ENQUALAB 2004 – Encontro para a Qualidade de Laboratórios 1 a 3 de junho de 2004, São Paulo, Brasil

AVALIAÇÃO DA INCERTEZA ASSOCIADA A SOLUÇÕES PADRÃO EM ANÁLISE QUÍMICA: ESTUDO DE CASO PARA A DILUIÇÃO DE UMA SOLUÇÃO DE MOLIBDÊNIO

Edson Gonçalves Moreira, Marina Beatriz Agostini Vasconcellos, Mitiko Saiki
Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN-SP
Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo – SP, 05508-000, emoreira@curiango.ipen.br

1. Introdução

A apresentação de resultados analíticos com a correspondente quantificação das incertezas associadas é exigência recente na validação de métodos analíticos e no credenciamento de laboratórios de análise química. Isto ocorre porque a apresentação uniformizada da incerteza associada à medição é um dos requisitos para a confiabilidade de resultados, possibilitando a comparação de resultados obtidos em laboratórios diferentes, a comparação de métodos analíticos diferentes e tomadas de decisão a partir dos resultados de medição (1, 2).

Apesar de sua importância e até mesmo possível urgência, em geral, os laboratórios de análise química no Brasil ainda são muito relutantes em implantar a avaliação da incerteza de seus processos de medição. Dentre outras causas, pode-se citar o grande número de cálculos necessários, o tempo requerido para a avaliação de todas as fontes de incerteza e principalmente o tipo de abordagem necessária ao problema, que muitas vezes é bastante distinta do raciocínio ao qual analistas estão acostumados e finalmente, a aversão ao novo. Outra questão importante é que há falta de uma literatura agradável sobre o tema pois as normas existentes apresentam linguagem muito técnica, cansativa que não estimula a leitura e são de difícil implantação na prática.

O objetivo deste trabalho é apresentar da maneira mais direta possível todo o racional utilizado no cálculo da incerteza associada à diluição de uma solução padrão, com o intuito de tentar preencher parte desta lacuna na literatura para as instituições e seus colaboradores que estejam se iniciando no estudo das incertezas de medição, seguindo o Guia para a Expressão da Incerteza, EURACHEM (3)

A utilização de materiais de referência certificados e em particular de soluções padrão certificadas é essencial para a validação dos métodos de análise por ativação neutrônica utilizados no Centro de Reator de Pesquisas do Instituto de Pesquisas Energéticas e Nucleares. Na maioria dos casos as soluções padrão utilizadas são pipetadas diretamente, mas eventualmente é necessária a diluição destas soluções. O procedimento de diluição utilizado agrega incertezas ao valor apresentado no certificado. Este trabalho descreve a avaliação dos componentes da incerteza na concentração de uma solução padrão de molibdênio. Mo, devido à sua diluição.

2. Métodos

Foi realizada a diluição por um fator de 10 da seguinte solução padrão: NIST Standard Reference Material 3134, Molybdenum Standard Solution, número de lote 891307, válida até 01/12/2006 e com fração em massa (9,99 ± 0,03) mg/g, sendo a incerteza expandida calculada a partir de resultados obtidos por gravimetria e ICP OES (4).

Para a diluição da solução padrão de Mo, foram seguidas as recomendações do Certificado de Análise. A ampola de quartzo foi aberta e seu conteúdo transferido para um frasco Nalgene. O frasco cheio foi pesado em balança analítica e o conteúdo do frasco foi transferido para um balão volumétrico calibrado de 100 mL. O frasco esvaziado foi pesado para se conhecer a massa exata de solução presente no balão. Acrescentou-se 5 mL de HNO₃ PA Merck, para se obter solução a 5 % (m/V), ao se completar o volume do balão com água Milli-Q. A solução diluída foi transferida para frasco Nalgene apropriado e mantida sob refrigeração.

2.1. Definição do mensurando

Devido ao procedimento de preparação, o mensurando, a concentração de uma solução de Mo em mg/mL, C, é definido por:

$$\frac{C = (m_1 - m_2) \times c}{V}$$

onde

 $m_1 = massa do frasco cheio, g,$

 m_2 = massa do frasco esvaziado, g:

c = concentração certificada da solução original, mg/g;

V = volume do balão volumétrico, mL;

2.2. Incertezas padrão das grandezas de entrada

Na Figura 1 é apresentado um diagrama de Ishikawa para os componentes de incerteza das grandezas de entrada, cujas contribuições são descritas abaixo. Pode-se observar que, como foram realizadas duas pesagens, as duas contribuem para a incerteza global do processo.

2.2.1. Massa

• Repetitividade

O componente da incerteza na massa relacionado à repetitividade da balança, u_{m1}, foi obtido a partir de gráficos de controle de acompanhamento da estabilidade da balança analítica (5). Para um peso padrão de 10 g, obteve-se média

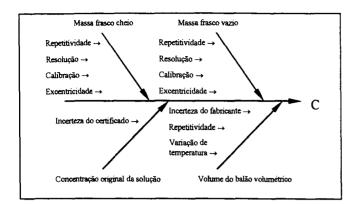


Figura 1. Diagrama de Ishikawa para as contribuições à incerteza combinada.

de 10,00011 g com desvio padrão, s = 0,00003 g (n = 36), sendo este valor utilizado como incerteza padrão;

• Resolução da balança

O componente da incerteza na massa relacionado à resolução da balança, u_{m2} , foi obtido a partir do certificado de calibração (6) e é definido pela equação abaixo:

$$u_{m2} = \frac{c}{2\sqrt{3}}$$

onde: c = resolução apresentada no certificado de calibração.

• Calibração da balança

Este componente também foi obtido a partir do certificado de calibração e é expresso por:

$$u_{m3} = \frac{u}{k}$$

onde u = incerteza expandida para a massa de 10 g, obtida do certificado de calibração e k é o fator de abrangência descrito no certificado.

• Excentricidade da balança

Este componente também foi obtido a partir do certificado de calibração e é expresso por:

$$u_{m4} = \frac{e}{2\sqrt{3}}$$

onde e = excentricidade máxima observada (obtida no certificado de calibração).

Como todos os componentes possuem a mesma unidade, a incerteza padrão combinada para a massa é calculada como a soma quadrática das diversas contribuições:

$$u_{m} = \sqrt{u_{m1}^{2} + u_{m2}^{2} + u_{m3}^{2} + u_{m4}^{2}}$$

2.2.2. Concentração da solução original

A concentração fornecida pelo produtor da solução padrão também apresenta uma incerteza associada a ela. A incerteza padrão é obtida a partir da expressão abaixo:

$$u_{Mo} = \frac{u}{k}$$

onde u = incerteza expandida para a concentração de Mo em mg/g, obtida do certificado de análise (4) e k é o fator de abrangência descrito no certificado.

2.2.3. Volume do balão volumétrico

Repetitividade

O componente para a incerteza devido à repetitividade no preenchimento do balão volumétrico . u_{V1} , uma incerteza do tipo A, foi avaliado por uma série de pesagens do balão preenchido com água Milli-Q e conversão para volume a partir de uma tabela de conversão. O processo foi repetido quatro vezes (n = 4) e obteve-se um volume de 100,50 mL com s = 0,04 mL. A incerteza padrão foi calculada pela expressão abaixo:

$$u_{V1} = \frac{s}{\sqrt{n}}$$

onde:

s = desvio padrão dos volumes medidos;
 n = número de medições de volume, neste caso, n = 4.

Incerteza do fabricante

De maneira geral este componente é obtido a partir do certificado de calibração de balões classe A, que possuem a mais alta exatidão requeridas para uso científico e em estudos metrológicos. No entanto, neste caso nos deparamos com um problema de ordem prática, pois atualmente o LAN não possui balões volumétricos certificados e assim, este componente de incerteza foi estimado como a incerteza de um balão classe B, usados para trabalhos de rotina. Tomouse como incerteza o valor de $0,1\,\mathrm{mL}$ (3,7) e utilizou-se uma distribuição triangular (fator = $1/\sqrt{6}$) para transformar esta incerteza em incerteza padrão.

Incerteza devida à variação de temperatura

O componente de incerteza originado na expansão volumétrica devido a diferenças de temperatura do laboratório no momento de uso do balão e no momento de sua calibração foi estimado da seguinte forma: considerouse apenas a expansão do líquido, supondo ser idêntica à da água e a expansão do vidro foi considerada desprezível. Estimou-se que o laboratório tenha uma variação de temperatura de \pm 4 °C e tomou-se o coeficiente de expansão da água como 2,1 x 10^{-4} °C⁻¹. Daí que. para um volume de 100 mL tem-se uma incerteza de 0,084 mL, que segue uma distribuição retangular (fator = $1/\sqrt{3}$) para ser expressa como incerteza padrão.

A incerteza padrão combinada para o volume, u_V, é calculada de forma similar à incerteza padrão combinada para a massa.

2.3. Combinação das incertezas padrão

Como as grandezas de entrada (massa. fração em massa e volume) apresentam unidades diferentes entre si e da concentração final (m/V) da solução de Mo, é necessário expressar todas as incertezas em termos de concentração, isto é, é necessário avaliar quanto cada incerteza influencia a

incerteza final. No método geral para a combinação de incertezas, para se obter a incerteza padrão combinada, u_c, multiplica-se cada componente por um coeficiente de sensibilidade, c_i, e realiza-se a soma quadrática de acordo com a equação abaixo. Os coeficientes de sensibilidade nada mais são do que derivadas parciais do valor de concentração em relação a cada fator, mantendo-se os outros parâmetros constantes.

$$u_{c} = \sqrt{c_{ml} u_{ml}^{2} + c_{m2} u_{m2}^{2} + c_{Mo} u_{Mo}^{2} + c_{V} u_{V}^{2}}$$

Para evitar o trabalho com derivadas parciais, pode-se utilizar alguns métodos alternativos, descritos abaixo.

Método relativo

No método relativo, divide-se cada incerteza padrão pelo valor da grandeza correspondente, de acordo com a equação abaixo.

$$\frac{u_c}{C} = \sqrt{\left(\frac{u_{ml}}{ml}\right)^2 + \left(\frac{u_{m2}}{m2}\right)^2 + \left(\frac{u_{Mo}}{c}\right)^2 + \left(\frac{u_V}{V}\right)^2}$$

Método simulado

No método simulado soma-se cada incerteza padrão à sua grandeza correspondente e este valor substitui o valor original no cálculo da concentração final de Mo, uma de cada vez. Posteriormente, efetua-se a diferença entre cada valor obtido e o valor de concentração sem as incertezas padrão. Os resultados são as contribuições na unidade de mg/L. Combina-se os resultados como no item anterior para se obter a incerteza padrão combinada.

2.4. Incerteza padrão expandida

A incerteza padrão expandida, U, é obtida multiplicando-se a incerteza padrão combinada por um fator de abrangência, k, para que a incerteza seja expressa com um nível de confiança especificado. Usualmente se utiliza k=2, para um nível de confiança de aproximadamente 95 %, assumindo-se que o mensurando apresenta distribuição normal. Como o fator de abrangência também depende do número de graus de liberdade, pode-se calcular este número antes de se optar pelo melhor k. Para incertezas do tipo A, o número de graus de liberdade é $\nu=n-1$ onde n é o número de medições. Já para as incertezas do tipo B, o número de graus de liberdade são infinitos e assim, calcula-se o número de graus de liberdade efetivos a partir da Equação de Welch-Satterwaite (8).

2.5 Declaração do resultado

Deve-se tomar o cuidado de, ao declarar o resultado da medição, informar juntamente com o resultado e sua incerteza, o fator de abrangência e o nível de confiança utilizados.

3. Resultados e Discussão

Na Tabela 1 estão resumidos os resultados para a incerteza padrão combinada. As incertezas padrão de cada fator foram combinadas e estão apresentadas nas Figuras 1 e 2, exceto para a contribuição do valor certificado, já apresentado na Tabela 1.

Tabela 1. Contribuições para a incerteza padrão combinada

Fator	Fonte	Incerteza	Distribuição	Fator	Incerteza padrão
	Repetitividade	0,00003	Normal	1	3,0 x 10 ⁻⁵
Massa, g	Resolução	0,00001	Retangular	$1/2\sqrt{3}$	2,89 x 10 ⁻⁶
	Calibração	0,000031	Normal	1/2	1,5 x 10 ⁻⁵
	Excentricidade	0,00002	Retangular	$1/2\sqrt{3}$	5,77 x 10 ⁻⁶
Concen tração, mg/g	Certificado	0,031	Normal	1/2	0,015
	Repetitividade	0,04	Normal	1/ √4	0,02
Volume, mL	Fabricante	0,1	Triangular	1/√6	0,04
	Temperatura	0,084	Retangular	$1/\sqrt{3}$	0,066

Incerteza expandida, k = 2;

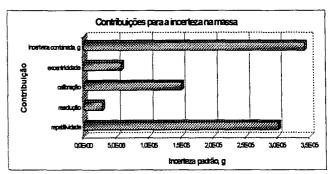


Figura 1. Contribuições para a incerteza padrão combinada na massa.

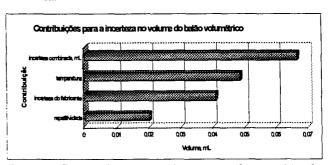


Figura 2. Contribuições para a incerteza padrão combinada no volume do balão volumétrico.

Pode-se observar que na pesagem o fator que mais contribui à incerteza é a repetitividade do processo. Assim, pode-se dizer que o trabalho meticuloso por parte do operador da balança analítica é requisito indispensável na obtenção de resultados com qualidade. Já no caso do balão volumétrico, observou-se que a incerteza devida a variações de temperatura apresenta o maior contribuição à incerteza combinada e assim, o controle da temperatura da sala de balança é muito importante. Além disso, a incerteza associada à declaração do fabricante também apresenta um peso considerável. A utilização de balões volumétricos de qualidade pode diminuir esta contribuição.

As Tabelas 2 e 3 apresentam os resultados de incerteza padrão combinada e expandida calculadas pelos métodos relativo e simulado. Pode-se observar a concordância dos resultados obtidos pelos dois procedimentos. A Figura 3 apresenta as contribuições dos diversos fatores para a incerteza padrão combinada para a concentração da solução

de Mo. Ambas as tabelas podem ser adaptadas para uma planilha eletrônica, para facilitar os cálculos com soluções posteriores. O cálculo do número de graus de liberdade efetivos forneceu o valor de 38.844, que pode ser considerado infinito para a escolha de k. Para um número de graus de liberdade efetivos infinito, k=2, para um nível de confiança de 95 %.

Tabela 2. Cálculo da incerteza associada à concentração da solução de Mo pelo método relativo.

Grandeza de entrada	Valor	Incerteza padrão	Incerteza relativa	(Incerteza relativa) ²
Massa 1, g	13,0679	3,42 x 10 ⁻⁵	2,61 x 10 ⁻⁶	6,83 x 10 ⁻¹²
Massa 2, g	0,38315	3,42 x 10 ⁻⁵	8,91 x 10 ⁻⁵	7,95 x 10 ⁻⁹
Concentração inicial, mg/g	9, 99	1,50 x 10 ⁻²	$1,50 \times 10^{-3}$	2,25 x 10 ⁻⁶
Volume do balão, mL	100,5	6,65 x 10 ⁻²	6,61 x 10 ⁻⁴	4,37 x 10 ⁻⁷
Concentração, mg/mL	1,26090			
u., mg/mL U, mg/mL				2,07 x 10 ⁻³ 4,14 x 10 ⁻³
k = 2,95%				7,17 1 10

Tabela 3. Cálculo da incerteza associada à concentração da solução de Mo pelo método simulado.

	Valor	Contribuições				
Grandeza de entrada		u _{ml} 3,42x10 ⁻⁵	u _{m2} 3,42x10 ⁻⁵	u _{Mo} 1,50x10 ⁻²	u _V 6,65x10 ⁻²	
Massa 1, g	13,0679	13,06793	13,0679	13,0679	13,0679	
Massa 2, g	0,38315	0,38315	0,38318	0,38315	0,38315	
Concentração inicial, mg/g	9,99	9,99	9,99	10,0	9,99	
Volume do balão, mL	100,5	100,5	100,5	100,5	100,6	
Concentração, mg/mL	1,260902	1,260905	1,260899	1,262 7 95	1,260068	
Contribuições		-3,4x10 ⁻⁶	3,4x10 ⁻⁶	1,89x10 ⁻³	8,93x10 ⁻⁴	
(Contribuições) ²		1,16x10 ⁻¹¹	1,16x10 ⁻¹¹	3,58x10 ⁻⁶	6,95x10 ⁻⁷	
u., mg/mL U, mg/mL					2,07x10 ⁻³ 4,14x10 ⁻³	
k=2,95%					.,	

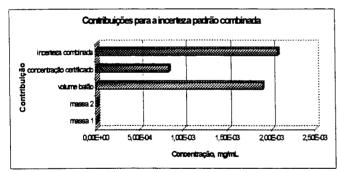


Figura 3. Contribuições para a incerteza combinada da concentração da solução de Mo.

Da Figura 3, conclui-se que a incerteza associada ao balão volumétrico é a maior contribuição à incerteza padrão combinada da concentração da solução. Possivelmente, a melhor maneira de diminuir a incerteza associada à concentração é a utilização de fração em massa ao invés de concentração m/V. Neste caso, a incerteza constante do certificado do material de referência seria o fator preponderante.

A concentração da solução de molibdênio é expressa como:

$$C = (1,2609 \pm 0,0041) \text{ mg/mL}$$

A incerteza apresentada é incerteza expandida, calculada utilizando-se um fator de abrangência k=2 para um nível de confiança de aproximadamente 95 %.

4. Conclusões

Ainda que o cálculo de incertezas seja uma etapa complexa do processo de validação de métodos analíticos, o uso de planilhas eletrônicas pode facilitar nos cálculos. Além disso, o conhecimento das diversas contribuições pode facilitar a tomadas de decisão quanto à melhoria contínua do processo de medição, por fornecer informações sobre as maiores fontes de incerteza do método.

5. Agradecimentos

Ao Centro de Metrologia em Química do Instituto de Pesquisas Tecnológicas do Estado de São Paulo que nos cedeu a solução padrão de Mo.

6. Referências Bibliográficas

- 1. International Union of Pure and Applied Chemistry IUPAC, Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis, Pure, Appl. Chem., 74 (5) 835-855 (2002).
- Associação Brasileira de Normas Técnicas ABNT, Requisitos Gerais para a Competência de Laboratórios de Ensaio e Calibração, NBR ISSO/IEC 17025, Rio de Janeiro, RJ (2001).
- 3. EURACHEM/CITAC Guide, Quantifying Uncertainty in Analytical Measurement, 2nd Ed., QUAM:2000.P1.
- 4. National Institute of Standards & Technology NIST, Certificate of Analysis, SRM 3134, Molybdenum Standard Solution (2003).
- MOREIRA, E. G.; VASCONCELLOS, M. B. A., PAIVA, R. P.; SAIKI, M., Utilização de gráficos de controle para verificação da estabilidade de balanças analíticas e determinação da incerteza associada à pesagem, III Congresso Brasileiro de Metrologia, 01-05 set, 2003, Recife PE, Anais, CD-ROM (2003).
- MICRONAL S. A. Laboratório de Calibração; Certificado de Calibração R040173940, 30/01/2004.
- 7. OHLWEILER, O. A., Química Analítica Quantitativa 1, Livros Técnicos e Científicos S.A., Rio de Janeiro (1980), pg 207.
- 8. COUTO, P R. G.; Estimativa da incerteza de medição na análise química quantitativa e em ensaios, Curso de Aperfeiçoamento, IPEN/CNEN-SP (2002).