TRANSFERÊNCIA DE ENERGIA A PARTIR DE ESTADOS SINGLETOS NO COMPLEXO [Eu(ISOVIND)₃(EtOH) (H₂O)]

Ercules E. S. Teotonio(PQ)¹, Hermi F. de Brito(PQ)¹, Oscar L. Malta(PQ)², Wagner M. Faustino(PQ)², Gilberto F. De Sá(PQ)², Maria Cláudia F. C. Felinto³

1. Departamento de Química Fundamental, IQ-USP-SP; 2. Dep. de Química Fundamental CCEN – UFPE, Recife-PE;3Instituto de Pesquisas Energéticas e Nucleares-IPEN

Palavras Chave: Lantanídeos, Transferência de Energia, 2-acil-1,3-indandionatos.

Introdução

As intensidades de emissão dos íons TR^{3+} são sensivelmente aumentadas por meio do "efeito antena", o qual é, geralmente, reportado como o resultado das seguintes etapas: i) Absorção de energia via transição $S_0 \rightarrow S_1$; ii) Cruzamento intersistemas, $S_1 \rightarrow T$; iii) Transferência de energia Ligantemetal $T \rightarrow^{2S+1} L_J$; iv) emissão pelo íon TR^{3+} . Neste caso, S_0 , S_1 e T são, respectivamente, os estados singletos fundamental, singleto excitado e tripleto do ligante, e $^{2S+1} L_J$ são os níveis de energia do íon TR^{3+} . 1

Apesar de o principal canal de transferência de energia Ligante-metal ser aquele envolvendo o estado T, em alguns poucos casos existem evidências de uma transferência direta via estado singleto S_1 $(S_1 \rightarrow^{2S+1} L_J)$. Neste trabalho, investigamos, experimentalmente e teoricamente, o complexo $[Eu(ISOVIND)_3(EtOH)(H_2O)]$, um sistema no qual existem evidências de que aquele processo de transferência de energia seja operativo.

Resultados e Discussão

Os complexos ([TR(ISOVIND)₃(EtOH)(H₂O)]) foram obtidos através da reação da solução aquosa de TRCl₃ (em que TR = Eu e Gd) e uma solução etanólica do ligante ISOVIND. Após a evaporação de parte do solvente, formaram-se monocristais. Os dados de análises elementar calc.(exp.) de C e H para os complexos sintetizados são: [Eu(ISOVIND)₃(EtOH)(H₂O)]), C: 58,48 (58,33), H: 5,24 (5,20) e Gd(ISOVIND)₃(EtOH)(H₂O)]), C: 58,13 (58,20), H: 5,21 (5,13).

A estrutura molecular do composto $[Eu(ISOVIND)_3(H_2O)(EtOH)]$ foi determinada experimentalmente por difração de raios-X e calculada usando o método Sparkle/AM1.

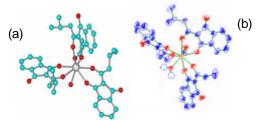


Figura 1. a) Estrutura calculada e b) experimental

A estrutura calculada mostrou-se concordante com aquela determinada por difração de raios-X, evidenciando a validade do modelo teórico na otimização estrutural do complexo em estudo.

Os valores das energias dos estados singleto e tripleto do ligante ISOVIND foram determinados experimentalmente com base nos espectros de emissão do complexo [Gd(ISOVIND) $_3$ (EtOH)(H $_2$ O)] resolvido no tempo. Em posse da geometria e dos níveis de energia do ligante, foi possível a investigação dos processos de transferência de energia intramolecular ISOVIND \to Eu $^{3+}$. Os valores das taxas de transferência (W_{TE}) e retro-transferência (W_{RT}) de energia no complexo [Eu(ISOVIND) $_3$ (EtOH)(H $_2$ O)] estão na tabela 1.

Tabela 1. Taxas de transferência e retrotransferência de energia de energia ISOVIND→Eu³+ no complexo [Eu(ISOVIND)₃(EtOH)(H₂O)].

Níveis	S_1 ® $^{2S+1}L_J$ (Eu $^{3+}$)		T® ^{2S+1} L _J (Eu ³⁺)	
(^{2S+1} L _J)	\mathbf{W}_{TE}	\mathbf{W}_{RT}	\mathbf{W}_{TE}	\mathbf{W}_{RT}
⁵ D ₂	4,46x10 ⁶	0,0	52,496	26,952
⁵ D ₁	1,30x10 ¹⁰	0,0	5,45x10 ⁹	4,95x10 ⁹
⁵ D ₀	9,50x10 ⁹	0,0	6,16x10 ⁹	1,37 x10 ⁹

Os valores altos de W_{TE} evidenciam um processo de transferência de energia eficiente a partir dos estados S_1 e T do ligante ISOVIND. O valor de rendimento quântico teórico, q=8,6%, mostrou-se próximo da eficiência quântica experimental (~ 8,0%).

Conclusões

Com base nos resultados teóricos, o canal de excitação do íon Eu(III) via estado singleto $S_0 \rightarrow S_1 \rightarrow (^5D_1, ^5D_0)$ que é pouco convencional é operativo no complexo [Eu(ISOVIND)₃(EtOH)(H₂O)].

Agradecimentos

FAPESP, RENAMI-CNPq e IMMC

de Sa, G. F.; Malta, O. L.; Donega, C. D.; Simas, A. M.; Longo, R. L., Santa-Cruz, P. A.; da Silva, E. F. *Coord. Chem. Rev.* **2000**, *196*, 165

² Yang, C.; Fu, L. M.; Wang, Y.; Zhang, J. P.; Wong, W. T.; Ai, X. C.; Qiao, Y. F.; Zou, B. S.; Gui, L. L. Angew. Chem.-Int. Edition **2004**, *43*, 5010.