

3º Congresso Geral de Energia Nuclear

22 a 27 de abril de 1990

ANAIS - PROCEEDINGS.

EFEITO DA POLARIDADE E CURVAS DE SATURAÇÃO DE CÂMARAS DE IONIZAÇÃO DE PLACAS PARALELAS

Maria da Penha Pereira Albuquerque Linda V.E. Caldas

Departamento de Proteção Radiológica Instituto de Pesquisas Energéticas e Nucleares Comissão Nacional de Energia Nuclear - São Paulo

SUMÁRIO

As câmaras de ionização de placas paralelas construídas no IPEN foram testadas quanto ao efeito de polaridade. As cur vas de saturação foram também obtidas, variando-se a tensão entre -300 e +300 V. As medidas foram tomadas submeten do-se as câmaras aos campos padrões de radiação-X de bai xas energias (entre 25 e 50 kV), no ar, à distância de calibração de 50 cm.

ABSTRACT

The polarity effect was studied in the case of the plane-parallel ionization chambers manufactured at IPEN. The saturation curves were obtained applying voltages between -300 and +300 V. The ionization chambers were submitted to standard low-energy X-radiation fields (from 25 to 50 kV), in air, positioned at the calibration distance of 50 cm.

INTRODUÇÃO

Para uma dada intensidade de radiação a corrente coletada pelo eletrodo de uma câmara de ionização, exposta à radiação, au menta, inicialmente, linearmente com a tensão aplicada entre os eletrodos, depois, mais devagar até se aproximar assintoticamen te da corrente de saturação obtendo-se, assim, a curva de satura ção. Isto significa que a corrente de saturação é alcançada quando todos os pares de ions produzidos no volume sensível da câmara são coletados^(5,7). Para que isso aconteça a tensão de polariza ção deve ser suficiente para mobilizá-los em direção ao eletrodo coletor.

Algumas vezes a intensidade da carga coletada em uma câmara de ionização varia quando a polaridade da tensão aplicada ao ele trodo é invertida^(4,5). Existem algumas possíveis causas para os efeitos de polaridade, como por exemplo^(5,6):

- a) Presença de forças eletromotrizes de contacto térmico no circuito de medida;
- b) Em câmaras de ionização cilíndricas ou esféricas, a distribuição da carga espacial depende da polaridade do ele trodo central devido às diferentes mobilidades dos íons positivos e negativos, conduzindo a diferenças na eficiência de coleta. O erro será minimizado aumentando-se a tensão de coleta;
- c) Variação no volume ativo da câmara de ionização devido à distorção da carga espacial no campo elétrico do gás. Pa ra este caso, tomando-se o valor médio entre as duas cor rentes do coletor correspondentes às polaridades positi va e negativa, uma curva de saturação, precisa, pode ser obtida, e o erro será reduzido aumentando-se a tensão de coleta.

Os objetivos deste trabalho são a determinação da tensão de operação e a verificação do efeito de polaridade das câmaras de ionização de placas paralelas projetadas e construídas no IPEN(1,2), através de medidas para a obtenção de suas curvas de saturação.

PARTE EXPERIMENTAL

Foram utilizadas quatro câmaras de ionização com placas paralelas do IPEN(1,2); são de Lucite, com volume sensível de 0,6 cm³, de forma circular, sendo duas com eletrodos coletores e anéis de guarda de alumínio (designadas por A½ l e A½ 2) e duas com eletrodos coletores e anéis de guarda de grafite (designadas por Cl e C2). As câmaras foram conectadas ao eletrômetro digital modelo 617, Keithley & Co., EUA. Este instrumento possui alta sensibilidade permitindo medidas de resistência, corrente, carga e tensão⁽⁸⁾.

As medidas foram tomadas submetendo-se as câmaras aos campos padrões de radiação-X de energias baixas, no ar, à distância de calibração (50cm), utilizando-se o sistema pertencente ao Laboratório de Calibração de São Paulo composto por um tubo Philips, Bélgica, e um gerador modelo Geigerflex, Rigaku Denki Co. Ltd, Japão, cujas características estão descritas na Tabela 1.

TABELA 1

Tensão Nominal (kV)	Corrente Nominal (mA)	Filtração Adicional (mmAl)	Energia Efetiva (keV)	Camada Semi-redutora (mmAl)	
25	30	0,445	14,3	0,26	
30	30	0,545	15,5	0,37	
40	30	0,682	17,7	0,56	
45	25	0,733	18,7	0,65	
50	25	1,021	21,2	0,91	

Condições Experimentais do Sistema de Radiação-X de Energias Baixas. Laboratório de Calibração, IPEN.

Para a variação da tensão aplicada às câmaras foi utilizada uma fonte de tensão modelo 900-358, Victoreen, EUA, acoplada ao eletrômetro. Este sistema permitiu, também, a inversão da polaridade, empregando-se para a confirmação dos valores aplicados um multímetro modelo 177, Keithley & Co., EUA.

As câmaras foram irradiadas tomando-se como referência a su perfície das janelas de entrada e variando-se a tensão aplicada entre -300 e +300 V. Na região de corrente coletada nula, foi dada uma atenção especial, variando-se a tensão em intervalos de 0,1 V.

Todas as medidas, normalizadas para as condições normais de temperatura e pressão, representam o valor médio de cinco leituras. As incertezas associadas às medidas não ultrapassaram 0,5%.

RESULTADOS E CONCLUSÕES

As curvas de saturação para as câmaras foram obtidas para todo o intervalo de energia de radiação disponível, como mostra a Figura l. Nesta figura estão representados apenas os comportamentos das câmaras A^ll (Figura lA) e Cl (Figura lB); as câmaras A^l2 e C2 mostraram respostas análogas.

Pode-se verificar que as câmaras demonstraram um comportamento esperado, com a saturação atingida acima de 100 V tanto para as câmaras com eletrodos coletores e anéis de quarda de grafite (Cl e C2), como para as câmaras que possuem eletrodos coletores e anéis de guarda de alumínio (A^{k}] e A^{k} 2). Isto significa dizer que a utilização de tais câmaras pode ser feita conectando-as aos tipos mais usuais de eletrômetros, como por exemplo os da Nuclear Enterprises Ltd., pois a tensão de operação, em geral, varia entre \pm 200 e \pm 300 V.

Na região de corrente de ionização nula, onde a variação da tensão aplicada foi em torno de 0,1 V, verificou-se que, mesmo quando não existe tensão, há um valor de corrente diferente de zero. Para as câmaras Al e Al o valor da corrente nula está na região de tensão entre -0,2 e -0,6 V e para as câmaras Cl e C2, entre -0,8 e -1,0 V.

A Tabela 2 apresenta a razão entre a carga coletada positiva (Q⁺) e negativa (Q⁻) em função da qualidade da radiação incidente para todas as câmaras estudadas, na região de saturação. Pode-se verificar que o efeito de polaridade encontra-se perfeitamente dentro do intervalo recomendado $(0,99 \leq Q^+/Q^- \leq 1,01)^{(3)}$ para este tipo de câmara.

24

Figura 1 - Curvas de saturação para as câmaras de ionização de placas paralelas A^l(curva A) e Cl(curva B) para as energias: a - 14,3 keV; b - 15,5 keV; c - 17,7 keV; d - 18,7 keV; e - 21,2 keV.

TABELA 2

Camada	Tensão Aplicada	Q ⁺ /Q ⁻			
(mmAl)	a Camara (V)	All	A& 2	C1	C2
	100	1,00	0,99	1,00	1,00
0,26	200	1,00	0,99	1,00	1,00
	300	1,00	1,00	0,99	0,99
	100	1,00	0,99	1,00	0,99
0,37	200	1,00	1,00	1,00	0,99
	300	1,00	1,00	1,00	0,99
	100	1,00	0,99	1,00	1,00
0,56	200	1,00	0,99	1,00	1,00
	300	1,00	0,99	1,00	1,00
	100	1,00	0,99	1,00	1,00
0,65	200	1,00	0,99	1,00	1,00
	300	1,00	0,99	0,99	1,00
	100	1,00	0,99	1,00	1,00
0,91	200	1,00	0,99	1,00	1,00
	300	1,00	0,99	1,00	1,00

Razão entre a carga coletada positiva (Q⁺) e negativa (Q⁻) para as quatro câmaras de ionização de placas paralelas, em função da energia, na região de saturação. REFERÊNCIAS

- 1. ALBUQUERQUE, M.P.P. & CALDAS, L.V.E. New ionization chambers for beta and X-radiation. <u>Nucl. Instrum. Meth. Phys. Res.</u>, <u>A 280:310-313, 1989.</u>
- 2. ALBUQUERQUE, M.P.P. & CALDAS L.V.E. Projeto e construção de uma câmara de ionização de placas paralelas. In: ASSOCIAÇÃO BRASILEIRA DE FÍSICOS EM MEDICINA. <u>Físicos em medicina</u>: <u>anais do 2º congresso brasileiro de... realizado em São Pau-</u> lo, 10-15 de outubro de 1987. p. 193-196.
- 3. ANDREO, P.; CUNNINGHAM, K.H.; HOHLFELD, K.; SVENSSON, H. <u>Absorbed dose determination in photon and electron beams. An</u> <u>international code of practice</u>. International Atomic Energy Agency, Vienna, 1987. (Technical report series, 277).
- 4. ARAÚJO, M.M.; CECATTI, E.R.; ALMEIDA, C.E. Efeito da polari dade em câmaras de ionização cilíndricas expostas a feixes de elétrons de alta energia. <u>Radiol. Bras.</u>, <u>19</u>(4):222-225, 1986.
- 5. BOAG, J.W. Ionization chambers. In: KASE, K.R.; BJARNGARD, B.E.; ATTIX, F.H. eds. <u>The dosimetry of ionizing</u> radiation. New York, N.Y. Academic, 1987. V.2, p.169-243.
- 6. CAMPOS, C.A.A.L. <u>Construção, calibração e testes de uma camara de ionização para medidas de exposição na região de 40 a 1250 keV.</u> Rio de Janeiro, 1982. (Dissertação de Mestrado, Univ. Estadual do Rio de Janeiro).
- 7. FALLONE, B.G. & PODGORŠAK, E.B. Saturation curves of parallelplate ionization chambers. <u>Med. Phys.,10</u>(2):191-196, 1983.
- 8. INSTRUCTION manual for model 617. Programmable electrometer. Cleveland, Ohio, Keitley Instruments, 1984.