Energy Levels in ¹²⁹I from (n,γ) and (n,2n)Reactions

VÂNIA XAVIER DE OLIVEIRA, CIBELE BUGNO ZAMBONI, JOSÉ ROBERTO BERRETTA IPEN/CNEN, São Paulo

The low energy levels of 129I were investigated using γ -sources obtained from ¹²⁸Te(n, γ)¹²⁹Te and ¹³⁰Te(n,2n)¹²⁹Te nuclear reactions. The singles spectra were taken using a Gc(Li) detector of 45 cm³ (FWHM=1.89 keV) and a 671 ORTEC amplifier. Two different methods were employed for the production of 129 Te sources. The first one involved the irradiation of the enriched telurium (96% for 129 Te) with thermal neutrons flux of 1013 n.cm2.s-1 at the IEA-R1 reactor. Using this procedure it was possible to study the $\beta^$ decay of 129 Te ($T_{1/2}$ =70 minutes). The second method was the irradiation of natural telurium (with 33,8% of 130 Te isotope) with 14MeV neutrons at van de Graaff accelerator at IPEN. In this experiment, a series of γ-rays from the both reactions, in the range from 20 keV to 2.5 MeV, were recorded during 60 hours of live counting. In order to identify the origin of γ -rays, spectra were accumulated through four sucessive half-lives. The energy and relative intensity of the γ -rays have been determined and the results from β^- decay and the (n,2n) nuclear reaction were compared. Among the total number of \gamma-transitions observed, several of them were observed for the first time. In addition, a number of γ -transitions previously attributed were confirmed.