AVALIAÇÃO DA QUALIDADE DA ÁREA COSTEIRA DA REGIÃO DE CARAGUATATUBA UTILIZANDO CONCHAS DE ORGANISMOS BIVALVES

José Henrique de Paula e Paulo Sérgio Cardoso da Silva

Instituto de Pesquisas Energéticas Nucleares

INTRODUÇÃO

Os ambientes marinhos são frequentemente contaminados com metais tóxicos que resultam em efeitos adversos para a saúde na flora e fauna marinhas e são devidos ao rápido aumento da população humana, industrialização, uso excessivo de pesticidas e herbicidas, passeios de barco, águas residuais de petróleo, derramamentos de óleo, depósitos de lixo e atividades de urbanização em todo o mundo [1].

Α contaminação por metais é particularmente preocupante em países em desenvolvimento pois resultam atividades antrópicas (mineração industrial, desmatamento. extração de carvão. indústrias de tintas e bulbos e despejos de esgotos municipais e não tratados), que contaminam o litoral através de canais de rios e riachos [2].Resíduos de mineração e industriais são os principais fontes de poluição por metais, especialmente por Hg, Pb, Cd, Zn e Cu. Moluscos e suas conchas são considerados bioindicadores potencial para metais pesados porque são filtradores; eles retiram metais da coluna de água, alimentos e através da ingestão de partículas inorgânicas matéria.[2]

OBJETIVO

O objetivo do trabalho consiste em avaliar a exposição, os efeitos e a bioacumulação de contaminantes em conchas de mexilhões *Perna perna* e vôngole *Anomalocardia brasiliana* nativos por um período de um ano (4 estações) em Praias de Caraguatatuba pela avaliação da bioacumulação sazonal dos seguintes elementos: As, Cd, Co, Cr, Fe, Hg, Pb, Se e Zn.

METODOLOGIA

O procedimento adotado promoveu a remoção de impurezas e de carbonato recente adsorvido para obtenção de apenas carbonato primário. Primeiramente foi feita a separação das amostras de mexilhão e devidamente nomeadas vôngole е separadas, depois foi feita com ambas a remoção manual de contaminantes com auxílio de pinças e lixas e em seguida a lavagem da amostra em HCl 4% por 1 a 2 minutos. Em seguida foi realizada a lavagem das conchas até obtenção de resíduo com pH 6,5, para os procedimentos de secagem, moagem a uma granulometria de 100 mesh e peneiramento.

Análise por Ativação Neutrônica - NAA

As amostras foram irradiadas no reator nuclear IEA-R1 juntamente com os padrões por um período de 8 h e sob fluxo de nêutrons térmicos de 4,2 x 10¹² n cm⁻² s⁻¹. As atividades gama induzidas foram medidas espectrometria pela gama. As concentrações elementos dos foram calculadas pelo método comparativo. Foi avaliada a exatidão e a precisão dos resultados pela análise do material de referência certificado Estuarine Sediment 1646a [4].

Espectrometria de Absorção Atômica com forno de grafite – GF-AAS

Cerca de 300 mg de amostra foram pesados e, após digestão com ácidos, foram analisadas no equipamento de GFAAS modelo AAnalyst 800 da Perkin Elmer do Laboratório de Absorção Atômica do LAN/IPEN-SP. Foram preparadas soluções de Cd, Cu e Pb a partir de soluções estoque

destes elementos em HNO₃ 0,2% (v/v) diluente, para (Merck), usado como construção da curva de calibração. A concentração do analito foi determinada a partir da área do pico de absorção utilizandose o modo de regressão linear. A linearidade das curvas de calibração foi determinada pelo coeficiente de correlação linear das curvas (r). Para verificação da confiabilidade dos resultados na determinação de Cd, Cu e Pb por GFAAS foi utilizado o material de referência certificado (MRC) INCT-MPH-2 Mixed Polish Herbs.

RESULTADOS

Os Resultados são das estações inverno e verão. As amostras foram feitas duplicadas e triplicadas para melhor resultado analítico.

Tabela 1: Resultados da estação inverno através da Análise por Ativação Neutrônica – NAA e Análise por Absorção Atômica com forno de grafite – GF- AAS

Amestras	Aquete	Co, ug	H(N)	Se, up E	In vale	D, up't	He me	Qu, ng	Cd, ng	Phill	
701-NA	9,84	(0,04	4	6,07	7	0,34	20,7	82	153	699	Parts Novo
101-HE	41,0	43,04	rd.	434	3.7	0,6	15,2	768	27,1	739	100
MEX-COA	4,0	(0,04	4	634	5,7	13,0	45,2	1276	25,07	522	(araska
WEX-COS	4,00	43,04	15	QN	13	10,07	15	544	H,M	403	
VON-CEA	d'it	4,005	4	434	1,5	d,tt	3,71.	151	1,901	210	Centra
VON-CEE	40,04	40,006	34	0,34	7,5	-dE	7.	546	19,4	360	H
WH-RA	qu.	4,006	4	QN.	73	4,07	D.	.689	6,254	907	Roeizs
100-93	43,04	40,005	4	4,0	4,5	0,4	- 22	687	4,846	221	
10h - 84	4,04	4,06	0,0027	0,18	4,1	1,54	16,37	680	17.2	III	(redail)
VON-148	43,00	0,006	0,0005	6,18	4,1	1,25	21,3	900	JE .	1618	
NON-OLA	42,04	0,0305	0,0006	Ø.14	-52	0,7	28,7	550	1,167	801	Commercia
SED-HOV	40,04	0,09	0,5058	1,0135	ŧ	0,5	11	505	2,702	413,5	
101-MA	9,84	0,68	4	404	41	13,0	38,1	765	0,8	438	falneral
10V-NS	43,00	<0.006	22	404	11	0.6	22	82	153	715	

Tabela 2: Resultados da estação verão através da Análise por Ativação Neutrônica – NAA e Análise por Absorção Atômica com forno de grafite – GF- AAS

Americas	As, up/s	Ca, ug/	R(N)	Se, ug/g	Dr. up't	O. sp'g	45.75	Dung	Sd, ng	Pb, re	
ids - PNA	10,64	6.81	0,000%	61	0,59	0,47	8,116	74(3	2,369	75	Forta Nava
V081-759	40,04	(0,006	0,0009	0,145	0,71	0,31	6,055	164,2	2,979	124	
NEX-CON	10,54	1,004	0,0051	0,054	1,5	1,86	1,067	1187	6,400	3810	Constitu
MEK-008	<0,84	10,006	<0,000A	15,04	41,1	0,5	7,782	1362	4,576	909	
MEX-COC	43,00	(0.00)	<3,0004	<5,04	4,1	4,67	7,919	1728	8,219	118	Countra
MEK-000-	4	45,006	<8,0004	15,04	6,8	1,1	9,306	784,1	4,542	π	
ADD - PROV	10,88	1,004	0,0094	1,09	1,49	0,93	6,208	664,8	3,011	185	Compression
10N - 008	40,84	1,068	0,0019	0,09	0,84	0.61	7,443	629,2	1,845	186	
NON-OC	40,64	0.02	0,0003	0,083	0,27	1,26	5,000	624,8	2,316	42	
VON - CEA	40,84	40,00E	<3,0004	1,1	0,57	0,21	4,711	568	3,575	12	Centre
VON-COS	10,54	1,002	0,0001	9,12	0,77	0,08	3,263	800	3,913	13	
YON - CEC	40,54	8,001	0,0003	0,12	0,69	6,28	5.767	681,7	8,417	13	
101-III	4	45,306	0,0009	0,309	1,3	121	3,819	1495	1,18	743	tretaki
10N-18	40,64	1,022	0,0009	2,07	2	1,31	1,255	NLJ	2,701	12	
HON-IC	<0,54	1,013	1,000,0	1,04	0,0	1,1					
VOIL-FRA	10,54	0.54	+8,0064	48,04	45,1	8,6	6,526	fili	1,19	5,8	falmina
VON-FAB	10,66	0,1	+0,0004	45,04	42.1	1,5	5,967	407,8	1,518	645	A. Carlo
SAN-1/OV	40,04	10,006	2,001	15,04	4,1	<0,57	5362	589,7	2,525	256	

CONCLUSÕES

De acordo com os resultados obtidos, podese concluir que nas conchas de vôngoles o teor dos elementos As, Co, Fe, Se e Zn é maior do que o das conchas de mexilhão portanto potencializando seu efeito de bioacumulação de contaminantes na região. Para os elementos Hg, Cu, Cd e Pb, o teor encontrado nas conchas de mexilhão é maior do que comparado as conchas de vôngoles, sendo assim seus efeitos maiores e com mais bioacumulação nas conchas de mexilhão.

REFERÊNCIAS BIBLIOGRÁFICAS

[1]ISLAM, S.M., TANAKA, M.,2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 48 (7), 624–649. https://doi.org/10.1016/j.marpolbul.2003.12. 004

[2]VELUSAMY, A., SATHEESHKUMAR, P., RAM, ANIRUDH, CHINNADURAI, S., 2014. Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbour. India. Mar. Pollut. Bull. 81, 218–224. https://doi.org/10.1016/j.marpolbul.2014.01. 049

[3]GREENBERG, R. R.; BODE, P.; DE NADAI FERNANDES, E. A. Neutron activation analysis: A primary method of measurement. **Spectrochimica Acta - Part B Atomic Spectroscopy**, v. 66, n. 3–4, p. 193–241, 2011

APOIO FINANCEIRO AO PROJETO

CNPQ/PIBIC