

Evaluation of ²¹⁰Po and ²¹⁰Pb in Some Mineral Spring Waters in Brazil

A. Nieri Neto & B. Mazzilli

Instituto de Pesquisas Energéticas e Nucleares, Caixa Postal 11049, São Paulo, Brazil

ABSTRACT

Analysis of most natural waters shows that ²¹⁰Po, the last radioactive member of the uranium natural decay-series, is present at very low activities, usually lower than its insoluble precursor, ²¹⁰Pb. Recent papers, however, show that ²¹⁰Po can exist at very high concentrations in groundwaters of some shallow aquifers. Concentrations of ²¹⁰Po and ²¹⁰Pb have been analyzed in the mineral spring waters of a high background region of Brazil: Águas da Prata. The water samples were collected over a period of one year in springs used by the local population and tourists to the region.

Concentrations ranging from $< 3.5 \text{ mBq} l^{-1}$ to $7.80 \times 10^2 \text{ mBq} l^{-1}$ and from $3.0 \text{ mBq} l^{-1}$ to $3.98 \times 10^2 \text{ mBq} l^{-1}$ were observed for ²¹⁰Pb and ²¹⁰Po, respectively. Doses were estimated in order to evaluate the relative importance of the ingestion of such radionuclides. Based upon measured concentrations, effective doses up to $1.8 \times 10^{-1} \text{ mSv y}^{-1}$ were observed for ²¹⁰Pb and ²¹⁰Po. Doses up to 5.9 mSv y^{-1} for the ingestion of ²¹⁰Pb and up to 1.9 mSv y^{-1} for the ingestion of ²¹⁰Po were obtained for the critical organs. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The nuclide ²¹⁰Po (half-life of 138·4 days) is the last radioactive member of the ²³⁸U series. It is produced by the decay of ²¹⁰Pb (half-life of 22·3 years) via ²¹⁰Bi (half-life of 5·02 days). It is an alpha emitter and has a very high specific radioactivity. Analysis of most natural waters shows that ²¹⁰Po is present at very low activities, usually lower than its insoluble precursor, ²¹⁰Pb. Recent papers, however, show that ²¹⁰Po can occasionally exist at very high concentrations in groundwaters of some shallow aquifers (Cowart *et al.*, 1987; Salonen, 1988; Harada *et al.*, 1989; Narita *et al.*, 1989). For example, Harada *et al.* (1989) found a shallow well in central Florida

which showed consistent unsupported activities of greater than $18,500 \text{ mBq } l^{-1}$ (500 pCi l^{-1}).

In Brazil, prior to this work, no data were found concerning the occurrence of ²¹⁰Po in mineral and drinking waters. In this investigation we have

Fig. 1. The Poços de Caldas Plateau (Nagra Bulletin, 1993).

carried out a survey of the ²¹⁰Po activity concentration in the mineral spring waters of a high background region of Brazil. This region is a zone of volcanic alkaline intrusives, located in Poços de Caldas Plateau (Fig. 1). In this plateau many health resorts are found, based on sources of thermal and mineral waters. The Águas da Prata are among the most visited of these springs, not only by tourists and patients but also by the local population of the region. Several radionuclides of the uranium natural decay series have already been analyzed, by the second author, in these springs, namely: ²³⁸U and ²³⁴U (Camargo and Mazzilli, 1996), and ²²⁶Ra, ²¹⁰Pb and ²²²Rn (Oliveira *et al.*, 1994; Jacomino *et al.*, 1996). In order to study the isotopic equilibrium between ²¹⁰Po and ²¹⁰Pb, the activity concentration of ²¹⁰Pb was also determined in the water samples collected.

EXPERIMENTAL

Samples for ²¹⁰Po and ²¹⁰Pb analysis were collected from the spring sites used by tourists and the local population of Águas da Prata. The spring waters chosen for the present study were: Padre, Paiol, Balneário, Vitória, Prata Antiga, Prata Nova, Platina, Prata Radioativa, Vilela and São Bento. The location of these springs are shown in Fig. 2. The samples were acidified by addition of nitric acid, to a pH lower than 2, at the time of collection. Temperature and pH readings were made in the field and 200 mg of stable lead and 310 mBq of ²⁰⁸Po were added as a yield tracer.

Fig. 2. Geologic map and location of the springs studied.

The procedure adopted for the analysis of ²¹⁰Po and ²¹⁰Pb is modified from that of Bunzl and Kracke (1979). Basically, 51 water samples in duplicate were concentrated to approximately 300 ml by evaporation, avoiding temperatures exceeding 80°C in order to prevent losses of polonium by volatilization. The final solution was then neutralized with 20M sodium hydroxide. The polonium was then coprecipitated with lead by addition of sodium sulfide. After 4–6 h of settling, the precipitate was filtered and oxidized to sulfate by addition of concentrated HNO₃. The precipitate was dried by heating on a sand bath and partially dissolved by addition of concentrated HNO₃ and water. The remaining precipitate of PbSO₄ is separated from the solution where most of the polonium is found.

The solution containing polonium was transferred to a plating cell where the polonium was spontaneously deposited onto a copper disc. The alpha spectrum of polonium was obtained by using a surface barrier detector. The counting efficiency was 30% and the lower limit of detection achieved for this methodology was $0.34 \text{ mBq }1^{-1}$. For spiked samples of deionized water, this procedure produced yields of 60–90%; for natural waters the yields were considerably less, ranging from 20 to 78%.

The precipitate of PbSO₄ was then dissolved by addition of ammonium acetate, under heating, the pH adjusted to 4–5, and 1·0 ml of a Na₂CrO₄ solution was added. The ²¹⁰PbCrO₄ precipitate formed was collected on a filter paper. After its separation ²¹⁰Pb was determined, when equilibrium has been reached, through ²¹⁰Bi (immediate decay product of ²¹⁰Pb with a beta particle of 1·17 MeV) by measuring the gross beta activity of the precipitate, using a low background gas flow proportional counter. In order to avoid the interference of the emission of the weak beta peak of ²¹⁰Pb (18 keV) in the measurement, the precipitate was covered with a filter paper. Typical lower limit of detection for this method was 3·5 mBq1⁻¹. The procedure provided yields of 30–100% for natural waters and from 76–95% for spiked samples of deionized water.

The methodology was checked experimentally by measuring a standard ²¹⁰Pb solution from EPA. The reproducibility was characterized by coefficient of variation values of 7% and 3%, with an accuracy of 23% and 29% for ²¹⁰Pb and ²¹⁰Po, respectively (Nieri Neto, 1996).

RESULTS AND DISCUSSION

The radionuclide concentration data are presented in Table 1 for 210 Po and 210 Pb. The concentration varied from $< 3.5 \text{ mBq } l^{-1}$ to $7.80 \times 10^2 \text{ mBq } l^{-1}$ and from $3.0 \text{ mBq } l^{-1}$ to $3.98 \times 10^2 \text{ mBq } l^{-1}$, for 210 Pb and 210 Po, respectively. In addition to 210 Po and 210 Pb measurements, the pH and

Spring	Temp.°C	pН	²¹⁰ Po N	$^{210}Po\ Range$ (mBq l^{-1})	²¹⁰ Po Geometric mean (mBq l ⁻¹)	²¹⁰ Pb N	^{2l0}Pb Range (mBq l^{-1})	²¹⁰ Pb Geometric mean (mBq l ⁻¹)	²¹⁰ Po/ ²¹⁰ Pb activity ratio
Padre	20-22	6.9–7.5	4	3.0-6.0	3.8	5	$< 3.5 - 1.4 \times 10^{1}$	5.9	0.26–1.6
Paiol	21-22	7.0-7.4	4	$8.8 - 1.1 \times 10^{1}$	9.5×10^{1}	4	$< 3.5 - 1.0 \times 10^{1}$	7.7	0.91-1.8
Balneário	22-24	6.7-7.8	3	$9.4 - 1.4 \times 10^{1}$	$1 \cdot 1 \times 10^{1}$	3	$1.4 \times 10^{1} - 2.4 \times 10^{1}$	1.8×10^{1}	0.40-0.86
Vitória	22-24	$7 \cdot 8 - 8 \cdot 2$	3	$1{\cdot}0\times10^1{-}1{\cdot}5\times10^1$	1.2×10^{1}	5	$1.0 \times 10^{1} - 2.9 \times 10^{1}$	2.0×10^{1}	0.52 - 1.1
Prata Antiga	19-22	7.6-8.0	5	$1.1 \times 10^{1} - 2.3 \times 10^{1}$	1.7×10^{1}	5	$9.0 - 3.1 \times 10^{1}$	$2 \cdot 1 \times 10^{1}$	0.52 - 2.6
Prata Nova	22-26	6.9–7.1	5	$2.1 \times 10^{1} - 3.6 \times 10^{1}$	3.0×10^{1}	5	$4.2 \times 10^{1} - 5.2 \times 10^{1}$	4.5×10^{1}	0.44-0.8
Platina	23-25	8.2-8.5	4	$2.3 \times 10^{1-5.3} \times 10^{1}$	3.9×10^{1}	5	$2.3 \times 10^{1} - 7.3 \times 10^{1}$	$4 \cdot 2 \times 10^{1}$	0.73-0.9
Prata Radioativa ^a	20-24	6.9-7.2	5	$2.6 \times 10^{1} - 9.2 \times 10^{1}$	4.0×10^{1}	5	$3.4 \times 10^{1} - 5.9 \times 10^{1}$	4.3×10^{1}	0.73-1.6
Vilela ^a	21-22	4.7-5.4	5	$1.20 \times 10^{2} - 2.34 \times 10^{2}$	1.78×10^2	5	$2.10 \times 10^{2} - 4.86 \times 10^{2}$	3.26×10^{2}	0.47-0.66
São Bento ^a	20-21	4.7 - 5.0	5	$2{\cdot}78\times10^2{-}3{\cdot}98\times10^2$	3.35×10^2	5	$4.97 \times 10^{2} - 7.80 \times 10^{2}$	5.87×10^2	0.51 - 0.72

TABLE 1Temperature, pH, Radionuclide Concentration Data for ²¹⁰Po and ²¹⁰Pb, and ²¹⁰Po/²¹⁰Pb Activity Ratios Range for Each Spring

^a Highly mineralized springs.

N = number of measured samples.

temperature were analyzed for each sample in the field. The results are also presented in Table 1.

Regarding the aquifer lithology, the springs studied can be classified into two main groups: the first one, which includes the springs Vilela, São Bento and Prata Radioativa, is fed by aquifers composed of sandstone rocks. These waters, with low total dissolved solids, presented the highest activity concentrations, up to $7\cdot80 \times 10^2 \text{ mBq}1^{-1}$ and $3\cdot98 \times 10^2 \text{ mBq}1^{-1}$, for ^{210}Pb and ^{210}Po , respectively. In this specific case, such activity concentrations can be explained by the fact that these springs are associated with sandstones with $0\cdot1-0\cdot2\%$ of U_3O_8 in their composition (Longo, 1967). Also, Vilela and São Bento springs have the lowest pH of all the springs studied. The second one, in which are included the remnant sources, is fed by water passing through alkaline rocks of volcanic origin. The waters of this group have a deep origin, and are highly mineralized with pH values around 7·0 These waters contained lower activity concentrations (Table 1).

The temperatures for these samples varied over rather small ranges and no correlation with ²¹⁰Po and ²¹⁰Pb was found. The other parameter studied, the pH, seems to correlate with the polonium and lead concentration, at least it can explain the low activity concentration noted in the Prata Radioativa spring compared to the other springs of the same group. The pH observed for this spring (6·9–7·2) may be favouring the coprecipitation of lead and polonium.

Calculation of polonium and lead isotopic activity ratios was carried out, giving values ranging from 0.26 to 2.6 (Table 1). Only in 5 of 42 samples analyzed was this ratio above unity. Although the analysis of most natural waters shows that 210 Po is present at very low activities, usually lower than its insoluble precursor (210 Po/ 210 Pb activity ratios ranging from 0.2 to 1), Harada *et al.* (1989) have found that 210 Po exists at very high concentrations in some ground waters in west central Florida. All of the high-polonium groundwaters discovered in Florida were characterized by low total dissolved solids, were slightly acidic (pH around 5) and contained some sulfide.

Based upon measured concentrations, doses were evaluated for ²¹⁰Po and ²¹⁰Pb. The individual dose was evaluated by considering a daily consumption of 1.21 (ICRP 23), dose factors from ICRP 67 and the geometric mean concentration for each spring. The annual dose equivalents per unit activity of ingested ²¹⁰Po and ²¹⁰Pb, used in the calculations, in Sv Bq⁻¹ were: 1.3×10^{-5} and 1.2×10^{-6} for the kidney and committed effective dose, and 2.3×10^{-5} and 7.0×10^{-7} for the bone surface and committed effective dose, respectively. The results obtained are presented in Table 2, for ²¹⁰Pb and ²¹⁰Pb. Effective doses up to 1.8×10^{-1} mSv y⁻¹ were observed for ²¹⁰Pb and ²¹⁰Po. Doses up to 5.9 mSv y⁻¹ for the ingestion of

Spring	^{210}Po	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Pb
1 0	$\frac{H_{kidney}}{(mSv \ y^{-1})}$	$\frac{H_{\rm E}}{(mSv \ y^{-1})}$	$H_{bone \ surface} \ (mSv \ y^{-1})$	$\frac{H_{\rm E}}{(mSv \ y^{-1})}$
Padre	$2 \cdot 2 \times 10^{-2}$	2.0×10^{-3}	5.9×10^{-2}	1.8×10^{-3}
Paiol	5.4×10^{-2}	5.0×10^{-3}	7.8×10^{-2}	2.4×10^{-3}
Balneário	6.3×10^{-2}	5.8×10^{-3}	1.8×10^{-1}	5.5×10^{-3}
Vitória	6.8×10^{-2}	6.3×10^{-3}	2.0×10^{-1}	$6 \cdot 1 \times 10^{-3}$
Prata Antiga	9.7×10^{-2}	8.9×10^{-3}	$2 \cdot 1 \times 10^{-1}$	6.4×10^{-3}
Prata Nova	1.7×10^{-1}	1.6×10^{-2}	4.5×10^{-1}	1.4×10^{-2}
Platina	2.2×10^{-1}	2.0×10^{-2}	4.3×10^{-1}	1.3×10^{-2}
Prata Radioativa	2.3×10^{-1}	$2 \cdot 1 \times 10^{-2}$	4.3×10^{-1}	1.3×10^{-2}
Vilela	1.0	9.4×10^{-2}	3.3	1.0×10^{-1}
São Bento	1.9	1.8×10^{-1}	5.9	1.8×10^{-1}

 TABLE 2

 Expected Doses Resulting From the Consumption of the Spring Waters Studied

 $H_{\text{kidney}} = \text{committed dose to the kidney.}$

 H_{bone} = committed dose to the bone surface.

 $H_{\rm E}$ = committed effective dose.

²¹⁰Pb and up to 1.9 mSv y^{-1} for the ingestion of ²¹⁰Po were obtained for the critical organs. The expected doses estimated for the ingestion of ²¹⁰Po and ²¹⁰Pb are of the same order of magnitude as those obtained, by the second author, in a previous work for the ingestion of ²²⁶Ra and ²¹⁰Pb in the same spring waters (Oliveira *et al.*, 1994). The doses obtained for the ²³⁸U and ²³⁴U (Camargo *et al.*, 1996), on the other hand, were two orders of magnitude lower than the doses evaluated in the present paper for ²¹⁰Pb and ²¹⁰Po.

Finally, the results of the dose calculation show that ²¹⁰Pb and ²¹⁰Po are possibly significant radionuclides as far as the consumption of such waters is considered. Vilela spring is the most critical, not only because of the higher expected doses but also because it is the one most used by visitors and inhabitants of Águas da Prata.

REFERENCES

- Bunzl, K., Kracke, W. and Kreuzer, W. (1979) ²¹⁰Pb and ²¹⁰Po in liver and kidneys of Cattle-I. animals from an area with little traffic or industry *Health Physics* **37**, 322–330.
- Camargo, I. M. C. and Mazzilli, B. (1996) Determination of uranium and thorium isotopes in mineral spring waters. *Journal of Radioanalysis and Nuclear Chemistry Letters* 212(4), 251–258.

- Cowart, J. B., Burnett, W. C., Chin, P. A. and Harada, K. (1987) Occurrence of ²¹⁰ Po in natural waters in Florida. *Trace Substitutes and Environmental Health* **21**, 172–185.
- Harada, K., Burnett, W. C., La Rock, P. A. and Cowart, J. B. (1989) Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. *Geochim. Cosmoch. Acta* **53**, 143–150.
- ICRP, International Commission on Radiological Protection. Publication 23 (1975) Report of the Task Groups on Reference Mam, Pergamon Press, Oxford.
- ICRP, International Commission on Radiological Protection. Publication 67 (1993). Age-dependent Doses to Members of the Public from Intake of Radionuclides, Part 2 Ingestion Dose Coefficients, Pergamon Press, Oxford.
- Jacomino, V. F., Bellintani, S. A., Oliveira, J., Mazzilli, B. P., Fields, D. E., Sampa, M. H. and Silva, B. (1996) Estimates of cancer mortality due to the ingeston of mineral spring waters from a highly natural radioactive region of Brazil. *Journal* of Environmental Radioactivity 33, 319–329.
- Longo, O. W. (1967) Águas radioativas no Estado de São Paulo. *Review Institute of Geography Geology* **19**, 27–48.
- Nagra Bulletin, (1993). Poços de Caldas: nature's experimentes. Swiss national cooperative for the disposal of radioactive waste, Vol. 1, Wettingen.
- Narita, H., Harada, K., Burnett, W. C., Tsunogai, S. and McCabe, W. J. (1989) Determination of ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po in natural waters and other materials by eletrochemical separation. *Talanta* **36**(9), 925–929.
- Nieri Neto, A (1996) Determinação de ²¹⁰Pb e ²¹⁰Po em águas minerais radioativas, Dissertação de Mestrado. Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo.
- Oliveira, J., Moreira, S. R. D. and Mazzilli, B. (1994) Natural radioactivity in mineral springs waters of a highly radioactive region of Brazil and consequent population doses. *Radiation Protection Dosimetry* **55**(1), 57–59.
- Salonen, L. (1988) Natural radionuclides in ground water in Finland. *Radiation Protection Dosimetry* 24, 163–166.