078	0.90634	0.51E-02
160.0	880	410	67381	66971	0.68748	97415	0.93848	0.53E-02
180.0	940	407	67801	67394	0.66617	101166	0.97462	0.55E-02
200.0	1000	476	67562	67086	0.64630	103801	1.00000	0.57E-02
220.0	1060	457	65491	65034	0.62772	103604	0.99810	0.57E-02
240.0	1120	433	63678	63245	0.61032	103626	0.99832	0.57E-02
260.0	1180	470	60400	59930	0.59399	100894	0.97199	0.57E-02
280.0	1240	446	57532	57086	0.57864	98656	0.95043	0.56E-02
300.0	1300	450	53547	53097	0.56417	94114	0.90669	0.55E-02
320.0	1360	400	49088	48688	0.55052	88440	0.85202	0.53E-02
340.0	1420	416	44758	44342	0.53761	82480	0.79460	0.50E-02
360.0	1480	429	40612	40183	0.52537	76485	0.73685	0.48E-02
380.0	1540	378	37058	36680	0.51375	71396	0.68782	0.46E-02
400.0	1600	403	33112	32709	0.50271	65066	0.62683	0.44E-02
420.0	1660	376	29749	29373	0.49218	59679	0.57494	0.42E-02
440.0	1720	394	26486	26092	0.48214	54117	0.52136	0.40E-02
460.0	1780	384	22946	22562	0.47254	47747	0.45998	0.37E-02
480.0	1840	358	20243	19885	0.46334	42916	0.41345	0.35E-02
500.0	1900	370	17180	16810	0.45453	36983	0.35629	0.32E-02
520.0	1960	375	14472	14097	0.44607	31603	0.30445	0.30E-02

Tabela '	7:	Resultado	experimental	posição	M21
----------	----	-----------	--------------	---------	-----

Figura 18: Resultado experimental posição M21 (operação 754).

POSIÇÃO M27

POS.	ТЕМРО	B.G.	CONTAGEM	DIF	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(s)			(contBG)			di Sudah di	Ι (σ)
20.0	460	909	42547	41638	0.89150	46705	0.51716	0.35E-02
40.0	520	895	45766	44871	0.85495	52484	0.58115	0.38E-02
60.0	580	1045	49764	48719	0.82129	59320	0.65684	0.42E-02
80.0	640	1132	53448	52316	0.79024	66203	0.73305	0.46E-02
100.0	700	1203	56976	55773	0.76155	73236	0.81093	0.50E-02
120.0	760	1293	58774	57481	0.73499	78206	0.86596	0.53E-02
140.0	820	1350	59691	58341	0.71037	82128	0.90939	0.56E-02
160.0	880	1382	60350	58968	0.68748	85774	0.94976	0.58E-02
180.0	940	1464	60451	58987	0.66617	88546	0.98046	0.60E-02
200.0	1000	1433	59488	58055	0.64630	89827	0.99464	0.61E-02
220.0	1060	1436	58126	56690	0.62772	90311	1.00000	0.62E-02
240.0	1120	1425	56040	54615	0.61032	89486	0.99086	0.62E-02
260.0	1180	1456	53637	52181	0.59399	87848	0.97273	0.61E-02
280.0	1240	1357	50627	49270	0.57864	85148	0.94283	0.60E-02
300.0	1300	1423	47299	45876	0.56417	81315	0.90039	0.59E-02
320.0	1360	1378	44067	42689	0.55052	77543	0.85862	0.57E-02
340.0	1420	1319	40801	39482	0.53761	73440	0.81319	0.56E-02
360.0	1480	1200	37291	36091	0.52537	68696	0.76066	0.53E-02
380.0	1540	1169	33852	32683	0.51375	63616	0.70441	0.51E-02
400.0	1600	1086	30567	29481	0.50271	58645	0.64936	0.49E-02
420.0	1660	1006	27438	26432	0.49218	53704	0.59465	0.47E-02
440.0	1720	937	24433	23496	0.48214	48733	0.53961	0.44E-02
460.0	1780	885	21279	20394	0.47254	43159	0.47789	0.41E-02
480.0	1840	805	18407	17602	0.46334	37989	0.42064	0.38E-02
500.0	1900	736	15377	14641	0.45453	32211	0.35667	0.35E-02
520.0	1960	673	13484	12811	0.44607	28720	0.31801	0.33E-02

Tabela 8: Resultado experimental posição M27

RESULTADO EXPERIMENTAL - POSIÇÃO M27

Figura 19: Resultado experimental posição M27 (operação 742).

POSIÇÃO J17

POS.	TEMPO	B.G.	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC.	NORM.	INCERTEZA
(mm)	(s)		The second se	(contBG)				1(m)
20.0	460	375	51441	51066	0.89150	57281	0.48460	0.29E-02
40.0	520	368	55289	54921	0.85495	64239	0.54347	0.31E-02
60.0	580	366	60803	60437	0.82129	73588	0.62256	0.35E-02
80.0	640	402	65159	64757	0.79024	81946	0.69327	0.38E-02
100.0	700	414	69263	68849	0.76155	90406	0.76484	0.42E-02
120.0	760	441	72578	72137	0.73499	98146	0.83032	0.45E-02
140.0	820	466	75542	75076	0.71037	105687	0.89411	0.48E-02
160.0	880	450	76099	75649	0.68748	110038	0.93093	0.49E-02
180,0	940	452	77285	76833	0.66617	115335	0.97574	0.52E-02
200.0	1000	471	76239	75768	0.64630	117234	0.99181	0.53E-02
220.0	1060	443	74641	74198	0.62772	118203	1.00000	0.53E-02
240.0	1120	422	72086	71664	0.61032	117420	0.99338	0.53E-02
260.0	1180	448	68808	68360	0.59399	115086	0.97363	0.53E-02
280.0	1240	418	64188	63770	0.57864	110207	0.93236	0.52E-02
300.0	1300	452	57125	56673	0.56417	100453	0.84984	0.49E-02
320.0	1360	447	47396	46949	0.55052	85281	0.72148	0.44E-02
340.0	1420	435	39826	39391	0.53761	73271	0.61988	0.40E-02
360.0	1480	432	35600	35168	0.52537	66939	0.56631	0.38E-02
380.0	1540	401	32292	31891	0.51375	62074	0.52515	0.36E-02
400.0	1600	397	29007	28610	0.50271	56912	0.48148	0.35E-02
420.0	1660	378	26149	25771	0.49218	52361	0.44297	0.33E-02
440.0	1720	379	23302	22923	0.48214	47545	0.40223	0.31E-02
460.0	1780	387	20446	20059	0.47254	42449	0.35913	0.30E-02
480.0	1840	380	17740	17360	0.46334	37467	0,31697	0.28E-02
500.0	1900	342	15344	15002	0.45453	33005	0.27923	0.26E-02
520.0	1960	340	13155	12815	0.44607	28729	0.24305	0.24E-02

l abela 9: Resultado experimental posição J l	7
---	---

Figura 20: Resultado experimental posição J17 (operação 746)

POSIÇÃO J20

POS.	TEMPO	BG	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(s)			(contBG)				1(σ)
20.0	460	902	53397	52495	0.89150	58884	0.50968	0.30E-02
40.0	520	980	57151	56171	0.85495	65701	0.56869	0.33E-02
60.0	580	1037	62147	61110	0.82129	74407	0.64405	0.36E-02
80.0	640	1140	66593	65453	0.79024	82827	0.71692	0.40E-02
100.0	700	1276	71019	69743	0.76155	91580	0,79269	0.43E-02
120.0	760	1260	73572	72312	0.73499	98384	0.85158	0. 4 6E-02
140.0	820	1415	75062	73647	0.71037	103675	0.89738	0.48E-02
160.0	880	1369	76421	75052	0.68748	109170	0.94494	0.51E-02
180.0	940	1490	77387	75897	0.66617	113930	0.98614	0.53E-02
200.0	1000	1449	75646	74197	0.64630	114803	0.99370	0.53E-02
220.0	1060	1481	74002	72521	0.62772	115531	1.00000	0.54E-02
240.0	1120	1486	71050	69564	0.61032	113980	0.98657	0.54E-02
260.0	1180	1412	67561	66149	0.59399	111363	0.96393	0.53E-02
280.0	1240	1405	62708	61303	0.57864	105943	0.91701	0.52E-02
300.0	1300	1243	55010	53767	0.56417	95302	0.82490	0.48E-02
320.0	1360	1125	45414	44289	0.55052	80449	0.69634	0.43E-02
340,0	1420	1026	38602	37576	0.53761	69895	0.60499	0.40E-02
360.0	1480	965	33745	32780	0.52537	62394	0.54006	0.37E-02
380.0	1540	889	30753	29864	0.51375	58129	0.50315	0.36E-02
400.0	1600	929	27618	26689	0.50271	53091	0.45954	0.34E-02
420.0	1660	804	24239	23435	0.49218	47615	0.41214	0.32E-02
440.0	1720	755	21501	20746	0.48214	43029	0.37245	0.31E-02
460.0	1780	744	18867	18123	0.47254	38353	0.33197	0.29E-02
480.0	1840	656	16448	15792	0.46334	34083	0.29501	0.27E-02
500.0	1900	599	13618	13019	0.45453	28643	0.24792	0.25E-02
520.0	1960	549	11900	11351	0.44607	25447	0.22026	0.23E-02

Tabela 10: Resultado experimental posição J20

Figura 21: Resultado experimental da posição J20 (operação 747).

POSIÇÃO J22

POS.	TEMPO	B.G.	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(s)			(contBG)	· · · · · ·	1.		1(σ)
20.0	460	910	46898	45988	0.89150	51585	0.51967	0.33E-02
40.0	520	896	49684	48788	0.85495	57066	0.57489	0.36E-02
60.0	580	1091	54732	53641	0.82129	65313	0.65798	0.40E-02
80.0	640	1094	58661	57567	0.79024	72848	0.73388	0.44E-02
100.0	700	1172	61454	60282	0.76155	79157	0.79744	0.47E-02
120.0	760	1270	64029	62759	0.73499	85387	0.86020	0.50E-02
140.0	820	1260	65425	64165	0.71037	90327	0.90996	0.53E-02
160.0	880	1350	66170	64820	0.68748	94286	0.94985	0.55E-02
180.0	940	1370	66380	65010	0.66617	97587	0.98311	0.57E-02
200.0	1000	1383	65494	64111	0.64630	99197	0.99933	0.58E-02
220.0	1060	1323	63633	62310	0.62772	99264	1.00000	0.59E-02
240.0	1120	1370	61444	60074	0.61032	98430	0.99160	0.59E-02
260.0	1180	1349	58361	57012	0.59399	95981	0.96693	0.58E-02
280.0	1240	1418	53408	51990	0.57864	89849	0.90515	0.56E-02
300.0	1300	1244	46788	45544	0.56417	80727	0.81325	0.52E-02
320.0	1360	1074	38678	37604	0.55052	68306	0.68813	0.47E-02
340.0	1420	955	32493	31538	0.53761	58664	0.59099	0.42E-02
360.0	1480	879	28564	27685	0.52537	52696	0.53087	0.40E-02
380.0	1540	861	25636	24775	0.51375	48223	0.48581	0.38E-02
400.0	1600	763	22663	21900	0.50271	435642	0.43887	0.36E-02
420.0	1660	761	20613	19852	0.49218	40335	0.40634	0.35E-02
440.0	1720	767	18142	17375	0.48214	36037	0.36305	0.33E-02
460.0	1780	691	15880	15189	0.47254	32144	0.32382	0.31E-02
480.0	1840	623	13821	13198	0.46334	28484	0.28695	0.29E-02
500.0	1900	620	11909	11289	0.45453	24837	0.25021	0.27E-02
520.0	1960	548	10087	9539	0.44607	21384	0.21543	0.25E-02

Tabela 11: Resultado experimental posição J22

Figura 22: Resultado experimental posição J22 (operação 749).

POSIÇÃO C22

DOB	TELEO	DO			FIDICÃO	DECIDIO	NODM	
POS	TEMPO	BO	CONTAGEM	DIF.	FUNÇAŬ	DIF/FUNC	NOKM	INCERTEZA
(mm)	(s)			(contBG)		12-21-12-13		1(σ)
20.0	460	869	31563	30694	0.89150	34429	0.52541	0.42E-02
40.0	520	895	33732	32837	0.85495	38408	0.58613	0.47E-02
60.0	580	1009	36521	35512	0.82129	43239	0.65986	0.51E-02
80.0	640	1153	38861	37708	0.79024	47717	0.72819	0.56E-02
100.0	700	1190	41130	39940	0.76155	52446	0.80034	0.60E-02
120.0	760	1184	42845	41661	0.73499	56682	0.86500	0.64E-02
140.0	820	1353	43821	42468	0.71037	59783	0.91232	0.68E-02
160.0	880	1296	44263	42967	0.68748	62499	0.95377	0.70E-02
180.0	940	1390	43865	42475	0.66617	63760	0.97300	0.72E-02
200.0	1000	1443	43794	42351	0.64630	65529	1.00000	0.74E-02
220.0	1060	1416	42402	40986	0.62772	65294	0.99641	0.75E-02
240.0	1120	1396	40925	39529	0.61032	64768	0.98839	0.75E-02
260.0	1180	1357	39023	37666	0.59399	63412	0.96769	0.74E-02
280.0	1240	1222	35581	34359	0.57864	59379	0.90615	0.71E-02
300.0	1300	1192	31200	30008	0.56417	53189	0.81169	0.66E-02
320.0	1360	1048	25901	24853	0.55052	45144	0.68893	0.60E-02
340.0	1420	996	21382	20386	0.53761	37920	0.57868	0.54E-02
360.0	1480	899	18681	17782	0.52537	33847	0.51652	0.50E-02
380.0	1540	880	16527	15647	0.51375	30456	0.46478	0.48E-02
400.0	1600	828	14843	14015	0.50271	27879	0.42545	0.46E-02
420.0	1660	775	13091	12316	0.49218	25023	0.38187	0.43E-02
440.0	1720	747	11661	10914	0.48214	22637	0.34545	0.41E-02
460.0	1780	667	9979	9312	0.47254	19706	0.30073	0.38E-02
480.0	1840	639	8844	8205	0.46334	17708	0.27023	0.37E-02
500.0	1900	598	7437	6839	0.45453	15046	0.22961	0.34E-02
520.0	1960	585	6359	5774	0.44607	12944	0.19753	0.32E-02

Tabela 12: Resultado experimental posição C22.

.

Figura 23: Resultado experimental posição C22 (operação 751)

POSIÇÃO C24

POS.	TEMPO	BG	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(s)			(contBG)				1(σ)
20.0	460	508	26939	26431	0.89150	29648	0.52350	0.44E-02
40,0	520	553	28397	27844	0.85495	32568	0.57507	0.48E-02
60.0	580	588	31181	30593	0.82129	37250	0.65774	0.53E-02
80.0	640	518	33214	32696	0.79024	41375	0.73057	0.58E-02
100.0	700	655	35133	34478	0.76155	45273	0.79941	0.63E-02
120.0	760	626	36438	35812	0.73499	48724	0.86034	0.67E-02
140.0	820	659	37545	36886	0.71037	51925	0.91687	0.71E-02
160.0	880	667	38310	37643	0.68748	54755	0.96683	0.74E-02
180.0	940	656	37691	37035	0.66617	55594	0.98164	0.76E-02
200.0	1000	695	37297	36602	0.64630	56633	1.00000	0.77E-02
220.0	1060	651	35894	35243	0.62772	56145	0.99137	0.78E-02
240.0	1120	644	34575	33931	0.61032	55595	0.98167	0.78E-02
260.0	1180	684	32879	32195	0.59399	54201	0.95705	0.77E-02
280.0	1240	654	30460	29806	0.57864	51510	0.90954	0.75E-02
300,0	1300	661	26650	25989	0.56417	46065	0.81340	0.69E-02
320.0	1360	635	21295	20660	0.55052	37528	0.66265	0.61E-02
340.0	1420	581	17518	16937	0.53761	31504	0.55629	0.55E-02
360,0	1480	591	15378	14787	0.52537	28146	0.49698	0.52E-02
380.0	1540	585	13708	13123	0.51375	25543	0.45103	0.49E-02
400.0	1600	469	12157	11688	0.50271	23250	0.41054	0.47E-02
420.0	1660	544	10896	10352	0.49218	21033	0.37139	0.44E-02
440.0	1720	493	9681	9188	0.48214	19057	0.33649	0.42E-02
460.0	1780	516	8442	7926	0.47254	16773	0.29617	0.40E-02
480.0	1840	462	7253	6791	0,46334	14657	0.25879	0.37E-02
500.0	1900	462	6144	5682	0.45453	12501	0.22073	0.35E-02
520.0	1960	411	5449	5038	0.44607	11294	0.19943	0.33E-02

Tabela 13: Resultado experimental posição C24.

Figura 24: Resultado experimental posição C24 (operação 761).

POSIÇÃO ab27

POS.	TEMPO	BG	CONTAGEM	DIF.	FUNÇÃO	DIF/FUNC	NORM.	INCERTEZA
(mm)	(s)			(contBG)	3	No.		1(σ)
20.0	460	624	23760	23136	0.89150	25952	0.51220	0.47E-02
40.0	520	717	25988	25271	0.85495	29559	0.58339	0.52E-02
60.0	580	736	28362	27626	0.82129	33637	0.66389	0.57E-02
80.0	640	839	30170	29331	0.79024	37117	0.73256	0.62E-02
100.0	700	856	31778	30922	0.76155	40604	0.80139	0.67E-02
120.0	760	959	32959	32000	0.73499	43538	0.85929	0.72E-02
140,0	820	906	33772	32866	0,71037	46266	0.91314	0.76E-02
160.0	880	956	34593	33637	0.68748	48928	0.96567	0.79E-02
180.0	940	958	34129	33171	0.66617	49793	0.98275	0.81E-02
200.0	1000	959	33705	32746	0.64630	50667	1.00000	0.83E-02
220.0	1060	984	32679	31695	0.62772	50492	0.99655	0.83E-02
240.0	1120	998	31632	30634	0.61032	50193	0.99065	0.84E-02
260.0	1180	953	29902	28949	0.59399	48736	0.96189	0.82E-02
280.0	1240	911	28285	27374	0.57864	47308	0.93369	0.81E-02
300,0	1300	916	26137	25221	0.56417	44704	0.88231	0.79E-02
320.0	1360	818	24081	23263	0.55052	42256	0.83400	0.76E-02
340.0	1420	738	22255	21517	0.53761	40024	0.78993	0.74E-02
360.0	1480	687	20186	19499	0.52537	37115	0.73252	0.71E-02
380.0	1540	620	18436	17816	0.51375	34678	0.68443	0.68E-02
400.0	1600	635	16309	15674	0.50271	31179	0.61537	0.64E-02
420.0	1660	618	14526	13908	0.49218	28258	0.55772	0.61E-02
440.0	1720	576	12970	12394	0.48214	25706	0.50736	0.57E-02
460.0	1780	554	11234	10680	0.47254	22601	0.44608	0.54E-02
480.0	1840	530	9651	9121	0.46334	19685	0.38852	0.50E-02
500.0	1900	495	8294	7799	0.45453	17158	0.33865	0.47E-02
520.0	1960	440	7073	6633	0.44607	14870	0.29348	0.43E-02

Tabela 14:Resultado experimental posição ab27.

Figura 25: Resultado experimental posição ab27 (operação765).

4.3 AVALIAÇÃO DOS DADOS EXPERIMENTAIS

4.3.1 ANÁLISE DA CONSISTÊNCIA DA CORREÇÃO DO DECAIMENTO RADIOATIVO.

Para análise da consistência da correção do decaimento foram realizadas três varreduras em uma mesma vareta irradiada em uma determinada posição no núcleo (no caso posição M27), e iniciada as varreduras nos tempos 5 minutos, 40 minutos e 1 hora e 15 minutos, após o desligamento do reator. Analisando os resultados observa-se a proximidade dos valores para as três medidas certificando a correção do decaimento radioativo. Como justificativa ao tempo de 5 minutos estabelecido para o início das contagens, observa-se que é o caso onde se tem a menor incerteza e também a consideração da contagem gama emitida pelos produtos de fissão com meia vida inferior ao tempo de início do segundo tempo de teste no caso 40 minutos. Obs.: D.P.R.(Densidade de Potência Relativa)

	D.P.R.		D.P.R.		D.P.R.	
POSIÇÃO	início	INCERTEZA	inicio	INCERTEZA	início	INCERTEZA
(mm)	(5 min.)		(40 min.)		(1h15min.)	
20.0	0.51716	0.35E-02	0.51132	0.53E-02	0.51033	0.68E-02
40.0	0.58115	0.38E-02	0.58682	0.58E-02	0.58250	0.74E-02
60.0	0.65684	0.42E-02	0.66232	0.63E-02	0.65579	0.81E-02
80,0	0.73305	0.46E-02	0.73603	0.69E-02	0.73987	0.89E-02
100.0	0.81093	0.50E-02	0.80456	0.73E-02	0.79939	0.94E-02
120.0	0.86596	0.53E-02	0.86912	0.78E-02	0.87594	0.10E-01
140.0	0.90939	0.56E-02	0.91117	0.81E-02	0.90827	0.10E-01
160.0	0.94976	0.58E-02	0.95225	0.84E-02	0.94829	0.11E-01
180.0	0.98046	0.60E-02	0.96831	0.86E-02	0.98814	0.11E-01
200.0	0.99464	0.61E-02	0.98853	0.87E-02	0.98402	0.11E-01
220.0	1.00000	0.62E-02	1.00000	0.88E-02	1.00000	0.11E-01
240.0	0.99086	0.62E-02	0.97583	0.87E-02	0.99468	0.11E-01
260.0	0.97273	0.61E-02	0.97251	0.87E-02	0.96796	0.11E-01
280.0	0.94283	0.60E-02	0.93433	0.85E-02	0.94081	0.11E-01
300.0	0.90039	0.59E-02	0.88369	0.82E-02	0.90392	0.11E-01
320.0	0.85862	0.57E-02	0.85381	0.80E-02	0.87314	0.10E-01
340.0	0.81319	0.56E-02	0.79616	0.77E-02	0.79789	0.98E-02
360.0	0.76066	0.53E-02	0.74620	0.74E-02	0.74713	0.93E-02
380.0	0.70441	0.51E-02	0.68613	0.70E-02	0.69782	0.90E-02
400.0	0.64936	0.49E-02	0.63721	0.67E-02	0.63877	0.85E-02
420.0	0.59465	0.47E-02	0.58096	0.63E-02	0.58690	0.80E-02
440.0	0.53961	0.44E-02	0.51672	0.59E-02	0.52930	0.75E-02
460.0	0.47789	0.41E-02	0.46726	0.55E-02	0.46757	0.70E-02
480.0	0.42064	0.38E-02	0.41392	0.52E-02	0.41642	0.65E-02
500.0	0.35667	0.35E-02	0.36100	0.48E-02	0.37223	0.61E-02
520.0	0.31801	0.33E-02	0.32016	0.45E-02	0.30978	0.56E-02

Tabela.15: Resultados da posição M27 nos tempos 5min.,40min.e 1h e 15min.

Figura.26:Resultados comparativos, posição M27 nos tempos 5min., 40min.e 1h e 15min.

4.3.2 TESTE DE REPRODUTIBILIDADE DAS MEDIDAS EXPERIMENTAIS

Para o teste de reprodutibilidade das medidas experimentais foram comparados os resultados da distribuição da densidade de potência relativa na posição M21 levantados após a operação 754 em 06/08/96 com os resultados levantados após operação 765 em 22/08/96.

POSIÇÃO	OPERAÇÃO 754	INCERTEZA(1)	OPERAÇÃO 765	INCERTEZA(1)
20.0	0.51267	0.32E-02	0.51274	0.32E-02
40.0	0.56584	0.35E-02	0.56089	0.34E-02
60.0	0.64247	0.38E-02	0.63920	0.38E-02
80.0	0.72031	0.42E-02	0.71422	0.42E-02
100.0	0.79279	0.46E-02	0.78866	0.45E-02
120.0	0.85472	0.49E-02	0.84067	0.48E-02
140.0	0.90634	0.51E-02	0.90002	0.51E-02
160.0	0.93848	0.53E-02	0.93781	0.53E-02
180.0	0.97462	0.55E-02	0.97279	0.55E-02
200.0	1.00000	0.57E-02	0.99829	0.57E-02
220.0	0.99810	0.57E-02	1.00000	0.57E-02
240.0	0.99832	0.57E-02	0.98938	0.57E-02
260.0	0.97199	0.57E-02	0.97954	0.57E-02
280.0	0.95043	0.56E-02	0.95567	0.56E-02
300.0	0.90669	0.55E-02	0.91038	0.55E-02
320.0	0.85202	0.53E-02	0.85723	0.53E-02
340.0	0.79460	0.50E-02	0.80089	0.51E-02
360.0	0.73685	0.48E-02	0.73724	0.48E-02
380.0	0.68782	0.46E-02	0.68599	0.46E-02
400.0	0.62683	0.44E-02	0.63546	0.44E-02
420.0	0.57494	0.42E-02	0.57662	0.42E-02
440.0	0.52136	0.49E-02	0.52370	0.40E-02
460.0	0.45998	0.37E-02	0.46905	0.37E-02
480.0	0.41345	0.35E-02	0.41110	0.35E-02
500.0	0.35629	0.32E-02	0.35539	0.32E-02
520.0	0.30445	0.30E-02	0.30883	0.30E-02

Tabela.16: Resultado experimental, teste de reprodutibilidade posição M21.

Figura 27: Gráfico comparativo do teste de reprodutibilidade.

4.4.REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 4

/1/ FOWLER T. B., VONDY D. R., <u>"Nuclear Reactor Core Analysis Code:</u> <u>CITATION</u>", ORNL - TM - 2496, Jul./1972.

/2/ DOCUMENTO INTERNO IPEN/CNEN-S.P., <u>"Relatório de Análise de</u> Segurança do Retaor IPEN/MB-01", Cap. V, 1986.

 /3/ MICROCALTM SOFTWARE INC., <u>"Technical Graphics and Analysis in</u> <u>Windows"</u>, User's Guide, 1995.

CAPÍTULO 5: ANÁLISE DE INCERTEZA

5.1 INTRODUÇÃO

5.2 CÁLCULO DA INCERTEZA DAS MEDIDAS EXPERIMENTAIS

5.3 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 5

5.1 INTRODUÇÃO

Este capítulo está diretamente associado ao tratamento de incerteza dos dados experimentais que consiste em um dos principais fatores quando se trata de um trabalho estritamente experimental. As incertezas estão intimamente ligadas a distribuição de probabilidade que rege os processos pelo qual nós observamos os fenômemos fisicos.

Como fontes de incertezas no processo de medida estão : potência de operação do reator, tempo de operação, posicionamento da vareta combustível no dispositivo de medida da varredura gama e toda incerteza intrínseca da instrumentação nuclear associada.

Após análise do processo concluiu-se que a predominância de incerteza em toda medida está na estatística de medida propriamente dita, podendo ser desprezadas as fontes anteriormente mencionadas. Os resultados de qualquer conjunto de medidas estão sujeitos à interação de um grande número de fatores que escapam ao controle do pesquisador. Os testes estatísticos aplicados aos resultados fornecidos por um método permitem condensar esses resultados e fornecer uma informação praticamente completa sobre a exatidão e precisão das medidas que o método pode oferecer.

5.2 CÁLCULO DA INCERTEZA DAS MEDIDAS EXPERIMENTAIS

Em experimentos envolvendo medidas nucleares tais como decaimento radioativo e contagens de amostras radioativas, dada uma medida x, podemos dizer que o desvio padrão σ da medida será a raiz quadrada da mesma¹.

$$\sigma = \sqrt{x} \tag{5.2.1}$$

No entanto, as contagens de amostras radioativas consistem em um grande número de medidas, que poderão ser somadas, multiplicadas ou manipuladas de forma a se obter a quantidade de interesse. Para estes casos, a incerteza associada com a contagem original não pode ser calculado simplesmente pela raiz quadrada da grandeza final, sendo necessário definir-se um resultado geral, que possa ser aplicado independentemente do número de variáveis.

Tomemos as contagens x, y, z,..., não correlacionadas e seus respectivos desvios padrões σ_x , σ_y , σ_z ,...Então o desvio padrão para qualquer grandeza u, derivada das contagens, será dado pela seguinte expressão, conhecida como equação de propagação de erro que é aplicada em situações envolvendo medidas nucleares^{1,2,3}:

$$\sigma_{u}^{2} = \left(\frac{\partial u}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} \sigma_{y}^{2} + \left(\frac{\partial u}{\partial z}\right)^{2} \sigma_{z}^{2} + \dots \qquad (5.2.2)$$

A seguir serão apresentadas algumas recorrências da equação anterior aplicadas nesse trabalho:

• Soma e subtração de contagens:

$$\mathbf{u} = \mathbf{x} \pm \mathbf{y} \tag{5.2.3}$$

O desvio padrão, a partir da equação (E.2), pode ser simplificado por:

$$\sigma_{u} = \sqrt{\left(\sigma_{x}^{2} + \sigma_{y}^{2}\right)}$$
(5.2.4)

» Multiplicação ou divisão por constantes

Seja a multiplicação ou divisão de contagens, por uma constante, dada por:

$$u = A.x \quad ou \quad v = \frac{x}{B} \tag{5.2.5}$$

O desvio padrão da medida será:

$$\sigma_u = A \cdot \sigma_x$$
 ou $\sigma_v = \frac{\sigma_x}{B}$ (5.2.6)

• Multiplicação ou divisão por contagens:

Seja a multiplicação ou divisão de contagens, dada por:

$$u = x \cdot y$$
 ou $u = \frac{x}{y}$ (5.2.7)

O desvio padrão da medida será:

$$\sigma_{\underline{u}} = u \cdot \sqrt{\left\{ \left(\frac{\sigma_{\underline{x}}}{x} \right)^2 + \left(\frac{\sigma_{\underline{y}}}{y} \right)^2 \right\}}$$
 (5.2.8)

• Para a função f(t) de correção do decaimento radioativo, o desvio padrão é calculado pela matriz de covariança ⁴ (devido ao compromisso entre os parâmeteros da equação), dada por:

$$\sigma_{f}^{2} = T^{+}_{(1x6)} V_{\sigma}^{(6x6)} T_{(6x1)}$$
(5.2.9)

onde:

$$V_{\sigma(6x6)} = \left(D_{(6x423)}^{+} \cdot V_{(423x423)}^{-1} \cdot D_{(423x6)}\right)^{-1}$$
(5.2.10)

$$f(t) = A_1 \cdot e^{-E_1 \cdot t} + A_2 \cdot e^{-E_2 \cdot t} + A_3 \cdot e^{-E_3 \cdot t}$$
(5.2.11)

sendo

e as derivadas parciais:

$$\frac{\partial f(t)}{\partial A_{1}} = e^{-E_{1}t}; \quad \frac{\partial f(t)}{\partial A_{2}} = e^{-E_{2}t}; \quad \frac{\partial f(t)}{\partial A_{3}} = e^{-E_{1}t};$$

$$\frac{\partial f(t)}{\partial E_{1}} = -t A_{1} \cdot e^{-E_{1}t}; \quad \frac{\partial f(t)}{\partial E_{2}} = -t A_{2} \cdot e^{-E_{2}t}; \quad \frac{\partial f(t)}{\partial E_{2}} = -t A_{3} \cdot e^{-E_{1}t};$$

$$temos que a matriz T(t)_{(6x1)} = \begin{bmatrix} \frac{\partial f(t)}{\partial A_{3}} \\ \frac{\partial f(t)}{\partial A_{3}} \\ \frac{\partial f(t)}{\partial E_{1}} \\ \frac{\partial f(t)}{\partial E_{1}} \\ \frac{\partial f(t)}{\partial E_{1}} \\ \frac{\partial f(t)}{\partial E_{2}} \\ \frac{\partial f(t)}{\partial E_{3}} \end{bmatrix}$$

$$a matriz V^{-1}_{(423x423)} = \begin{bmatrix} \frac{1}{\sigma_{x_{1}}^{2}} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{\sigma_{x_{2}}^{2}} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \frac{1}{\sigma_{x_{2}}^{2}} \end{bmatrix}$$

$$a matriz D_{(423x6)} = \begin{bmatrix} \frac{\partial f(t_{1})}{\partial A_{1}} & \frac{\partial f(t_{1})}{\partial A_{2}} & \dots & \frac{\partial f(t_{1})}{\partial B_{2}} \\ \frac{\partial f(t_{2})}{\partial A_{1}} & \frac{\partial f(t_{2})}{\partial A_{2}} & \dots & \frac{\partial f(t_{2})}{\partial E_{3}} \\ \frac{\partial f(t_{423})}{\partial A_{1}} & \frac{\partial f(t_{423})}{\partial A_{2}} & \dots & \frac{\partial f(t_{423})}{\partial E_{3}} \end{bmatrix}$$

Portanto a expressão final para cálculo da incerteza da densidade de potência relativa (D.P.R.) é dada por:

$$DPR = \frac{C_{i}}{C_{max}} F_{max}, \qquad (5.2.12)$$

onde:

Ci : representa a contagem líquida na posição "i"

Fi: representa a correção do decaimento para a posição "i"

Cmax: representa a contagem líquida máxima, e

F_{max}: representa a correção do decaimento para a posição de C_{max}

Aplicando a equação (5.2.2) em (5.2.12) tem-se:

$$\sigma_{\text{DPR}}^{2} = \left(\frac{\partial \text{DPR}}{\partial C_{i}}\right)^{2} \cdot \sigma_{C_{i}}^{2} + \left(\frac{\partial \text{DPR}}{\partial F_{j}}\right)^{2} \cdot \sigma_{F_{i}}^{2} + \left(\frac{\partial \text{DPR}}{\partial C_{\text{max}}}\right)^{2} \cdot \sigma_{C_{\text{max}}}^{3} + \left(\frac{\partial \text{DPR}}{\partial F_{\text{max}}}\right)^{3} \cdot \sigma_{F_{\text{max}}}^{2} (5.2.13)$$

onde:

$$\frac{\partial \text{DPR}}{\partial \text{C}_{i}} = \frac{1}{C_{\text{max}}} F_{\text{max}}$$
(5.2.14)
$$\frac{\partial \text{DPR}}{\partial \text{F}_{i}} = -\frac{C_{i}}{F_{i}^{2}}$$
(5.2.15)
$$\frac{\partial \text{DPR}}{\partial \text{C}_{\text{max}}} = \frac{C_{i}}{F_{i}}$$
(5.2.16)
$$\frac{\partial \text{DPR}}{\partial \text{F}_{\text{max}}} = \frac{C_{i}}{F_{\text{max}}}$$
(5.2.17)

5.3 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 5

/1/ KNOLL G. F., "Radiation Detection and Measurement", John Wiley & Sons, 1989.

/2/ BEVINGTON R. PHILIP, ROBINSON D. KEITH, "Data Reduction and Error Analysis for the Phisical Sciences", chap. 3, 1992

ATALLA L. T., <u>"Interpretação Quantitativa de Resultados Experimentais</u>",
 Publicação IPE/CNEN, Inf. IEA 60, Maio 1978.

/4/ SMITH L. DONALD, "Probability, Statistics and Data Uncertainties in Nuclear Science and Technology", Vol.4, chap.9, 1991.

CAPÍTULO 6: RESULTADOS CALCULADOS

6,1 INTRODUÇÃO

6.2 LEVANTAMENTO DOS DADOS VIA CÓDIGO CITATION

6.3 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 6

6.1 INTRODUÇÃO:

O código "CITATION"¹ é um programa escrito em Fortran, desenvolvido para cálculo de difusão de neutrons, em uma, duas ou três dimensões, para geometrias cartesiana, cilíndrica e esférica. Após a resolução da equação de difusão, pelo método das diferenças finitas, o programa "CITATION" fornece alguns parâmetros tais como fator de multiplicação efetivo, concentrações de nuclídeos, distribuição de fluxo de neutrons e a distribuição de densidade de potência que é o parâmetro a ser comparado com os dados experimentais levantados ao longo desse trabalho. O método utilizado consiste em dividir os eixos do reator em "meshs"(malhas) e calcular a densidade de potência nos pontos centrais de cada "mesh".

Com o objetivo de obter o mapeamento da densidade de potência relativa mais detalhada possível, o reator IPEN/MB-01 foi modelado em geometria tridimensional segundo as várias regiões descritas nas figuras 12 e 13 do capítulo 3. As barras de controle foram consideradas paralelas e na posição crítica de 59% inseridas.

As seções de choque em 4 grupos para cada região da modelagem do Reator IPEN/MB-01 foram obtidas com a metodologia comumente utilizada na Divisão de Física de Reatores do IPEN baseada no acoplamento:

NJOY / AMPX-II / HAMMER - TECHNION²

Os dados finais são transferidos para o programa CITATION para a análise final. Todos os cálculos foram efetuados a 20°C que é a temperatura do experimento a 1 W de potência.

A título de uma descrição simplificada do processo, o programa NJOY: efetua o pré-processamento dos dados nucleares a partir de bibliotecas básicas (no caso ENDFB-IV e JENDL-2), onde são geradas bibliotecas de dados nucleares pontuais e em multigrupo de energia, para posterior processamento nos sistemas AMPX-II e código celular HAMMER - TECHNION.

O programa AMPX-II tem a função de verificar a consistência dos dados, o cálculo de autoblindagem das ressonâncias resolvidas e organizar a biblioteca de saída segundo as energias das regiões térmica e eptérmica/rápido, para o HAMMER-TECHNION.

O código celular HAMMER - TECHNION, resolve a equação de transporte na célula estabelecendo os dados celulares homogeneos para entrada no CITATION onde se dá o processamento final do cálculo dos parâmetros nucleares.

A tabela 17 apresenta a densidade de potência relativa axial nas posições M14, M21, M27, J17, J20, J22, C22, C24 e ab27 obtidas com o CITATION. Os dados são normalizados consistentemente com os dados obtidos experimentalmente; ou seja pela densidade de potência máxima.

6.2 LEVANTAMENTO DOS DADOS VIA CÓDIGO CITATION

comp. ativo	POSIÇÃO NO NÚCLEO								
(nını)	M14	M21	M27	J17	J20	J22	C22	C24	ab27
20	0.50355	0.50465	0.50053	0.50451	0.50691	0.50820	0.51385	0.51570	0.51169
40	0.56997	0.57144	0.57162	0.57271	0.57537	0.57671	0.58242	0.58401	0.58661
60	0.65057	0.65228	0.65266	0.65385	0.65686	0.65828	0.66438	0.66598	0.66889
80	0.72839	0.73032	0.73032	0.73200	0.73527	0.73686	0.74322	0.74482	0.74707
100	0.79864	0.80072	0.80043	0.80245	0.80589	0.80756	0.81397	0.81557	0.81719
120	0.85951	0.86167	0.86116	0.86343	0.86694	0.86855	0.87484	0.87627	0.87738
140	0.91014	0.91223	0.91169	0.91393	0.91733	0.91888	0.92460	0.92587	0.92646
160	0.94985	0.95177	0.95119	0.95335	0.95640	0.95780	0.96249	0.96339	0.96362
180	0.97823	0.97978	0.97921	0.98108	0.98351	0.98460	0.98783	0.98834	0.98827
200	0.99498	0.99597	0.99556	0.99674	0.99825	0.99885	1.00000	1.00000	1.00000
220	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.99848	0.99792	0.99871
240	0.99346	0.99169	0.99271	0.99029	0.98785	0.98704	0.98227	0.98120	0.98455
260	0.97564	0.97071	0.97394	0.96555	0.95917	0.95735	0.94902	0.94757	0.95810
280	0.94730	0.93629	0.94440	0.91762	0.905795	0.90279	0.89013	0.88823	0.92043
300	0.91309	0.89314	0.90903	0.83566	0.82479	0.82087	0.79715	0.79374	0.87761
320	0.86167	0.82868	0.85609	0.70562	0.70036	0.69565	0.65587	0.64636	0.81623
340	0.81367	0.77319	0.80709	0.62891	0.61853	0.61319	0.57118	0.56096	0.76106
360	0.75957	0.71651	0.75244	0.57609	0.56011	0.55424	0.51336	0.50419	0.70112
380	0.70308	0.66064	0.69577	0.52913	0.51103	0.504868	0.46492	0.45635	0.64088
400	0.64487	0.60458	0.63763	0.48334	0.46489	0.45867	0.42011	0.41196	0.58114
420	0.58527	0.54799	0.57841	0.43758	041975	0.41372	0.37720	0.36946	0.52226
440	0.52464	0.49079	0.51833	0.39159	0.37498	0.36931	0.33546	0.32823	0.46438
460	0.46328	0.43319	0.45774	0.34546	0.33040	0.32525	0.29462	0.28801	0.40766
480	0.40205	0.37598	0.39744	0.29965	0.28647	0.28193	0.27023	0.24904	0.35249
500	0.34416	0.32205	0.34000	0.25668	0.24566	0.24178	0.22961	0.21331	0.30058
520	0.30226	0.28396	0.29507	0.22752	0.21913	0.21583	0.19753	0.19054	0.25861

Tabela 17: Resultados da densidade de potência relativa normalizada via código CITATION.

6.3 REFERÊNCIAS BIBLIOGRÁFICAS DO CAPÍTULO 6

/1/ FOWLER T. B., VONDY D. R., <u>"Nuclear Reactor Core Analysis Code:</u> <u>CITATION</u>", ORNL - TM - 2496, Jul./1972.

/2/ SANTOS A e FERREIRA C. R., <u>"Elaboração de uma interface AMPX-II]</u> <u>HAMMER - TECNHION"</u>, Anais do III Congresso Geral de Energia Nuclear - III CGEN, agosto de 1990, R.J - Brasil.

CAPÍTULO 7: ANÁLISE COMPARATIVA

- 7.1 INTRODUÇÃO
- 7.2 RESULTADOS COMPARATIVOS CALCULADOS X EXPERIMENTAIS
 - 7.2.1 DISTRIBUIÇÃO AXIAL DA DENSIDADE DE POTÊNCIA RELATIVA
 - 7.2.2 DISTRIBUIÇÃO RADIAL DA DENSIDADE DE POTÊNCIA RELATIVA

7.1 INTRODUÇÃO

Com objetivo de determinar possíveis desvios e margens de incerteza, faz-se necessário uma comparação dos resultados obtidos via cálculo (CITATION) e os resultados obtidos experimentalmente. Esta avaliação é de fundamental importância pois vem validar a metodologia de cáculo atualmente utilizada pela Divisão de Física de Reatores na determinação da Densidade de Potência em cálculos de parâmetros neutrônicos.

Estão apresentados os resultados comparativos das posições M14, M21, M27, J17, J20, J22, C22, C24 e ab27 nas tabelas de 18 a 26 e figuras 28 a 36.

A razão C/E significa a divisão dos resultados calculados pelos resultados experimentais, proporcionando uma avaliação do desempenho da metodologia de cálculo atualmente utilizada.

Nas posições M14, M21 e M27 as curvas apresentam um aspecto cossenoidal, indicando a pouca perturbação dos elementos de controle. Como desvio máximo comparativo entre os resultados calculados e os resultados experimentais observamos a ordem de 9,6% na posição M21 no comprimento ativo (cota) 500mm. Isso se deve ao fato de esta posição estar próximo ao refletor e o código computacional não considerar adequadamente as características neutrônicas nesta região.

Para as posições J17, J20, J22, C22, C24, as curvas evidenciam o deslocamento da densidade de potência provocado pelo efeito do elemento de controle. Nestas posições observamos o desvio máximo da ordem de 8,08%, também na cota 500mm devido as mesmas considerações anteriormente mencionadas.

Para a posição ab27, caso mais crítico devido ao duplo efeito ou seja, a vareta estar localizada na interface núcleo - refletor e o maior desvio ser encontrado na posição superior ativa da vareta.

A título ilustrativo estão apresentados na tabela 27, os resultados da distribuição radial da densidade de potência relativa comparando os valores calculados com os experimentais. Para a distribuição os resultados foram normalizados pelo valor correspondente da posição M14 (região central) na cota 260mm do comprimento ativo da vareta combustível. Para uma avaliação mais apurada da distribuição radial faz-se necessário o levantamento de várias outras posições ao longo do núcleo.

7.2 RESULTADOS COMPARATIVOS CALCULADOS X EXPERIMENTAIS

7.2.1 DISTRIBUIÇÃO AXIAL DA DENSIDADE DE POTÊNCIA RELATIVA

Posição.(mm)	CITATION	Experimental	Incerteza (1 σ)	C/E
20.0	0.50355	0.52780	0.32E-02	0.95405
40.0	0.56997	0.59060	0.35E-02	0.96506
60.0	0.65057	0.66863	0.39E-02	0.97300
80.0	0.72839	0.73814	0.42E-02	0.98679
100.0	0.79864	0.80820	0.45E-02	0.98817
120.0	0.85951	0.86785	0.48E-02	0.99039
140.0	0.91014	0.92202	0.51E-02	0,98712
160.0	0.94985	0.95195	0.53E-02	0.99779
180.0	0.97823	0.97763	0.54E-02	1.00062
200.0	0,99498	0.99804	0.55E-02	0.99693
220.0	1.00000	0.99929	0.56E-02	1.00071_
240.0	0.99346	1.00000	0.56E-02	0.99346
260.0	0.97564	0.97864	0.56E-02	0.99693
280.0	0.94730	0.94481	0.55E-02	1.00263
300.0	0.91309	0.92058	0.54E-02	0.99187
320.0	0.86167	0.86828	0.52E-02	0.99238
340.0	0.81367	0.81438	0.50E-02	0.99912
360.0	0.75957	0.77714	0.49E-02	0.97739
380.0	0.70308	0.71747	0.47E-02	0.97994
400.0	0.64487	0.65697	0.44E-02	0.98159
420.0	0.58527	0.60324	0.42E-02	0.97021
440.0	0.52464	0.54523	0.40E-02	0.96223
460.0	0.46328	0.47799	0.37E-02	0.96923
480.0	0.40205	0.42053	0.34E-02	0.95606
500.0	0.34416	0.36355	0.32E-02	0.94667
520.0	0.30226	0.32035	0.30E-02	0.94352

POSIÇÃO M14

Tabela 18: Resultados calculados e experimentais, posição M14.

GOMESSED MADIGUEL DE EMERGEE MUDLEERE ENER

P	0	SI	IÇÃO	M21

Posição (mm)	CITATION	Experimental	Incerteza (10)	C/E
20.0	0.50465	0.51267	0.32E-02	0.98435
40.0	0.57144	0.56584	0.35E-02	1.00990
60.0	0.65228	0.64247	0.38E-02	1.01526
80.0	0.73032	0.72031	0.42E-02	1.01390
100.0	0.80072	0.79279	0.46E-02	1.01000
120.0	0.86167	0.85472	0.49E-02	1.00814
140.0	0.91223	0.90634	0.51E-02	1.00650
160.0	0.95177	0.93848	0.53E-02	1.01416
180.0	0.97978	0.97462	0.55E-02	1.00529
200.0	0.99597	1.00000	0.57E-02	0.99597
220.0	1.00000	0.99810	0.57E-02	1.00190
240.0	0.99169	0.99832	0.57E-02	0.99336
260.0	0.97071	0.97199	0.57E-02	0.99868
280.0	0.93629	0.95043	0.56E-02	0.98542
300.0	0.89314	0.90669	0.55E-02	0.98507
320.0	0.82868	0.85202	0.53E-02	0.97261
340.0	0.77319	0.79460	0.50E-02	0.97305
360.0	0.71651	0.73685	0.48E-02	0.97240
380.0	0.66064	0.68782	0.46E-02	0.96048
400.0	0.60457	0.62683	0.44E-02	0.96449
420.0	0.54799	0.57494	0.42E-02	0.95313
440.0	0.49079	0.52136	0.40E-02	0.94137
460.0	0.43319	0.45998	0.37E-02	0.94175
480.0	0.37593	0.41345	0.35E-02	0.90925
500.0	0.32205	0.35629	0.32E-02	0.90391
520.0	0.28396	0.30445	0.30E-02	0.93268

Tabela 19:Resultados calculados e experimentais, posição M21.

POSIÇÃO M27

Posição.(mm)	CITATION	Experimental	lncerteza (1σ)	C/E
20.0	0.50053	0.51716	0.35E-02	0.96785
40.0	0.57164	0.58115	0.38E-02	0.98361
60.0	0.65266	0.65684	0.42E-02	0.99362
80.0	0.73032	0.73305	0.46E-02	0.99627
100.0	0.80043	0.81093	0.50E-02	0.98705
120.0	0.86116	0.86596	0.53E-02	0.99446
140.0	0.91169	0.90939	0.56E-02	1.00253
160.0	0.95119	0.94976	0.58E-02	1.00150
180.0	0.97921	0.98046	0.60E-02	0.99872
200.0	0.99556	0.99464	0.61E-02	1.00093
220.0	1.00000	1.00000	0.62E-02	1.00000
240.0	0.99271	0.99086	0.62E-02	1.00187
260.0	0.97394	0.97273	0.61E-02	1.00125
280.0	0.94440	0.94283	0.60E-02	1.00167
300.0	0.90903	0.90039	0.59E-02	1.00057
320.0	0.85609	0.85862	0.57E-02	0.99705
340.0	0.80709	0.81319	0.56E-02	0.99249
360.0	0.75244	0.76066	0.53E-02	0.98919
380.0	0.69577	0.70441	0.51E-02	0.98773
400.0	0.63763	0.64936	0.49E-02	0.98194
420.0	0.57841	0.59465	0.47E-02	0.97269
440.0	0.51833	0.53961	0.44E-02	0.96055
460.0	0.45774	0.47789	0.41E-02	0.95784
480.0	0.39744	0.42064	0.38E-02	0.94485
500.0	0.34000	0.35667	0.35E-02	0.95328
520.0	0.29507	0.31801	0.33E-02	0.92786

Tabela 20: Resultados calculados e experimentais, posição M27.

RESULTADO EXPERIMENTAL RESULTADO CALCULADO

POSIÇÃO J17

Posição (mm)	CITATION	Experimental	Incerteza(1o)	C/E
20.0	0.50451	0.48460	0.29E-02	1.04108
40.0	0.57271	0.54347	0.31E-02	1.07356
60.0	0.65385	0.62256	0.35E-02	1.05026
80.0	0.73200	0.69327	0.38E-02	1.05131
100.0	0.80245	0.76484	0. 42E-02	1.04918
120.0	0.86343	0.83032	0.45E-02	1.03988
140.0	0.91393	0.89411	0.48E-02	1.02216
160.0	0.95335	0.93093	0.49E-02	1.00548
180.0	0.98108	0.97574	0.52E-02	1.00548
200.0	0.99674	0.99181	0.53E-02	1.00497
220.0	1.00000	1.00000	0.53E-02	1.00000
240.0	0.99029	0.99338	0.53E-02	0.99689
260.0	0.96555	0.97363	0.53E-02	0.99170
280.0	0.91762	0.93236	0.52E-02	0.98419
300.0	0.83566	0.84984	0.49E-02	0.98332
320.0	0.70562	0.72148	0.44E-02	0.97802
340.0	0.62891	0.61987	0.40E-02	1.01458
360.0	0.57609	0.56631	0.38E-02	1.01727
380.0	0.52913	0.52515	0.36E-02	1.00757
400.0	0.48334	0.48148	0.35E-02	1.00386
420.0	0.43758	0.44297	0.33E-02	0.98783
440.0	0.39159	0.40223	0.31E-02	0.97356
460.0	0.34546	0.35913	0.30E-02	0.96193
480.0	0.29965	0.31697	0.28E-02	0.94537
500.0	0.25668	0.27923	0.26E-02	0.91924
520.0	0.22752	0.24305	0.24E-02	0.93613

Tabela 21: Resultados calculados e experimentais, posição J17.

POSIÇÃO J20

Posição (mm)	CITATION	Experimental	Incerteza (1σ)	C/E
20.0	0.50691	0.50968	0.30E-02	0.99456
40.0	0.57537	0.56868	0.33E-02	1.01175
60.0	0.65686	0.64405	0.36E-02	1.02560
80.0	0.73527	0.71692	0.40E-02	1.02560
100.0	0.80589	0.79269	0.43E-02	1.01665
120.0	0.86694	0.85158	0.46E-02	1.01803
140.0	0.91733	0.89738	0.48E-02	1.02223
160.0	0.95640	0.94494	0.51E-02	1.01213
180.0	0.98351	0.98614	0.53E-02	0.99733
200.0	0.99825	0.99370	0.53E-02	1.00457
220.0	1.00000	1.00000	0.54E-02	1.00000
240.0	0.98785	0.98657	0.54E-02	1.00130
260.0	0.95917	0.96393	0.53E-02	0.99506
280.0	0.90579	0.91701	0.52E-02	0.98777
300.0	0.82479	0.82490	0.48E-02	0.99986
320.0	0.70036	0.69634	0.43E-02	1.00577
340.0	0.61853	0.60499	0.40E-02	1.02238
360.0	0.56011	0.54006	0.37E-02	1.03711
380.0	0.51103	0.50315	0.36E-02	1.01567
400.0	0.46489	0.45954	0.34E-02	1.01165
420.0	0.41975	0.41214	0.32E-02	1.01848
440.0	0.37498	0.37245	0.31E-02	1.00679
460.0	0.33040	0.33197	0.29E-02	0.99528
480.0	0.28647	0.29501	0.27E-02	0.97107
500.0	0.24566	0.24792	0.25E-02	0.99088
520.0	0.21913	0.22026	0.23E-02	0.99490

Tabela 22: Resultados calculados e experimentais, posição J20.

POSIÇÃO J22

Posição (mm)	CITATION	Experimental	Incerteza(1o)	C/E
20.0	0.50691	0.50968	0.30E-02	0.99456
40.0	0.57537	0.56869	0.33E-02	1.01175
60.0	0.65686	0.64405	0.36E-02	1.01989
80.0	0.73527	0.71692	0.40E-02	1.02560
100.0	0.80589	0.79269	0.43E-02	1.01668
120.0	0.86694	0.85158	0.46E-02	1.01803
140.0	0.91733	0.89738	0.48E-02	1.02223
160.0	0.95640	0.94494	0.51E-02	1.01213
180.0	0.98351	0.98614	0.53E-02	0.99733
200.0	0.99825	0.99370	0.53E-02	1.00457
220.0	1.00000	1.00000	0.54E-02	1.00000
240.0	0.98785	0.98657	0.54E-02	1.00130
260.0	0.95917	0.96393	0.53E-02	0.99506
280.0	0.90579	0.91701	0.52E-02	0.98777
300.0	0.82479	0.82490	0.48E-02	0.99986
320.0	0.70036	0.69634	0.43E-02	1.00577
340.0	0.61853	0.60499	0.40E-02	1.02238
360.0	0.56011	0.54006	0.37E-02	1.03711
380.0	0.51103	0.50315	0.36E-02	1.01567
400.0	0.46489	0.45954	0.34E-02	1.01165
420.0	0.41975	0.41214	0.32E-02	1.01848
440.0	0.37498	0.37245	0.31E-02	1.00679
460.0	0.33040	0.33197	0.29E-02	0.99528
480.0	0.28647	0.29501	0.27E-02	0.97107
500.0	0.24566	0.24792	0.25E-02	0.99088
520.0	0.21913	0.22026	0.23E-02	0.99490

Tabela 23: Resultados calculados e experimentais, posição J22.

POSIÇÃO C22

Posição (mm)	CITATION	Experimental	Incerteza(1o)	C/E
20.0	0.51385	0.52541	0.42E-02	0.97801
40.0	0.58242	0.58613	0.47E-02	0.993689
60.0	0.66438	0.65986	0.51E-02	1.00685
80.0	0.74322	0.72819	0.56E-02	1.02064
100.0	0.81397	0.80034	0.60E-02	1.01702
120.0	0.87484	0.86500	0.64E-02	1.01138
140.0	0.92460	0.91232	0.68E-02	1.01346
160.0	0.96249	0.95377	0.70E-02	1.00914
180.0	0.98782	0.97300	0.72E-02	1.01523
200.0	1.00000	1.00000	0.74E-02	1.00000
220.0	0.99848	0.99641	0.75E-02	1.00207
240.0	0.98227	0.98839	0.75E-02	0.99381
260.0	0.94902	0.96769	0.74E-02	0.98071
280.0	0.89013	0.90615	0.71E-02	0.98232
300.0	0.79715	0.81169	0.67E-02	0.98209
320.0	0.65587	0.68893	0.60E-02	0.95202
340.0	0.57118	0.57868	0.54E-02	0.98704
360.0	0.51336	0.51652	0.50E-02	0.99389
380.0	0.46492	0.46478	0.48E-02	1.00030
400.0	0.42011	0.42545	0.46E-02	0.98745
420.0	0.37720	0.38187	0.43E-02	0.98777
440.0	0.33546	0.34545	0.41-02	0.97110
460.0	0.29462	0.30073	0.38E-02	0.97969
480.0	0.25492	0.27023	0.37E-02	0.94332
500.0	0.21846	0.22961	0.34E-02	0.95142
520.0	0.19515	0.19753	0.32E-02	0.98791

Tabela 24: Resultados calculados e experimentais, posição C22.

POSIÇÃO C24

Posição (mm)	CITATION	Experimental	Incerteza (15)	C/E
20.0	0.51570	0.52350	0.44E-02	0.98510
40.0	0.58405	0.57507	0.48E-02	1.01562
60.0	0.66598	0.65774	0.53E-02	1.01253
80.0	0.74482	0.73057	0.58E-02	1.01950
100.0	0.81557	0.79941	0.63E-02	1.02021
120.0	0.87627	0.86034	0.67E-02	1.01851
140.0	0.92587	0.91687	0.71E-02	0.99644
160.0	0.96339	0.96683	0.74E-02	0.99644
180.0	0.98834	0.98164	0.76E-02	1.00682
200.0	1.00000	1.00000	0.77E-02	1.00000
220.0	0.99792	0.99137	0.78E-02	1.00661
240.0	0.98120	0.98167	0.78E-02	0.99952
260.0	0.94757	0.95705	0.77E-02	0.99009
280.0	0.88823	0.90954	0.75E-02	0.97657
300.0	0.79374	0.81340	0.69E-02	0.97584
320.0	0.64636	0.66265	0.61E-02	0.97541
340.0	0.56096	0.55629	0.55E-02	1.00839
360.0	0.50419	0,49698	0.52E-02	1.01451
380.0	0.45635	0.45103	0.49E-02	1.011816
400.0	0.41196	0.41054	0.47E-02	1.00346
420.0	0.36946	0.37139	0.45E-02	0.99482
440.0	0.32823	0.33649	0.42E-02	0.97545
460.0	0.28801	0.29617	0.40E-02	0.97245
480.0	0.24904	0.25879	0.37E-02	0.96231
500.0	0.21331	0.22073	0.35E-02	0.96637
520.0	0.19054	0.19943	0.33E-02	0.95546

Tabela 25: Resultados calculados e experimentais, posição C24.

POSIÇÃO ab27

Posição (mm)	CITATION	Experimental	Incerteza (1 ₅)	C/E
20.0	0.51169	0.51220	0.47E-02	0.99900
40.0	0.58661	0.58339	0.52E-02	1.00552
60.0	0.66889	0.66389	0.57E-02	1.00752
80.0	0.74707	0.732568	0.62E-02	1.01981
100.0	0.81719	0.80139	0.67E-02	1.01972
120.0	0.87738	0.85929	0.72E-02	1.02105
140.0	0.92646	0.91314	0.76E-02	1.01459
160.0	0.96362	0.96567	0.79E-02	0.99787
180.0	0.98827	0.98275	0.81E-02	1.00561
200.0	1.00000	1,00000	0.83E-02	1.00000
220.0	0.99871	0.99655	0.83E-02	1.00217
240.0	0.98455	0.99065	0.84E-02	0.99384
260.0	0.95810	0.96189	0.82E-02	0.99606
280.0	0.92043	0.93369	0.81E-02	0.98579
300.0	0.87761	0.88231	0.79E-02	0.99467
320.0	0.81623	0.83400	0.76E-02	0.97869
340.0	0.76106	0.78993	0.74E-02	0.96345
360.0	0.70112	0.73252	0.71E-02	0.95713
380.0	0.64088	0.68443	0.68E-02	0.93637
400.0	0.58114	0.61537	0.64E-02	0.94437
420.0	0.52226	0.55772	0.61E-02	0.93642
440.0	0.46438	0.50736	0.57E-02	0.91529
460.0	0.40766	0.44608	0.54E-02	0.91387
480.0	0.35249	0.38852	0.50E-02	0.90727
500.0	0.30058	0.33865	0.46E-02	0.88760
520.0	0.25861	0.29348	0.43E-02	0.88119

Tabela 26: Resultados calculados e experimentais, posição ab27.

96

RESULTADO EXPERIMENTAL RESULTADO CALCULADO

СОТА	POSIÇÃO	EXPERIMENTAL	CALCULADO	EXPERIMENTAL	CALCULADO	C/E
(mm)	an Andrewick	(CONTAGENS)	(W/cm ³)	NORMALIZADO	NORMALIZADO	
260	M14	119.607	0.24473E-4	1.000	1.000	1.00
260	M21	100.893	0.20449E-4	0.843	0.835	0.99
260	M27	87.848	0.15363E-4	0.734	0.628	0.85
260	J17	115.085	0.24859E-4	0.962	1.016	1.06
260	J20	111.363	0.21870E-4	0.931	0.894	0.96
260	J22	95.981	0.19213E-4	0.802	0.785	0.98
260	C22	63.411	0.12473E-4	0.530	0.510	0.96
260	C24	54.201	0.10482E-4	0.453	0.428	0.95
260	ab27	48.736	0.79371E-5	0.407	0.324	0.80

7.2.2 DISTRIBUIÇÃO RADIAL DA DENSIDADE DE POTÊNCIA RELATIVA

Tabela 27: Distribuição radial da densidade de potência relativa

Na distribuição radial da densidade de potência relativa, apesar de estarmos considerando aqui um número reduzido de posições medidas, já foi possível observar uma compensação na distribuição próxima da região do fator de pico (razão da densidade de potência máxima pela densidade média de potência no núcleo do reator), posição J17. O fator de pico determinado via código computacional está na posição P11 e por simetria do núcleo equivaleria à posição 116, portanto bem próxima a posição J17 mencionada.

A posição AB27 cota 260mm em relação a posição M14 apresentou desvio de 20%, entretanto esse desvio deve ser maior na parte superior do núcleo devido ao desvio já encontrado em relação à forma axial (ver figura 36).

CAPÍTULO 8: CONCLUSÕES E RECOMENDAÇÕES

8.1 CONCLUSÕES

8.2 RECOMENDAÇÕES

8.1 CONCLUSÕES

Os sistemas de movimentação e indicação de posicionamento da vareta combustível, o sistema de medida das contagens gama englobando o arranjo colimador e blindagem assim como toda a instrumentação eletrônica nuclear associada demonstraram consistência nos resultados possibilitando a implantação em carater definitivo de todo aparato experimental junto ao Laboratório de Medidas Nucleares.

As incertezas experimentais foram de maneira geral pequenas (<1%), ou seja de excelente qualidade, qualificando esses resultados como padrão de comparação.

Os resultados comparativos entre os valores calculados via código computacional CITATION e os valores levantados experimentalmente foram bastante satisfatórios, demonstrando uma boa avaliação no desempenho da metodologia de cálculo utilizada para parâmetros neutrônicos.

Os maiores desvios apresentados entre resultados calculados e resultados experimentais foram localizados em posições próximas a interface núcleo-refletor devido ao fato do código computacional não considerar adequademente as características neutrônicas nesta região, além disso observou-se que os maiores desvios encontram-se nas posições de comprimento ativo menos significativa em termos de densidade de potência na vareta combustível.

Foi possível observar claramente o efeito dos elementos de controle deslocando o perfil axial ao longo da região ativa da vareta combustível.

Em vista dos resultados positivos do trabalho realizado fica demonstrado a eficiência da metodologia de medida da densidade de potência relativa por varredura gama da vareta combustível constituindo assim mais uma técnica de medida disponível para medida de parâmetros neutrônicos na Divisão de Física de Reatores do IPEN/CNEN-SP.

8.2 RECOMENDAÇÕES

Como sequência do trabalho fica como sugestão a automação de todo sistema de medida de contagem, necessitando o desenvolvimento de uma interface entre o sistema de movimentação e indicação de posicionamento da vareta combustível e a instrumentação nuclear associada.

Uma vez a metodologia implantada, recomenda-se fazer o mapeamento da distribuição da densidade de potência relativa em um quadrante do núcleo do reator, determinando experimentalmente a posição exata do fator de pico.

Com isto, seria produtivo o levantamento da medida absoluta da densidade de potência em uma determinada posição do núcleo e por extrapolação determinar a distribuição da densidade de potência absoluta para todo o núcleo do Reator IPEN/MB-01.

APÊNDICE A

A.1 PROCESSAMENTO DE DADOS / FLUXOGRAMA

A.2 DESCRIÇÃO SIMPLIFICADA DOS PROGRAMAS

A.3 REFERÊNCIAS BIBLIOGRÁFICAS DO APÊNDICE A

A.1.PROCESSAMENTO DE DADOS

Todo processamento dos dados englobando os resultados experimentais e os valores teóricos calculados via CITATION¹ se deu via programas computacionais desenvolvidos em linguagem FORTRAN-77^{2,3}.

Foram desenvolvidos 6 programas que realizaram funções desde a organização dos dados de decaimento radioativo até a confrontação final dos resultados da densidade de potência relativa via cálculo e os resultados experimentais.

FLUXOGRAMA

A.2. DESCRIÇÃO SIMPLIFICADA DOS PROGRAMAS DESENVOLVIDOS

Programa I: DEC (Apêndice B1)

Os dados da impressora são digitados neste programa e organizados em colunas (tempo X contagens).

Programa II : DECM (Apêndice B2) O programa DECM calcula a média das quatro posições, normaliza pelo valor máximo e calcula os respectivos desvios.

As saídas do DECM estão arranjadas em: tempo, decaimento normalizado e incerteza, sendo decimal a saída para o "Origin 3.0"/4/ e binário a saída para o programa DESE

Programa III : "Origin Versão 3.0"

É um programa matemático que faz o ajuste da curva de decaimento e fornece os parâmetros da equação.

Programa IV : DESF (Apêndice B3)

Este programa calcula a incerteza do valor da função nos tempos das medidas relacionadas às respectivas posições da região ativa da vareta combustível. A saída do programa (SIGMA BIN) é gravada na forma binária e interligada ao programa TABS2.

Programa V: TABS2 (Apêndice B4)

Este programa calcula a diferença das contagens após a irradiação e o valor do

B.G. antes da operação. O resultado é dividido pelo valor da função no respectivo tempo. Posteriormente é feita a normalização pelo valor máximo e o cálculo da incerteza total, gerando o arquivo FORT.5* e o relatório dos resultados. O arquivo FORT.5* está organizado em colunas: posição, valor normalizado e incerteza, para as nove posições (vide nota no fluxograma).

Programa VI : CITDD3 (Apêndice B5)

Este programa lê o arquivo gerado pelo "Citation" com os valores teóricos (calculados) da densidade de potência, normaliza e reposiciona os resultados.

Obs.: As medidas experimentais foram levantadas da parte inferior do núcleo ativo para a parte superior, porém os valores calculados via "Citation" são gerados inversamente, ou seja da superior para a inferior, daí a necessidade do reposicionamento dos resultados teóricos.

Programa VII : CITTABX2 (Apêndice B6) Este programa faz a confrontação final dos resultados, gerando um relatório e os arquivos para o "Origin 3.0", onde são plotados os gráficos comparativos (resultados experimentais X resultados calculados).

A.3. REFERÊNCIAS BIBLIOGRÁFICAS DO APÊNDICE A

/1/ FOWLER T. B., VONDY D. R., <u>"Nuclear Reactor Core Analysis Code:</u> <u>CITATION"</u>, ORNL - TM - 2496, Jul./1972.

- /2/ Sun Microsystems Inc., "Sun Fortran Reference Guide", 1991.
- /3/ Control Data Corporation, <u>"Fortran Version 5.0 Reference Manual</u>", 11/86.

/4/ MICROCALTM SOFTWARE INC., <u>"Technical Graphics and Analysis in</u> <u>Windows"</u>, User's Guide, 1995.

APÊNDICE B

- APÊNDICE B1 PROGRAMA I DEC
- APÊNDICE B2 PROGRAMA II DECM
- APÊNDICE B3 PROGRAMA IV DESF
- APÉNDICE B4 PROGRAMA V TABS2
- APÊNDICE B5 PROGRAMA VI CITDD3
- APÊNDICE B6 PROGRAMA VII CITTABX2

APÊNDICE B1: PROGRAMA I - DEC

```
PROGRAM DEC
```

```
С
С
      PROGRAMA PARA LEITURA DE DADOS DE DECAIMENTO
С
      DIMENSION NV(500), NT(500), VNT(500)
     DATA NV / 500 * 0 /, IT / 40 /
С
С
     LEITURA DE TEMPO INICIAL
С
     READ(5,*) NT(1)
С
С
     PREPARO DE TABELA DE TEMPO
С
    DO 10 I=2,500
        NT(I) = NT(I-1) + IT
  10 CONTINUE
С
С
    LEITURA DE DADOS DECAIMENTO E CALCULO DE INCERTEZA
С
    I = 1
  20 READ(5,*,END=30) NV(I)
    VNT(I) = SQRT(FLOAT(NV(I)))
    I = I + 1
    GO TO 20
С
С
    IMPRESSAO FINAL
C
  30 N = I - 1
    DO 60 I=1,N
```

```
WRITE(6,600) NT(I), NV(I), VNT(I)
60 CONTINUE
WRITE(6,*) N
```

STOP

C

С

```
600 FORMAT( 1X, 2I8, F9.2 )
```

С

END

APÊNDICE B2: PROGRAMA II - DECM

PROGRAM DECM

```
С
С
     PROGRAMA PARA CALCULAR MEDIA DAS CONTAGENS DE
                 DECAIMENTO E INCERTEZAS
С
     DADOS m14, m21, m27, m14b - GERA ARQUIVO PARA decz/desf
С
    DIMENSION NC(4), NP(4,500), NV(4,500), V(4,500), NM(500), VM(500)
    DIMENSION Z(500), DZ(500)
    DATA NC / 4 * 0 /, NP / 2000 * 0 /
    DATA NV / 2000 * 0 /, V / 2000 * 0. /
С
С
    LEITURA DAS CONTAGENS E INCERTEZAS
С
    WRITE(6,600)
    READ(5,*) NA
    IF ( NA .GT. 4 ) GO TO 100
    N = 0
    J = 1
 10 REWIND J
 20 N = N + 1
    READ(J,*,END=30) NP(J,N), NV(J,N), V(J,N)
    GO TO 20
 30 NC(J) = N - 1
    N = 0
    J = J + 1
    IF (J.LE. NA) GO TO 10
С
    MIN = NC(1)
    DO 40 I=2,NA
```

```
IF (MIN .LE. NC(I)) GO TO 40
       MIN = NC(I)
 40 CONTINUE
С
     WRITE(7,*) MIN
     DO 45 I=1,MIN
        WRITE(7,710) NP(1,I), (NV(J,I), V(J,I), J=1,NA)
 45 CONTINUE
С
С
     CALCULO DAS MEDIAS E INCERTEZAS
С
     DO 60 I=1,MIN
        NM(I) = 0
        VM(I) = 0.
        DO 50 J=1,NA
            NM(I) = NM(I) + NV(J,I)
            VM(I) = VM(I) + V(J,I) * V(J,I)
  50 CONTINUE
     NM(I) = NM(I) / NA
     VM(I) = SQRT(VM(I)) / NA
  60 CONTINUE
С
С
    NORMALIZACAO
С
   AMAX = 0.
   DO 70 I=1,MIN
       IF (FLOAT(NM(I)).LE. AMAX) GO TO 70
       AMAX = FLOAT(NM(I))
       SGA = VM(I)
 70 CONTINUE
   WRITE(7,*) AMAX, SGA
```

```
С
С
     CALCULO DE INCERTEZA NORMALIZADO
С
    AMAX2 = AMAX * AMAX
    SGA2 = SGA * SGA
    T3 = SGA2 / AMAX2
    DO 80 I=1,MIN
       Z(I) = FLOAT(NM(I)) / AMAX
       VNM2 = FLOAT(NM(I) * NM(I))
       T1 = VNM2 / AMAX2
       T2 = (VM(I) * VM(I)) / VNM2
       DZ(I) = T1 * (T2 + T3)
       DZ(I) = SQRT(DZ(I))
 80 CONTINUE
С
С
   GRAVA ARQUIVO PARA PROGRAMA decz - desf
С
   ARQUIVO 8 - TEMPO, NORMALIZADO E INCERTEZA
C
   REWIND 8
   DO 90 I=1,MIN
       WRITE(7,700) NP(1,I), NM(I), VM(I), Z(I), DZ(I)
       WRITE(8) NP(1,I), Z(I), DZ(I)
 90 CONTINUE
   ENDFILE 8
С
 100 STOP
С
600 FORMAT( 'FORNECA NUMERO DE ARQUIVOS (MAX. = 4)')
700 FORMAT(1X, I7, I8, F10.3, F11.6, E12.4)
710 FORMAT(1X, I7, 4(18, F10.3))
С
    END
```

APÊNDICE B3: PROGRAMA IV - DESF

PROGRAM DESF

C				
С		PROGRAMA PARA PREPARAR INCERTEZAS DA FUNCAO AJUSTADA		
С				
		PARAMETER(NT=423)		
С				
		DIMENSION IT(NT), V(NT), DV(NT), VI(NT,NT), D(NT,6)		
		DIMENSION VS(6,6), DT(6,NT), P1(6,NT), P2(6,6), XT(6,6)		
		DIMENSION T(6), TT(6)		
С				
		DATA A1 / 0.56638 /, A2 / 0.23983 /, A3 / 0.50298 /		
		DATA E1 / 0.00184 /, E2 / 0.00009 /, E3 / 0.0004 /		
С				
		DO 10 I=1,NT		
		DO 5 J=1,NT		
		$\mathbf{VI}(\mathbf{I},\mathbf{J})=0.$		
	5	CONTINUE		
		DO 7 J=1,6		
		$\mathbf{D}(\mathbf{I},\mathbf{J})=0.$		
	7	CONTINUE		
	10	CONTINUE		
С				
С		LEITURA ARQUIVO 8 PREPARADO PELO PROGRAMA DECM (decy)		
С		TEMPO, DECAIMENTO NORMALIZADO E INCERTEZA		
С				
		REWIND 8		
		DO 20 I=1,NT		
		READ(8) IT(I), V(I), DV(I)		
	20	CONTINUE		

WRITE(6,*) NT

```
С
```

C MONTAGEM DA MATRIZ VI

С

```
DO 30 I=1,NT
```

```
VI(I,I) = 1. / (DV(I) * DV(I))
```

VI(I,I) = 1.

30 CONTINUE

С

С

```
C MONTAGEM DA MATRIZ D
```

```
С
```

```
DO 40 I=1,NT
```

```
D(I,1) = EXP( - E1 * FLOAT( IT(I) ) )
D(I,2) = EXP( - E2 * FLOAT( IT(I) ) )
D(I,3) = EXP( - E3 * FLOAT( IT(I) ) )
D(I,4) = - FLOAT( IT(I) ) * A1 * D(I,1)
D(I,5) = - FLOAT( IT(I) ) * A2 * D(I,2)
D(I,6) = - FLOAT( IT(I) ) * A3 * D(I,3)
```

```
40 CONTINUE
```

С

```
C MONTAGEM DA MATRIZ DT - D TRANSPOSTA
```

С

```
DO 60 I=1,6
DO 50 J=1,NT
```

```
\mathbf{DT}(\mathbf{I},\mathbf{J})=\mathbf{D}(\mathbf{J},\mathbf{I})
```

50 CONTINUE

```
60 CONTINUE
```

С

C CALCULO DA MATRIZ VS

С

CALL PROD(6, NT, NT, DT, VI, P1)

```
CALL PROD( 6, NT, 6, P1, D, P2 )
      CALL INV(6, P2, VS)
      CALL PROD( 6, 6, 6, P2, VS, XT )
      DO 61 I=1,6
          WRITE(6,610) (XT(I,J),J=1,6)
  61
      CONTINUE
      DO 65 I=1,6
      WRITE(6,610) ( VS(I,J),J=1,6 )
  65
      CONTINUE
 610
      FORMAT(1X, 6E12.4)
С
С
     TEMPO EQUIVALENTES AO CITATION
С
      IT(1) = 340
      I = 1
  66 I = I + 1
     IT(I) = IT(I-1) + 60
     IF ( IT(I) .LT. 1960 ) GO TO 66
     NTN = I
     WRITE(6,*) NTN
Ċ
С
     CALCULO INCERTEZA EM FUNCAO DO TEMPO
C
     DO 90 I=1,NTN
         T(1) = EXP(-E1 * FLOAT(IT(I)))
         T(2) = EXP(-E2 * FLOAT(IT(I)))
         T(3) = EXP(-E3 * FLOAT(IT(I)))
         T(4) = - FLOAT(IT(I)) * A1 * T(1)
         T(5) = - FLOAT(IT(I)) * A2 * T(2)
         T(6) = - FLOAT(IT(I)) * A3 * T(3)
         DO 80 J=1,6
```

```
TT(J) = 0.
        DO 70 K=1,6
            TT(J) = TT(J) + T(K) * VS(K,J)
 70
        CONTINUE
 80
     CONTINUE
     VF = 0.
     DO 85 J=1,6
        VF = VF + TT(J) * T(J)
85
     CONTINUE
     VX = SQRT(VF)
     WRITE(6,600) IT(I), VX
     WRITE(99) IT(I), VX
90
     CONTINUE
    STOP
600 FORMAT(1X, I5, E13.5)
    END
    SUBROUTINE INV(ND, A, AI)
    DIMENSION A(ND,ND), AI(ND,ND)
    DIMENSION W(10000)
    DO 20 I=1,ND
       DO 10 J=1,ND
```

```
AI(I,J) = A(I,J)
```

```
10 CONTINUE
```

```
20 CONTINUE
```

```
С
```

С

С

С

С

С

CALL MB11A(ND, ND, AI, ND, W)

с	
	RETURN
	END
	SUBROUTINE PROD(IA, IJ, JB, A, B, X)
С	
	DIMENSION A(IA,IJ), B(IJ,JB), X(IA,JB)
С	
	DO 30 I=1,IA
	DO 20 J=1,JB
	$\mathbf{X}(\mathbf{I},\mathbf{J})=0.$
	DO 10 K=1,IJ
	X(I,J) = X(I,J) + A(I,K) * B(K,J)
10	CONTINUE
20	CONTINUE
30	CONTINUE
С	
	RETURN
	END
	SUBROUTINE MB11A (M,N,A,IA,W)
С	STANDARD FORTRAN 66 (A VERIFIED PFORT SUBROUTINE)
	DIMENSION A(IA,1),W(1)
	COMMON/MB11B/LP
С	PARTITION THE WORKING SPACE ARRAY W
С	THE FIRST PARTITION HOLDS THE FIRST COMPONENTS OF THE
С	VECTORS OF THE ELEMENTARY TRANSFORMATIONS
	NRW=M
С	THE SECOND PARTITION RECORDS ROW INTERCHANGES
	NCW=M+M
С	THE THIRD PARTITION RECORDS COLUMN INTERCHANGES
С	SET THE INITIAL RECORDS OF ROW AND COLUMN INTERCHANGES
	DO 1 I=1,M

C.C. 197

- ----

```
N1=NRW+I
```

```
W(N1)=0.5+FLOAT(I)
```

- 1 CONTINUE
 - DO 2 I=1,N

```
N1=NCW+I
```

- W(N1)=0.5+FLOAT(I)
- 2 CONTINUE
- C 'KK' COUNTS THE SEPARATE ELEMENTARY TRANSFORMATIONS KK=1
- C FIND LARGEST ROW AND MAKE ROW INTERCHANGES
 - 3 RMAX=0.0

DO 4 I=KK,M

SUM=0.

DO 5 J=KK,N

```
SUM=SUM+A(I,J)**2
```

- 5 CONTINUE IF (RMAX-SUM) 6,4,4
- 6 RMAX=SUM IR=I
- 4 CONTINUE IF(RMAX.EQ.0.0) GO TO 81 IF (IR-KK) 7,7,8

8 N3=NRW+KK

- SUM=W(N3)
- N4=NRW+IR
- W(N3)=W(N4)
- W(N4)=SUM
- DO 9 J=1,N

```
SUM=A(KK,J)
```

```
A(KK,J)=A(IR,J)
```

A(IR,J)=SUM

9 CONTINUE

```
C FIND LARGEST ELEMENT OF PIVOTAL ROW, AND MAKE COLUMN
```

- C INTERCHANGES
 - 7 RMAX=0.
 - **SUM=**0.
 - DO 10 J=KK,N
 - SUM=SUM+A(KK,J)**2
 - IF (RMAX-ABS(A(KK,J))) 11,10,10
 - 11 RMAX=ABS(A(KK,J))

IR=J

10 CONTINUE

IF (IR-KK) 12,12,13

13 N5=NCW+KK

```
RMAX=W(N5)
```

```
N6=NCW+IR
```

```
W(N5)=W(N6)
```

```
W(N6)=RMAX
```

```
DO 14 I=1,M
```

```
RMAX=A(I,KK)
```

```
A(I,KK)=A(I,IR)
```

```
A(I,IR)=RMAX
```

14 CONTINUE

C REPLACE THE PIVOTAL ROW BY THE VECTOR OF THE

C TRANSFORMATION

```
12 SIGMA=SQRT(SUM)
```

```
BSQ=SQRT(SUM+SIGMA*ABS(A(KK,KK)))
```

```
W(KK)=SIGN(SIGMA+ABS(A(KK,KK)),A(KK,KK))/BSQ
```

A(KK,KK)=-SIGN(SIGMA,A(KK,KK))

KP=KK+1

IF (KP-N) 15,15,16

15 DO 17 J=KP,N

A(KK,J)=A(KK,J)/BSQ

- 17 CONTINUE
- C APPLY THE TRANSFORMATION TO THE REMAINING ROWS OF A IF (KP-M) 18,18,16
 - 18 DO 19 I=KP,M SUM=W(KK)*A(I,KK)
 - DO 20 J=KP,N
 - SUM=SUM+A(KK,J)*A(I,J)
 - 20 CONTINUE
 - A(I,KK)=A(I,KK)-SUM*W(KK)
 - DO 21 J=KP,N
 - A(I,J)=A(I,J)-SUM*A(KK,J)
 - 21 CONTINUE
 - **19 CONTINUE**
 - KK=KP
 - GO TO 3
- C AT THIS STAGE THE REDUCTION OF A IS COMPLETE
- C NOW WE BUILD UP THE GENERALIZED INVERSE
- C APPLY THE FIRST ELEMENTARY TRANSFORMATION
 - 16 KK=M

KP=M+1

SUM=W(M)/A(M,M)

IF (N-M) 33,33,34

34 DO 35 J=KP,N

A(M,J) = -SUM*A(M,J)

- 35 CONTINUE
- 33 A(M,M)=1/A(M,M)-SUM*W(M)
- C NOW APPLY THE OTHER (M-1) TRANSFORMATIONS
 - 36 KP=KK

KK=KP-1 IF (KK) 37,37,38

- C FIRST TRANSFORM THE LAST (M-KK) ROWS
 - 38 DO 39 I=KP,M SUM=0.
 - DO 40 J=KP,N

```
SUM=SUM+A(KK,J)*A(I,J)
```

40 CONTINUE

```
DO 41 J=KP,N
```

```
A(I,J)=A(I,J)-SUM*A(KK,J)
```

41 CONTINUE

```
W(I)=-SUM*W(KK)
```

- **39 CONTINUE**
- C THEN CALCULATE THE NEW ROW IN POSITION KK DO 42 J=KP,N

```
SUM = -W(KK) * A(KK,J)
```

```
DO 43 I=KP,M
```

```
SUM=SUM-A(I,KK)*A(I,J)
```

43 CONTINUE

A(KK,J)=SUM/A(KK,KK)

- 42 CONTINUE
- C AND REVISE THE COLUMN IN POSITION KK

```
SUM=1.-W(KK)**2
```

```
DO 44 I=KP,M
```

```
SUM=SUM-A(I,KK)*W(I)
```

```
A(I,KK)=W(I)
```

44 CONTINUE

```
A(KK,KK)=SUM/A(KK,KK)
```

GO TO 36

C RESTORE THE ROW INTERCHANGES

```
37 DO 45 I=1,M
```

```
46 N1=NRW+I
```

```
IR=IFIX(W(N1))
```

IF (I-IR) 47,45,45

47 SUM=W(N1)

N2=NRW+IR

W(N1)=W(N2)

$$W(N2)=SUM$$

$$A(I,J)=A(IR,J)$$

A(IR,J)=SUM

A(IR,J)=SUM

- 48 CONTINUE GO TO 46
- 45 CONTINUE
- C RESTORE THE COLUMN INTERCHANGES DO 49 J=1.N

50 N1=NCW+J

N2=NCW+IR

```
W(N1)=W(N2)
```

```
W(N2)=SUM
```

```
DO 52 I=1,M
```

$$A(I,J)=A(I,IR)$$

$$A(I,IR)=SUM$$

52 CONTINUE

GO TO 50

- 49 CONTINUE
- 80 RETURN
- 81 IF(LP.LE.0) GO TO 80

MMK=M-KK WRITE(LP,82) MMK 2 FORMAT(1H0,21H *** MB11A ERROR *** ,I3,12HREDUCED ROWS, 1 17H FOUND TO BE ZERO) STOP END BLOCK DATA COMMON/MB11B/LP DATA LP/6/

END

APÊNDICE B4: PROGRAMA V - TABS2

PROGRAM TABS2

- С
- C PROGRAMA LEITURA DADOS CONTAGEM, BG
- С

PARAMETER(NC=31) CHARACTER * 5 AN CHARACTER * 7 ARQ

DIMENSION P(NC), T(NC), A(NC), B(NC), C(NC), F(NC), D(NC),

C DN(NC)

DIMENSION SF(NC), SC(NC), SDN(NC)

С

```
DATA SF / NC * 0. /
```

С

```
OPEN(UNIT=99,FILE='SIGMA.BIN',FORM='UNFORMATTED')
REWIND 99
DO 1 I=1,28
```

READ(99) IDUM, SF(I)

1 CONTINUE

С

```
WRITE(6,600)
READ(5,500) ARQ, IO, T(1)
MIN = T(1) / 60.
ISEG = T(1) - ( MIN * 60 )
WRITE(6,610)
READ(5,510) AN
```

С

C INICIALIZACAO POSICAO - TEMPO

С

P(1) = -20.

```
DO 10 I=2,NC
           T(I) = T(I-1) + 60.
           P(I) = P(I-1) + 20.
       CONTINUE
  10
С
С
        LEITURA CONTAGEM + BG
C
       OPEN(UNIT=1,FILE='tab2.d')
       OPEN(UNIT=2,FILE=ARQ)
С
       DO 20 I=1,NC
           READ(1,*) A(I)
           READ(2,*) B(I)
  20
       CONTINUE
C
С
       CALCULO DIFERENCA ( CONTAGEM - BG )
С
       DO 30 I=1,NC
           \mathbf{C}(\mathbf{I}) = \mathbf{B}(\mathbf{I}) - \mathbf{A}(\mathbf{I})
  30
       CONTINUE
С
С
       CALCULO COM FUNCAO AJUSTADA
С
       DO 40 I=1,NC
           T1 = 0.56638 * EXP(-T(I) * 0.00184)
           T2 = 0.23983 * EXP( - T(I) * 0.00009)
           T3 = 0.50298 * EXP( - T(I) * 0.0004 )
          F(I) = T1 + T2 + T3
  40
       CONTINUE
С
C
       CALCULO ( CONTAGEM - BG ) / FUNCAO
```

```
c
     DO 50 I=1,NC
         D(I) = C(I) / F(I)
  50
      CONTINUE
С
С
      NORMALIZACAO
С
      AMAX = 0.
      DO 60 I=1,NC
         IF (D(I).GT. AMAX) AMAX = D(I)
  60
     CONTINUE
     DO 70 I=1,NC
         DN(I) = D(I) / AMAX
  70
      CONTINUE
С
С
      CALCULO DE SIGMAS
С
      DO 71 I=3,28
      SC(I) = SQRT(A(I) + B(I))
  71
      CONTINUE
C
      AMAX = 0.
      DO 72 I=3,28
         IF (C(I) .LE. AMAX) GO TO 72
         AMAX = C(I)
         MAX = I
  72
      CONTINUE
      CMAX = AMAX
      FMAX = F(MAX)
      SCMAX = SC(MAX)
      SFMAX = SF(MAX)
```

¢

С

С

C

```
DO 73 I=3,28
        T1 = (1. / F(I)) / (CMAX / FMAX)
        T1 = T1 * SC(I)
        T1 = T1 * T1
        T2 = (-C(I) / (F(I) * F(I))) / (CMAX / FMAX)
        T2 = T2 * SF(I)
        T2 = T2 * T2
        T3 = (-C(I) / F(I)) / ((CMAX * CMAX) / FMAX)
        T3 = T3 * SCMAX
        T3 = T3 * T3
        T4 = (C(I) / F(I)) / CMAX
        T4 = T4 * SFMAX
        T4 = T4 * T4
       SDN(I) = T1 + T2 + T3 + T4
       SDN(I) = SQRT(SDN(I))
73
     CONTINUE
    ARQUIVOS FINAIS
    REWIND IO
    REWIND 7
    WRITE(7,700) AN, MIN, ISEG
    WRITE(IO,200) AN, MIN, ISEG
    DO 80 I=3,28
       WRITE(6,620) P(I), T(I), A(I), B(I), C(I), F(I), D(I), DN(I)
       WRITE(7,620) P(I), T(I), A(I), B(I), C(I), F(I), D(I), DN(I),
 *
       SDN(I)
80
    CONTINUE
    WRITE(6,*) AMAX
    WRITE(7,710)
```

```
DO 90 I=3,28
         WRITE(7,100) P(I), DN(I), SDN(I)
         WRITE(IO, 100) P(I), DN(I), SDN(I)
  90
      CONTINUE
С
      STOP
С
С
      FORMAT
С
       FORMAT(1X, F7.0, F10.5, E12.2)
 100
 200
      FORMAT( A5, '-', I2, 1H', I2, 1H")
      FORMAT(A7, I2, F10.0)
 500
 510
      FORMAT(A5)
 600
      FORMAT(' PROGRAMA LEITURA DADOS CONTAGEM
C
      (CONTAGEM - BG)'/,
    *
      FORNECA NOME ARQUIVO, FILE, TEMPO INICIAL (SEG.)')
 610
      FORMAT('FORNECA NOME (A5)'/
    *
               'OBS. AROUIVO PARA IMPRESSAO => fort.7')
 620
      FORMAT(1X, F5.0, 2F7.0, 2F9.0, F10.5, F10.0, F10.5, E12.2)
 700
      FORMAT( 1X, A5, '-', I2, 1H', I2, 1H" //
                1X, 'POS. TEMPO BG CONTAGEM',
                ۲
                   DIF. FUNCAO DIF/FUNC.
                                              NORM.
                                                       INCER.7/)
 710
      FORMAT( / 1X, 'POSICAO NORM.
                                         INCER.'/)
С
```

END

128

APÊNDICE B5: PROGRAMA VI - CITDD3

```
PROGRAM CITDD3
```

```
С
С
      PROGRAMA PARA LEITURA DO ARQUIVO dpt.d
С
      CHARACTER * 5 A(9)
      DIMENSION P(28), V(28), VN(28), NN(75), Z(75), GR(75)
С
      DATA A / ' m14 ', ' m21 ', ' m27 ', ' j17 ', ' j20 ',
                'j22 ', 'c22 ', 'c24 ', 'ab27'/
С
      NC = 0
      NW1 = 60
      P(1) = 0.
      DO 10 I=2,28
          P(I) = P(I-1) + 20.
  10
      CONTINUE
С
  15
      DO 20 I=1,75
          READ(5,*,END=99) NN(I), Z(I), GR(I)
       CONTINUE
  20
С
      NC = NC + 1
      NW1 = NW1 + 1
      N = 0
      DO 30 I=65,11,-2
           N = N + 1
           V(N) = GR(I)
       CONTINUE
  30
```

C

```
REWIND NW1
WRITE(NW1,100) A(NC)
```

С

```
AMAX = 0.
DO 50 I=1,N
```

```
IF (V(I).GT. AMAX) AMAX = V(I)
```

50 CONTINUE DO 60 I=1,N

VN(I) = V(I) / AMAX

60 CONTINUE

С

```
DO 70 I=1,N
```

```
WRITE(NW1,110) P(I), V(I), VN(I)
```

70 CONTINUE

С

```
WRITE(NW1,*) AMAX
ENDFILE NW1
GO TO 15
```

С

```
99 WRITE(6,600)
STOP
```

С

```
100 FORMAT( A5, 'CITATION')
```

```
110 FORMAT( 1X, F6.1, E13.5, F10.6 )
```

```
600 FORMAT( 'OBS. - ARQUIVOS GERADOS PARA cittabx2 - fort.6* '/
```

```
* - ARQUIVOS GERADOS PELO tabs - fort.5*')
```

С

END

APÊNDICE B6: PROGRAMA VII - CITTABX2

PROGRAM CITTABX2

С

- C PROGRAMA PARA GERAR ARQUIVOS COMPARATIVOS
- C EXPERIMENTAL CALCULADO
- С

CHARACTER * 5 A, B DIMENSION P(26), V(26), V1(26), V2(26), V3(26)

С

```
DO 30 I=1,9
   NR1 = 60 + I
   NR2 = 50 + I
   NW = 70 + I
   REWIND NR1
   REWIND NR2
   READ(NR1,100) A
   READ(NR1,*) DUM
   READ(NR2,100) B
   IF (A.NE.B) GO TO 40
   DO 10 J=1,26
       READ(NR1,*) P(J), V(J), V1(J)
       READ(NR2,*) DUM, V2(J), V3(J)
CONTINUE
REWIND NW
WRITE(NW,200) A
DO 20 J=1,26
```

WRITE(NW,300) P(J), V1(J), V2(J), V3(J)

20 CONTINUE ENDFILE NW

10

30 CONTINUE

С STOP С 40 WRITE(6,600) I STOP Ċ 100 FORMAT(A5) 200 FORMAT(1X, A5, '- equalizada ' // * 1X, ' pos. citation experim. incer.'/) 300 FORMAT(1X, F6.0, 2F10.5, E12.2) 600 FORMAT('ERRO - ARQUIVOS NAO CORRESPONDEM, I = ', I2) END

COMISSÃO NACIONAL LE ENLHEIA NUICLEAR/SP 1800