Valence Control of Pr in ZrO₂ by Gd³⁺ Co-Doping

José M. Carvalho^{*1}, Mika Lastusaari^{2,3}, Taneli Laamanen², Lucas C.V. Rodrigues^{1,2}, Jorma Hölsä¹⁻³, Maria C.F.C. Felinto⁴, Luiz A.O. Nunes⁵, <u>Hermi Brito¹</u> ¹Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil ²Department of Chemistry, University of Turku, FI-20014 Turku, Finland ³Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland ⁴Instituto de Pesquisas Energéticas e Nucleares, São Paulo-SP, Brazil ⁵Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP, Brazil *hefbrito@iq.usp.br

Summary

In this work, a set of praseodymium doped materials was prepared *via* sol-gel route and structurally characterized. The addition of the Gd^{3+} co-dopant gradually changes the zirconia structure from monoclinic to cubic. Photoluminescence studies show intensification of the Pr^{3+} luminescence with the increasing Gd^{3+} co-dopant concentration. This was related to the valence change of Pr in the ZrO₂ lattice.

Keyword

Praseodymium, Zirconia sol-gel materials, Red phosphors, Valence control.

Results and Discussion

 $Zr(O(CH_2)_3CH_3)_4$ and $R(NO_3)_3\cdot 6H_2O$ (R: Pr and Gd) were used as the precursors of the sol-gel reaction [1] yielding $Zr_{0.99-x}Gd_xPr_{0.01}O_2$ (x_{Gd} : 0.01, 0.05, 0.010 and 0.20) nanocrystals. The asprepared materials were calcined in air for 5 h at 1000 ° C and characterized by X-ray powder diffraction, UV excited luminescence and X-ray absorption spectroscopy (XANES).

The enhancement of red Pr^{3+} luminescence in zirconia has been reported to result from the sensitization by the Y^{3+} co-dopant [2]. However, little is known about the oxidation state and environment of Pr. Indeed, the emission spectra of the $Zr_{0.99x}Gd_xPr_{0.01}O_2$ materials (Fig. 1) show an initial strengthening of the red emission of Pr^{3+} (mainly the ${}^{1}D_2 \rightarrow {}^{3}H_4$ transition) with increasing Gd^{3+} co-doping. However, the luminescence is quenched at the highest Gd^{3+} concentration - possibly due to strongly increased concentration of the charge compensation defects. The enhanced red emission is due to the conversion of Pr^{IV} to Pr^{3+} as a result of increasing participation of Pr in the $R_{\gamma r} - V_0^{-} - R_{\gamma r}^{-}$ defect clusters. The valence change is

supported by the XANES results (Fig. 2) on the L_{III} edge of Pr. Although predominantly in the Pr³⁺ form irrespective of the Gd³⁺ concentration, the contribution from Pr^{IV} is clearly visible at low (or zero) Gd³⁺ concentrations leading to the waste of Pr³⁺ and to poor luminescence output.

Though enhancing the red luminescence of Pr^{3+} , the defect clusters engender short Pr^{3+} - Pr^{3+} distances and, consequently, enhance the cross-relaxation process coupling the ${}^{3}P_{0} \rightarrow {}^{1}D_{2}$ relaxation with the ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ excitation [3]. This process leads to the high red/blue-green emission ratio by quenching the ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ transition in blue-green. Eventually, the increased Gd³⁺ co-doping dilutes the Pr^{3+} ions and, the cross-relaxation process becoming inoperational, the quenching of the ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ transition is reversed.

Figure 2. Synchrotron radiation XANES spectra for the $Zr_{0.99-x}Gd_xPr_{0.01}O_2$ materials, at 15 K with the Pr_6O_{11} spectrum as a reference.

Conclusions

The control of Pr valence in zirconia was achieved by Gd^{3+} co-doping. As a by-product of the clustering of the charge compensation defects, efficient red luminescence was obtained due to quenching of the blue-green emission. Excessive Gd^{3+} co-doping leads to the quenching of the red emission, as well.

References

- 1. L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990).
- J.D. Fidelus, S. Yatsunenko, M. Godlewski, W. Paszkowicz, E. Werner-Malento, W. Łojkowskia, *Scripta Mater.* 61, 415 (2009).
- 3. L.C.V. Rodrigues, H.F. Brito, J. Hölsä, R. Stefani, M.C.F.C. Felinto, M. Lastusaari, T. Laamanen, L.A.O. Nunes, *J. Phys. Chem. C* (2012) (in press).