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Abstract

Covariances between experimental data are as significant as variances both in the evaluation of uncertainties and to
perform statistical tests. If standard data are used in calibrations, covariances must be taken into account. Covariances
are also necessary in order to update values every time when new data are obtained. In this paper we determined covari-
ances between the most important gamma-ray energies for use in Ge-semiconductor detectors calibration recently pub-
lished by Helmer and van der Leun (Nucl. Instr. Meth. A 450 (2000) 35). © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A consistent set of gamma-ray energies recommen-
ded for use in energy calibration was recently publi-
shed by Helmer and van der Leun [1]. Those data
are, however, correlated and these correlations must
be taken into account both in calibrations and in sta-
tistical tests, as the chi-squared test, especially in the
cases where the correlation coefficients are near + 1.

In this paper the correlation coefficients of those
data were estimated by using the matrix formalism
of the Least-Squares Method (LSM) with level en-
ergy relations included as constraints in the fitting.

2. Energy calibration: input data and least-squares
procedure

Helmer and van der Leun [1] used four types of
input data in order to update gamma-ray energies.

* Corresponding author. Fax: + 55-11-3818-6832.
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Those data were taken into account in this analysis
in order to determine the correlation coefficients.
The four types of data set are described below.
(a) Measured wavelengths of 22 gamma-ray
transition energies using double-flat Si crystal. The
Si lattice parameter adopted in Ref [1] is
d = 0.192015540(40) nm. Since gamma-ray wave-
lengths depend on the common factor d, they are
correlated. In order to determine the covariance
matrix of the data, data from Table 3 of Ref. [1]
were transformed back to the ratio between d and
gamma-ray wavelengths, and the uncertainties
were “unpropagated”. The data considered in this
analysis are R; = /;/d, and the gamma-ray energies
in eV are related to R; by R; =f/E;, where
f=hc/ed. The fundamental constant hc/e was
taken as 1.23984244(37)10 °®eVm. The data
R; were supposed to be statistically independent.
(b) Another group of data are gamma-ray ener-
gies relative to the 412keV transition of '°®Au
determined from relative wavelength measure-
ments. (Data with the superscript h in Table 4 of
Ref. [1] were not taken into account.) Those data
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are identified below as F; (F; = E;/E,,). At this
stage, only the measured uncertainties of F; were
taken into account; uncertainty of the 412keV
transition was not propagated to F;.

(c) Gamma-ray energy differences were taken
into account without transformation. They are
identified as D;; = E; — E;.

(d) The last set of data are gamma-ray energies
measured with Ge-detectors and are identified in
this paper by G; = E;.

—J
0 3 0 0
E, . 1
Ri _f;/Eic E/Z\uc EAuc
Fi - Eic/EAuc :
Dij - (Eic - E}C) = O 0 1 O
Gi - Eic .
=1 0 0 1
0

Since some data were taken in the same measure-
ment at the same laboratory, they are affected by
common errors and, as a consequence, are corre-
lated. However, these correlations were neglected
in this paper; in Section 4, we discuss the conse-
quence of this hypothesis.

The constant f was considered both as experi-
mental data and as a parameter to be fitted. The
other parameters to be fitted are the gamma-ray
energies.

The Least-Squares Method equations were used
as below. If Y is a set of experimental data with
covariance matrix V, A, a set of parameters and
X a design matrix, the linear model equation is

Y=XA, +e (1)

where e is the column vector formed by the errors.
The solution given by the LSM is (see for example
Ref. [2] or Appendix E of Ref. [3])

A=V X-viy )

where
Vi=X"Vv1'Xx! (3)

is the covariance matrix of 4, and V is the
covariance matrix of ¥ defined by V;; = {e; -¢;),
where () stands for expected values.

Since some relations between gamma-ray ener-
gies and the experimental data are not linear, an
iterative procedure of the LSM was adopted. The
explicit form of Eq. (1) is

1
Eic
0 AEAu
AE,;
-1 0 o+ 4)
AE,
0 Af
0 1

where E; is the ith gamma-ray energy and E,, is
the energy of the 412keV transition from '?®Au
decay. In this equation the subscript ¢ indicates
the current value of the parameter in the iterative
procedure.

Data of types (a) and (b) above were supposed to be
statistically independent. However, gamma-ray ener-
gies and the fundamental constant f are correlated,

cov(E;, f) = Ei“;/f (5)

As a consequence, data of types (c) and (d) are
correlated both between them and to f.

As expected, the fundamental constant f remains
unchanged in the fit since no new experimental
data on f'were included. Covariances between f'and
the gamma-ray energies were changed but the cor-
relation coefficients (related to covariance by
pij = cov;;/0;0;) remain unchanged.

Added to the experimental data, some decay
scheme relations were imposed in Ref. [1]. In this
paper those relations have also been considered, too.
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3. Results

Apart from some details, the procedure de-
veloped in this paper gives the same results quoted
by Helmer and van der Leun in Ref. [1]. The only
relevant difference is the covariance matrix, not
given in Ref. [1]. The Tables given below show the
most important correlation coefficients (p > 0.7
and p < — 0.5) between gamma-ray energies.

The origin of correlation between gamma-ray
energies can be seen by inspecting the experimental
data and the fitting procedures. Some examples are
given below:

(i) Experimental origin of correlation: Some cor-
relations come from experiments, as is the case of
the 1275keV from *?Na decay and the 1292keV
from the *°Fe decay. In this case, the correlation is
due to the fact that the 1275keV transition was
determined from energy difference with relation to
the 1292keV. The experimental result is
17.053(3)keV (see Table 7 of Ref. [1]). Since the
uncertainty of the 1292 keV is 6 eV, the uncertainty

of the 1275keV is . /369¢eV =~ 7eV. From the cova-
riance matrix propagation formula (see Appendix B),
the correlation between both gamma-ray energies is

(6eV)?

TV 6aV ~ 0.86.

P1275,1292 =

This example also shows how a new measure-
ment of a quantity can affect both the adopted
value of other quantities and their standard devi-
ation. For instance, a new and better measurement
of the 1292 keV will change both the adopted value
of the 1275keV energy and its uncertainty. Also,
a new measurement of the 1275keV transition will
change both the adopted value and the uncertainty
of the 1292keV transition. These changes can be
accomplished if and only if, one knows the entire
correlation matrix of all involved quantities [4,5].

(i) Cascade-crossover relation: Some gamma-ray
energies were determined mainly by cascade-cross-
over relations. For instance, 1157, 1189, 1221, 1231,
1257, 1274, 1289, 1374 and 1387keV from '32Ta
decay were determined from cascade-crossover re-
lations involving 1121 keV (standard deviation of
3eV) and some low-energy transitions measured
with curved crystal in relation to the '?®Au

412keV. Since these low-energy transitions have
uncertainties less than 1 eV, the uncertainties of the
above energies are almost equal to the uncertainty
of 1121keV and they are strongly correlated both
to this energy and between themselves. For
example, 1189 keV was determined from the sum of
1121keV and 68 keV (uncertainty of 0.1eV); from
covariance matrix propagation the correlation
coefficient between 1189 and the 1121 keV is

~ (3eV)?
P = BV 1 (01ev)) 3eV

~

(ii1) Negative correlation: Some cascade-cross-
over relations give rise to negative correlation be-
tween gamma-ray energies. For example, the
199 keV transition from 7>Se decay was determined
from a least-squares fit including some other
gamma-rays and its energy was mainly determined
from the difference between 264 keV (standard de-
viation 0.9eV) and 66keV (standard deviation
0.8eV). So, using covariance matrix propagation
formula, the correlation between 199 and 66 keV is

—0.8?

/082409208

Small differences between correlation coefficients
calculated in these examples and values quoted in
Tables 1 and 2 are due to rounding both in our
calculation and in Ref. [1], and also due to the fact
that in our calculations standard deviations were
not multiplied by the square root of the reduced y2.

= —0.66.

P199,66

4. Conclusion

When a correlation coefficient is positive, then if
a datum is overestimated (underestimated) the
other datum is probably overestimated (under-
estimated), too. When the correlation is negative,
then if a datum is overestimated (underestimated)
the other datum is probably underestimated
(overestimated). These probabilities are greater if
the correlation coefficient is great, and they turn a
certainty if the correlation coefficient is + 1. So, if
the correlation of two gamma-ray energies is near
+ 1, it must be taken into account in every calib-
ration and statistical test.
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Table 1

Positive correlation coefficients between some gamma-ray ener-
gies (second and fourth columns, in keV) recommended for use
in energy calibrations

ZZPJa
4SSC

4GSc

4GSC

56(:0
56(:0
56(30
56(:0
56(:0
56(:0
56(:0
56(:0
56(30
56(:0
56(:0
56(:0
56(:0
56(:0
56(30
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
56(:0
59}:6

66(}a
66(]3
66(}a
66(}a
7SSe

7SSe

1274.5
889.3
889.3
889.3
9714
977.4

1037.8

1175.1

1175.1

11751

1175.1

1175.1

1175.1

1175.1

1175.1

11751

1238.3

1238.3

1238.3

1238.3

1238.3

1238.3

1238.3

1238.3

1238.3

1238.3

1360.2

1771.3

1810.7

1963.7

1963.7

2015.2

2034.8

2212.9

3009.6

3202.0

3202.0

3451.1

3451.1

3451.1

3451.1

3451.1

3451.1

3451.1

3451.1

3451.1

1291.6

1508.2

1918.3

2189.6

3422.0
198.6
264.7

59}:6
84I(b
94}Jb
110[\g
5¢Co
56Co
56Co
3¢Co
5¢Co
1827
ISZTh
182']“a
1821‘a
1827
182’]“a
1827
56Co
182']“a
1821‘a
1827
182’]“a
1827,
lglj‘a
182']“a
1821‘a
1827
5¢Co
3¢Co
56Co
%6Ga
%0Ga
36Co
5¢Co
3¢Co
56Co
%6Ga
%0Ga
1827,
182’]“a
1827
lglj‘a
182']“a
1821‘a
1827
182’]“a
1827
1601‘b
%6Ga
%0Ga
%0Ga
%6Ga
75Se
75Se

1291.6
881.6
871.1
884.7

2015.2

32534

22129

22129

3451.1

1121.3

1189.0

1221.4

1273.7

1289.1

1373.8

1387.4

3451.1

1121.3

1189.0

1221.4

1231.0

1257.4

1273.7

1289.1

1373.8

1387.4

2598.4

3009.6

2598.4

1918.3

2751.8

32534

3273.0

3451.1

3451.1

2189.6

3228.8

1121.3

1189.0

1221.4

1231.0

1257.4

1273.7

1289.1

1373.8

1387.4

1271.9

3380.9

2751.8

3228.8

4461.2
264.7
400.7

0.78
0.82
0.74
0.74
0.84
0.76
0.72
0.73
0.77
0.71
0.71
0.71
0.70
0.71
0.70
0.70
0.78
0.81
0.81
0.81
0.80
0.79
0.80
0.81
0.80
0.80
0.84
0.87
0.80
0.75
0.73
0.91
0.92
0.92
0.76
0.88
0.94
0.76
0.76
0.76
0.76
0.74
0.76
0.76
0.76
0.76
0.75
0.87
0.94
0.94
0.95
0.73
0.77

84I{b
94}Jb
94}qb
QSTt

QSTt

QSTt

QSTt

108[\g
1087 o
10870
1087 o
110[\g
110Ag
110[\g
110A0
110pg
110Ag
110[\g
110Ag
110[\g
110A0
124Sb
124sb
124Sb
124sb
124Sb
124sb
124Sb
124sb
124Sb
124sb
124Sb
1ZSSb
125Sb
1ZSSb
133133
137(35
144(:e
ISZIEU
15213u
152}Eu
152}3u
152}EU
152}3u
153(}d
15413u
154}3u
16&Tb
160Tb
161]‘b
1611“b
161]*b
1611’b
16Prb
161Tb
169§(b

881.6
702.6
702.6
582.1
582.1
820.6
835.1
4339
433.9
614.3
614.3
657.8
671.6
677.6
706.7
818.0
884.7
884.7
1475.8
1475.8
1505.0
602.7
645.8
713.8
713.8
722.8
722.8
790.7
968.2
968.2
1045.1
1368.2
4279
600.6
636.0
2232
661.7
1489.1
367.8
678.6
688.7
867.4
919.3
12129
103.2
444.5
1246.1
879.4
962.3
257
257
25.7
48.9
489
74.6
63.1

94}Jb
124Sb
144(:e
124Sb
124Sb
95]1
QSTt
IZSSb
IZSSb
125Sb
IZSSb
110[\g
110Ag
110Ag
110Ag
110[\g
110}\g
110[\g
110Ag
110Ag
110Ag
124Sb
137(%
124Sb
124sb
124Sb
124Sb
124Sb
124Sb
124Sb
124sb
124Sb
IZSSb
207Bi
137(%
133Ba
144(:e
144(:e
ISZIEU
152}3u
ISZIEU
ISZIEU
ISZIEU
152}3u
153(}d
154}3u
154}3u
lﬁwrb
1601‘b
16Prb
IGPTb
ISITa
léhrb
ISZTE
lngé
169‘7b
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871.1
722.8
696.5
602.7
1325.5
835.1
1039.3
4279
463.4
600.6
636.0
1475.8
1384.3
15623
1384.3
1475.8
1505.0
15623
1505.0
15623
1562.3
1325.5
661.7
790.7
1436.6
790.7
1436.6
1436.6
1045.1
1691.0
1691.0
2090.9
463.4
569.7
661.7
276.4
696.5
2185.6
778.9
1089.7
810.5
11121
1408.0
1457.6
172.9
692.4
1494.0
966.2
1178.0
489
74.6
67.8
74.6
67.8
67.8
261.1

0.82
0.75
0.76
0.86
0.71
0.70
0.76
0.95
0.96
0.78
0.74
0.72
0.77
0.72
0.79
0.87
0.71
0.83
0.72
0.78
0.79
0.81
0.72
0.91
0.94
0.71
0.82
0.93
0.82
0.85
0.88
0.96
0.92
0.78
0.71
0.88
0.74
0.93
0.86
0.96
1.00
0.99
0.89
1.00
0.75
0.91
0.99
0.97
0.86
0.92
0.97
0.86
0.99
0.94
0.93
0.79

(cont.).
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conti.

Table 1

169y 109.8 169y 130.5 0.79
169Yh 109.8 169Yb 177.2 0.82
169Yh 109.8 169y 307.7 0.86
169Yb 109.8 1921p 205.8 0.74
169yh 109.8 1921y 612.5 0.70
169Yh 109.8 198 Au 411.8 0.80
169y 130.5 169y 177.2 0.77
169Yh 130.5 169Yb 198.0 0.87
169Yh 130.5 169y 261.1 0.86
169Yb 130.5 169Yh 307.7 0.92
169yh 130.5 1921y 205.8 0.83
169Yh 130.5 1921p 296.0 0.70
169y 130.5 1921 604.4 0.78
169Yh 130.5 1921p 612.5 0.78
169Yh 130.5 198 Ay 411.8 0.86
169Yb 177.2 169Yh 198.0 0.91
169yh 177.2 169y 261.1 0.89
169Yh 177.2 169Yh 307.7 0.96
169y 177.2 1921 205.8 0.82
169Yh 177.2 1921p 604.4 0.78
169Yh 177.2 1921 612.5 0.78
169Yh 177.2 198 A0 411.8 0.88
169y 198.0 169y 261.1 0.96
169Yh 198.0 169Yh 307.7 0.95
169y 198.0 1921 205.8 0.83
169Yh 198.0 1921p 296.0 0.71
169Yh 198.0 1921 604.4 0.78
169Yh 198.0 1921 612.5 0.79
169y 198.0 198 Ay 411.8 0.88
169Yh 261.1 169Yh 307.7 0.93
169y 261.1 1921 205.8 0.83
169Yh 261.1 1921p 296.0 0.71
169Yh 261.1 1921 604.4 0.78
169Yb 261.1 1921 612.5 0.79
169yh 261.1 198 Ay 411.8 0.90
169yh 307.7 1921p 205.8 0.87
169y 307.7 1921 296.0 0.74
169Yh 307.7 1921p 316.5 0.72
169Yh 307.7 1921 604.4 0.82
169Yb 307.7 1921 612.5 0.83
169y 307.7 198 Ay 411.8 0.93
1724f 78.7 L72Hf 81.8 0.70
18279 84.7 18279 1524 0.96
182Tq 113.7 182Tq 179.4 0.81
18273 156.4 18279 222.1 0.89
182Ty 198.4 182Tq 264.1 0.88
1827 1121.3 1827, 1189.0 1.00
18273 1121.3 182Tq 12214 1.00
18279 1121.3 18279 1231.0 0.98
182Tq 1121.3 182Tq 12574 0.97
18273 1121.3 18279 1273.7 0.99
182Ty 1121.3 182Tq 1289.1 1.00
1827 1121.3 1827, 1373.8 0.99
182Ta 1121.3 182Tq 13874 0.99
18279 1189.0 18279 12214 1.00

182Ta
182Ta
ISZTa
182']*a
ISZTa
182ra
182Ta
182Ta
182Ta
182']*a
ISZTa
182]ja
182Ta
182Ta
182Ta
182']*a
ISZTa
182]ja
182Ta
182Ta
182Ta
182']*a
ISZTa
182]ja
182Ta
182Ta
182Ta
182']*a
ISZTa
182]ja
182Ta
182Ta
182Ta
182']*a
ISZTa
182]ja
182Ta
182Ta
182Ta
182']*a
1921r

1921r

1921r
192]r

IQZIr
1921r

1921r
1921r

1921r
192]r

IQZIr
1921r

1921r
1921r

1921r
192]r
198Au
203})b

1189.0
1189.0
1189.0
1189.0
1189.0
1189.0
12214
1121.3
1121.3
1121.3
1121.3
1121.3
1189.0
1189.0
1189.0
1189.0
1189.0
1189.0
1189.0
1221.4
12214
1221.4
1221.4
1221.4
12214
1231.0
1231.0
1231.0
1231.0
1231.0
1257.4
1257.4
1257.4
1257.4
1273.7
1273.7
1273.7
1289.1
1289.1
1373.8
205.8
205.8
205.8
205.8
296.0
296.0
296.0
308.5
316.5
316.5
416.5
416.5
588.6
604.4
604.4
612.5
675.9
401.3

182Ta
182']“a
182Ta
ISlTa
IBZTQ
ISZTE
182Ta
182']“a
182Ta
ISlTa
IBZTQ
ISZTE
182Ta
‘SZTQ
182Ta
ISlTa
sza
ISZTE
182Ta
‘SZTQ
182Ta
ISlTa
sza
ISZTE
182Ta
‘SZTQ
182Ta
ISlTa
sza
ISZTE
182Ta
‘SZTQ
182Ta
ISlTa
sza
ISZTE
182Ta
‘SZTQ
182Ta
ISlTa
1921r

1921r

1921r

198Au
1921r

19ZIr

198[\u
1921r
1921r

198Au
1921r

19ZIr

1921r
1921r
198Au
198Au
198Au
203l)b

1231.0
1257.4
1273.7
1289.1
1373.8
1387.4
1231.0
1257.4
1273.7
1289.1
1373.8
1387.4
12214
1231.0
1257.4
1273.7
1289.1
1373.8
1387.4
1231.0
1257.4
1273.7
1289.1
1373.8
1387.4
1257.4
1273.7
1289.1
1373.8
1387.4
1273.7
1289.1
1373.8
1387.4
1289.1
1373.8
1387.4
1373.8
1387.4
1387.4

296.0

604.4

612.5

411.8

604.4

612.5

411.8

604.4

612.5

411.8

588.6

884.5

884.5

612.5

411.8

411.8
1087.7

680.5

0.98
0.97
0.99
1.00
0.99
0.99
0.98
0.97
0.99
1.00
0.99
0.99
1.00
0.98
0.97
0.99
1.00
0.99
0.99
0.98
0.97
0.99
1.00
0.99
0.99
0.95
0.99
0.98
0.99
0.99
0.96
0.97
0.96
0.96
0.99
1.00
0.99
0.99
0.99
0.99
0.71
0.78
0.78
0.84
0.86
0.87
0.72
0.89
0.90
0.71
091
0.89
0.97
0.84
0.80
0.81
0.98
0.94
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Table 2
Negative correlation coefficients between some gamma-ray
energies

758e 66.1 758e 198.6 —0.66
758e 96.7 758e 303.9 —0.68
758e 121.1 758e 279.5 —-0.75
758e 136.0 758e 264.7 —0.51
110 g 446.8 110Ag 0375 —0.65
1338, 160.6 1338, 2232 —0.76
1338, 160.6 13380 2764 —0.69

This paper gives the most intense (negative and
positive) correlation coefficients between gamma-
ray energies adopted as reference in detector calib-
ration. These correlation coefficients must be taken
into account in every calibration, as explained in
Appendix A. If one does not intend to use the
correlation coefficients, he/she must avoid the use
of highly correlated data in the same calibration.

Finally, we must consider that the experimental
data used as input of the LSM in this paper can be
correlated. Data from types (a) and (b) can be
correlated due to common errors affecting all re-
sults from the same laboratory. Data of type (c) can
be correlated if some energy differences were mea-
sured in the same experiment and using the same
channel x energy calibration curve. This effect also
occurs with data of type (d) determined using the
same calibrated detector. In order to test the conse-
quence of these initial correlation coefficients, we
considered the hypothesis of correlation coeffi-
cients 0.4, typical of wavelength measurement with
Si crystals [6], between all data of type (a). Only 25
(over about 200) correlation coefficients greater
than 0.7 were changed more than 10%. This fact
accords with the result obtained in Ref. [6]. where
a relatively large range of the initial correlation
coefficients would give practically the same final
results. Correlation coefficients between data of
types (b) and (c) are expected to be less important,
since part of the uncertainties come from the chan-
nels and they are, as usual, non-correlated. For
instance, from the 456 correlation coefficients be-
tween gamma-ray energies from '>?Eu and '°?Ir
given in Ref. [ 7], only about 20 are greater than 0.4.
Since we have not taken into account possible
correlation between input data, we can estimate

that the correlation coefficients given in Tables 1
and 2 are precise within about 10%.
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Appendix A

This appendix shows how to include covariance
between gamma-ray energies in a calibration pro-
cedure.

Consider a calibration function given by

E=a, +a,C+a;-C>. +a, C" ! (A.1)

where E is the energy and C is the channel where
the correspondent energy peak was observed. In
this case the fitted parameters are given by Eq. (2),
where Y is the vector given by the calibration ener-
gies,

E,

E,

n

and X is the design matrix given by

1 ¢, - Crln—l
1 C cy!

x=|. ? (A3)
1 Cc, - C,’,"_l

where n is the number of experimental points used
in the fitting.
The covariance matrix of ¥, V, is given by

2
01 P120102 P1r010y
2
P120103 ) P20n020,
V: . . + VC
2
P1n010, P2n020, (2
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where g; is the standard deviation of the gamma-
ray energy E; given in ref. [1], p;; is the correlation
coefficient between E; and E; given in this paper,
and V¢, is the covariance matrix of the peak posi-
tions. Usually, the peak positions are not correlated
(since doublets are not used in energy calibrations)
and, as a consequence, V¢ is a diagonal matrix.
Terms with exponents greater than 1 in the calib-
ration function (Eq. (A.1)) are usually negligible
when errors are to be propagated from the “inde-
pendent” variable C to the “dependent” variable E.
In this case V. is given by

0‘2:1 0 0
0 od 0

Ve=¢? . 7 : (A.5)
0 0 Gén

where g is the gain (energy/channel) parameter and
dc; 1s the standard deviation of the ith peak posi-
tion.

The chi-square test can be performed by

=Y XAV 1(Y-XA. (A.6)

The variable x> obeys a chi-squared distribution
with n — m degrees of freedom.

In order to show how large the effect of including
covariance terms is, we simulated a calibration with
11 data between 1010 and 3510keV in steps of
250keV. The uncertainties of those data were Sev
and the correlation coefficients between them were
all equal to 0.8. These data simulate approximately
a calibration using the *°Co gamma-ray energies.
The calibration used in the simulation was
E=a+b-C=10+ C, where C is the channel
number. The calibration was supposed to have an
uncertainty due to the channels equivalent to 3eV
and null covariances. The simulated data are
shown in Table 3.

This simulated experience was first analyzed con-
sidering the total covariance matrix of the data and,
after that, neglecting the correlation coefficients.
Since this simulation corresponds to a calibration
procedure, energies of channels 1400 and 1500 were
interpolated. The results are shown in Table 4. The
fitted parameters of the calibration curve, a and b,

Table 3

Data of the simulated experiment: the energy uncertainties are
equal to 5eV with correlation coefficient equal to 0.8; the uncer-
tainties of the channels are equivalent to 3 eV and not correlated

Energy (keV) Channel
1010.0051 1000.0019
1259.9968 1249.9969
1510.0013 1499.9924
1760.0009 1749.9982
2010.0023 2000.0017
2260.0036 2249.9994
2510.0011 2500.0043
2760.0057 2749.9988
3010.0019 2999.9971
3260.0017 3250.0023
3510.0003 3500.0004
Table 4

Results of the analysis of the simulated experiment: taking into
account the total covariance matrix (A4), and neglecting the
covariance terms (B)

Results of the fitting A B

a(o,) 10.0046(56) 10.0046(53)
b(oy) 0.9999991(14)  0.9999991(22)
Pa,b —0.57 —0.94
1ao(POC 2 2a)) 8.7 (47%) 3.6 (94%)
Interpolated uncertainty 4.8eV 2.6eV

at channel 1400, o,

Interpolated uncertainty 4.7eV 24eV

at channel 1500, o,

PE1,E2 0.9996 0.998

do not change if one neglects the covariance terms
in this case of equal correlation coefficients. The
most important changes are the chi-squared values
and the uncertainties and correlation of interpo-
lated energies. Neglecting covariances, the chi-
squared values was reduced and its confidence level
was increased from 47 to 94%. As a consequence,
the test is no more a good quality of fit test and
some systematic errors could be disguised. The
uncertainties of the interpolated values were re-
duced by about a factor of 2 when covariances are
neglected and, as a consequence, the experiment
seems better than it really is.
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Appendix B

Consider a set of experimental data (yy, y», ... V)
and a set of functions z{(yy, ... Vu), o Zm(V1, o Yp)- If
the covariance matrix of ¥ is Vy, then the
covariance matrix of Z is given by

V,~D Vy-D (B.1)
where
0z;
o= B.2
ij ay] ( )

The derivatives are calculated in the experimental
values of the independent variables. Eq. (B.1) is
exact if z; are linear functions of y;.

If m <n then V, is a true covariance matrix.
Otherwise, V,, is a singular matrix meaning that

there are constraints between some elements of
Z and that the probability density function of Z is
concentrated on a lower-dimensional subspace [4].
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