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ABSTRACT 

A new method oc heuristic reinforcement learning has been 

developed for parameter identification purposes. In essence, this new 

parameter identification technique is based on the idea of breaking a 

multidimensional search for the minimum of a given functional into a 

set of unidirectional searches in parameter space. Each search 

situation is associated with one block in a memory organized into 

cells, where the information learned about the situations is stored 

(e.g. the optimal directions in parameter space). Whenever the 

search falls into an existing memory cell, the system chooses the 

learned direction. For new search situations, the system creates 

additional memory cells. This algorithm imitates the following 

cognitive process: (1) characterize a situation, (ii) select an 

"optimal" action, (iii) evaluate the consequences of the action, and 

(iv) memorize the results for future use. As a result, this algorithm 

is "trainable" in the sense that it can learn from previous experience 

within a specific class of parameter identification problems. From 

the mathematical point of view, the algorithm utilizes the inversion 

of a newly introduced concept of "fuzzy maps" between two spaces: the 

feature space and the parameter correction space. However, this 

operation is performed by the cognitive process described above rather 

than by mathematical manipulations. The main advantages of the new 

method are: (i) because of the minimum amount of computations, the 
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parameter identifications proceed faster than by the usual methods, 

and (ii) the parameter search can proceed automatically without the 

user-program interaction. The new algorithm was validated both 

analytically and via extensive computer simulations, utilizing a model 

of a U-tube steam generator of the type used in pressurized water 

reactors. A "real world" application was implemented whereby analog 

signals from an experimental pressure loop were utilized as inputs to 

the present learning algorithm. After a training period, during which 

the algorithm was shown the normal behavior of the loop, the system 

was able to diagnose failures in the loop and to accurately determine 

the parameters characterizing its normal behavior. 
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CHAPTER 1 

INTRODUCTION 

1.1 Parameter identification and Surveillance and Diagnostic Methods 

Since the inception of Nuclear Power Plant Technology and because 

U of its "unforgiving" characteristics, a large effort has been devoted 

~) to the development of control, surveillance and diagnostic methods. 

Continuous surveillance of large dynamic systems such as Nuclear Power 

I Plants can improve the system availability by early detection of 

incipient failure and by avoiding unnecessary periodic maintenance 

J (1). 

Reactor Noise methods (2-4) do not depend on the introduction of 

external stimulii and hence do not interfere with routine plant 

operations, making such methods ideal tools for surveillance purposes. 

The reactor noise method for surveillance and diagnostics is based on 

the utilization of a set of noise descriptors which characterize the 

signature or the state of a power plant that is in a given 

configuration and mode of operation. A noise descriptor is a 

functional of the stochastic fluctuations exhibited by state variables 

such as the Power Spectral Density (PSD) and the Cross Power Spectral 

Density (CPSD). Typically, a noise descriptor (the Fourier components 
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describing the time-evolution of the state variables) exhibits a 

considerable amount of structure as a function of the frequency. 

These features (e.g. peaks and valleys) are related to specific 

causative mechanisms such as fuel element vibrations, core barrel 

motion and thermal-hydraulic processes. In the normal operation mode, 

the location and strength of the features in the noise descriptors 

defines the plant signature. Plant surveillance methods are based on 

the detection of changes in the plant signature and the utilization of 

diagnostic algorithms to correlate the observed discrepancies with the 

altered plant conditions. 

To implement the above surveillance and diagnostic methods, one 

J must parameterize the noise descriptors in terms of the system 

n parameters contained in a suitable model of the dyiiamic behavior of 
jj 

the plant. Ultimately, the plant signature is in fact associated to a 

set of parameters (heat transfer coefficients, Doppler coefficients of 

reactivity, fuel temperature, and so on). In principle, whenever an 

LI alteration of normal plant operation arises, the set of altered 

~ parameters will have to be identified . Essentially, it is then seen 

that surveillance methodologies do in fact reduce to parameter 

^ identification problems. Not very surprisingly, this problem is 

germane to the development of optimal control algorithms since, in 

VjJ both instances, the extrema of error functionals must be determined. 



1.2 Survey of Control Optlaizatlon and Parameter Identification 

Methods 

.n Historically, the development of control optimization and 
I—J 

parameter Identification techniques since the early days of nuclear 

^ technology can be divided into two periods. The first period covers 

n the late 40's up to the early 60's - it was the era of control systems 
L 

theory as a precise analytic discipline (5), with the goal of 
r 

^ developing servo-mechanisms that would drive the system to follow a 

I—, desired output trajectory. The fundamental method was the 

^ minimization of an error functional (i.e. a measure of the distance 

~) between the desired and the actual output), subject to various 

constraints. Very powerful analytical tools were either already 

J available or were developed. Among such tools were the classical 

Gauss-Newton least squares methods (6) in their many variations and 

dynamic programming (7). The common feature of these methods was 

their deterministic character. 

The second period covers the early 60's up to now. During this 

period there was the realization that either because of the inherent 

stochastic nature of physical systems or because of the fluctuations 

and uncertainties induced in the system by the environment, one 

required more sophisticated decision-making algorithms (8). System 

optimization methods experienced substantial new developments during 

this period. Amazingly enough, the new methods, which are based on 

probabilistic techniques and/or the analysis of cognitive processes, 

do utilize much fewer analytical manipulations than the ones so 

3 
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profusely needed in the old deteirministic methods. In the early 60's, 

work on the new "less-analytical" algorithms was performed by 

Rosenbrook (9), Powell (10), and Nelder and Mead (11). The new 

feature in this work was that one could find the extrema of 

functionals without calculating time-consuming derivatives of the 

error functional by some varied, though still "analytical", 

techniques. 

Also in the early 60's, an important event took place with the 

development by Hooke and Jeeves (12) of the "Direct Search" method. 

In this technique, the minimization of the functional (i.e. the 

determination of the optimal parameter set) is accomplished by a 

series of trial searches in parameter space. Each trial performance 

n is kept in memory and strategies are developed to select new trial 
u 

points in parameter space. Again the analytical manipulations were n reduced to the calculation of the error functional at each trial 

point. The new method lacked mathematical rigor but could solve 

optimization problems which were either very difficult to solve or 

practically untreatable by the well stablished deterministic 

techniques. 

The next step in the evolutionary process of control and 

optimization methods developed when Waltz and Fu (13), Fu (14) and 

Saridis (8) endowed the control system with learning capabilities. 

This development led to the design of "Trainable Controllers" based on 

the concept of heuristic "Reinforcement Learning" borrowed from the 

behavioral sciences (8). New and more sophisticated techniques in 



1} 

n 

r 

Learning Controls did quickly appear based on Pattern Recognition 

Methods (8,15,16). 

1.3 Parameter Identification by Heuristic* Learning 

As it was previously mentioned, the parameter identification 

problem is equivalent to the process of minimization of a given 

functional. The aim of Heuristic Learning techniques is to perform 

this process by replacing many analytical tools with heuristic 

guidelines. In a general sense. Heuristic Learning is the method 

which endeavors to perform a given function or reach a desired goal by 

deciding the best action to be taken for each particular situation. 

Implicit in the method is a decision-making algorithim to select from 

among a large set of possible actions the ones which expedite the 

achievement of the set goal. This policy-making facet of heuristic 

learning can be implemented in many ways, such as the use of "rules of 

thumb" based on previous experience relating to the behavior of the 

system under investigation. Upon evaluation of the consequences 

following a given action, the heuristic learning method stores in 

memory the best action as well as the situation which was encountered. 

* The word heuristic is derived from the Greek heuriskein - to 
discover, to find. The Webster's Third New International Dictionary 
defines heuristic as an adjective meaning "serving to guide, discover 
or reveal". Something that is heuristic is described as "providing 
aid or direction in the solution of a problem but otherwise 
unjustified" in the Webster's New Collegiate Dictionary. 
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In this way, when faced with a similar situation, the system has 

J "learned" the appropriate action to be taken to reach the desired 

n goal. 
i 

As mentioned in Section 1.2, a form of the Heuristic Learning 

[~ method was developed as learning behavior models of living organisms, 

whereby learning is accomplished by a stimulus-response scheme so 

that actions with high performances are rewarded and actions with low 

performances punished. The main components in a heuristic learning 

algorithm are: (i) the characterization of the "situation", (11) the 

selection of the strategy based on heuristic arguments and rules, 

(111) the evaluation of the consequences of actions and the 

reinforcement of optimal decisions, and (iv) the memory organization 

n 

n where the past experiences are stored. 
. .s 

u 
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1.4 Previous Applications of Heuristic Learning Methods in the Field 

of Nuclear Power Plants 

Although the importance of heuristic methods in the area of 

control systems was quickly recognized in the early 70's (14), very 

few applications in the field of Nuclear Power Plants can be found in 

the literature. The first application to digital control of nuclear 

reactors by heuristic methods (to the author's knowledge) was 

implemented by MacDonald and Koen (17), who addressed the problem of 

making the reactor follow a desired power output trajectory by the 

formulation of simple heuristic rules on how to activate the control 

rods. Although a highly simplified model of the reactor was utilized, 

6 
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MacDonald succeeded in showing the potential advantages of heuristic 

learning methods. Bubak and Moscinski (18) and Kitowski and Moscinski 

(19) utilized a much more sophisticated reactor model to produce a 

heuristically based digital power-following algorithm. Finally, 

Hoshino (20) developed a heuristic learning based, optimal strategy 

for the refueling of a reactor with the goal of maximizing the average 
r 
LJ discharge burnup. 

1.5 Motivation and Objectives 

For the past few years, the Nuclear Engineering Deptartment at 

The University of Tennessee and the Instrumentation and Controls 

Division at the Oak Ridge National Laboratory have been heavily 

involved in the development of Surveillance and Diagnostic techniques 

for Nuclear Power Plants (21-27). This work has resulted in the 

formulation of surveillance techniques which require on-line parameter 

identification for assessment of abnormalities in the plant operation. 

To satisfy this requirement, a least squares program was produced for 

parameter identification purposes (26). Because of the fact that the 

plant parameters enter in a highly non-linear fashion into the models 
I 

for the noise descriptors, the fitting procedure was both time 

7 consuming and very sensitive to the initial guesses for the 

parameters. As a result user-program interaction was needed to 

J "guide" the algorithm to convergence, and on-line operation had to be 

—1 ruled out. During the fitting process, it was noticed that the user 

with experience developed a series of "rules of thumb" for the 
n 7 
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selection of the initial parameters and their subsequent changes, 

which greatly facilitate the fitting process. Motivated by these 

findings, it was decided to explore the possibility of performing 

on-line parameter identification by replacing the human operator with 

a learning program. 

The following objectives were set for this dissertation: 

J a. To implement and evaluate heuristic reinforcement 

n learning techniques already developed for other purposes 

as a tool for a parameter identification algorithm. This 

step was necessary as previous studies of heuristic methods 

dealt with essentially "trajectory-following" problems n 
U rather than with the specific problem at hand, 

n b. To investigate the possibility of developing new, more 

efficient heuristic learning techniques, 

c To validate the new methodology by means of extensive 

computer simulation studies and the utilization of 

statistical tests. The motivation behind this objective 

was that heuristic methods do not guarantee that an optimal 

solution is obtained (with the exception of particular 

situations studied later in this work). 

d. To apply the newly developed parameter identification 

method to a "real world" surveillance and diagnostic 

problem. The requirements for this objective were to 

perform on-line surveillance with analog signals from 

a real dynamic system. 

L 
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1.6 Original Contributions 

The original contributions included in this dissertation refer to 

two different areas: (i) heuristic learning in general and (11) the 

field of surveillance and diagnostics relevant to Nuclear Power 

^ Plants. 

In the area of heuristic learning, the present work contains the 

first application (known to the author) of heuristic reinforcement 

learning to the problem of parameter identification, in contrast with 

the previous applications of this technique to trajectory-following 

algorithms. 

A new learning method, the "Single-Direction Learning" (SDL) 

parameter identification method, has been developed which is clearly 

superior to the reinforcement-learning method, the "Fixed-Directions 

T Learning" (FDL), which was developed by adapting the heuristic 

learning control techniques to the parameter identification problem. 

Q During the development of the learning algorithms the new concept of 

"fuzzy" maps has been introduced, which is of fundamental importance 

for the implementation and use of the learning methods. 

In the area of surveillance and diagnostics, a learning-program 

has been developed which can be used for on-line diagnostics and which 

learns the particularities of the parameter identification at hand, 

thereby increasing its performance with the experience. 



n 

u 
n 

1.7 Organization of the Text 

In Chapter 2, the general equations for the spectral densities 

of a linear noise model are presented, and the parameter 

identification problem is defined and discussed. The two heuristic 

learning methods developed (the Fixed-Directions Learning and the 

Single-Direction Learning parameter identification methods) are 

described in Chapter 3. The computer simulation results with the two 

heuristic learning methods, as well as comparison with the "Direct 

Search" method (12), are presented in Chapter 4. The results of the 

application of the SDL method to the "real world" on-line automatic 

surveillance and diagnosis of an experimental pressure loop are given 

in Chapter 5. Finally, a summary of the accomplishments and 

recommendations for further research are given in Chapter 5. 

10 



CHAPTER 2 

DEFINITION OF THE PROBLEM AND GENERAL THEORY 

2.1 Introduction 

In this chapter, the general noise model equations, the 

definition of parameter identification, and a discussion of parameter 

identification solutions and the difficulties associated with 

parameter identification itself are presented in order to introduce 

notation and to establish a mathematical basis for subsequent 

chapters. 

In Section 2.2, the equations for the frequency domain noise 

descriptors of a linear, dynamic, stochastic system are presented. 

These general equations are applied to particular systems in Chapters 

4 and 5. 

The mathematical definition of parameter identification, as used 

in the context of this work, is presented in Section 2.3, followed by 

a discussion of the difficulties associated with parameter 

identification and their diagnostic implications in Section 2.4. 

Although in this chapter, and throughout this work, parameter 

identification is always discussed in terms of frequency domain noise 

models and a weighted sum of the squares error functional, it is 

11 



important to point out that the learning methods developed in this 

work are not restricted to these particular applications. 

2.2 Noise Model 

Noise models are derived from linearized dynamic models of a 

system, often in lumped parameters form. Using the Langevin source 

technique (2, 3), the stochastic parameters of a model are separated 

into steady state values and fluctuating components. The fluctuating 

parts of the parameter set are treated as extra inputs (or sources) to 

the system. 

In general, the Laplace-transformed noise model can be written in 

the form 

B(s)X(s) = H(s)U(s) , 2-1 

where X(s) is an N-dimensional vector whose components are 

j fluctuations of the system variables about steady state 

values, 

;J U(s) is an L-dimensional vector whose components are the inputs 

r] to the system, as well as the fluctuating components of 

the stochastic parameters, 

B(s) is an (N x N) system matrix, and 

H(s) is an (N x L) forcing matrix. 

J Left multiplying Equation 2-1 by the inverse of the system matrix 

yields 

12 
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X(s) = b " ^ ( S ) H ( S ) U ( S ) , 2-2 

where the transfer function matrix, G(s), can be identified as 

G(s) = b " - ^ ( S ) H ( S ) . 2-3 

A generic element of the transfer function matrix, S^y^i^)> is the 

transfer function from input "k" to the system variable "i". The 

frequency response matrix is obtained by substituting for "s" by 

"jw" in Equation 2-3, where " j " is the square root of negative one 

and "w" is the frequency in radians per second. 

The noise descriptors measured in frequency domain noise analysis 

are usually Power Spectral Densities (PSDs) and Cross Power Spectral 

Densities (CPSDs) between the available signals. Other common 

descriptors can, in general, be expressed in terms of the PSDs and 

CPSDs. The equations for the PSDs and CPSDs of a system described by 

Equation 2-2 are derived in Appendix A. 

The CPSD between two system variables in terms of the frequency 

response and the input spectral densities is given by 

S^(w) = \ \ gl(w)8^(w)S^^(w) , 2-4 
i=l k=l 

where S . (w) is the CPSD between system variables X and X , Jon X m 

g'^(w) is the complex conjugate of the frequency response of the 

system variable X̂ ^ to input u^, 

g^(w) is the the frequency response of the system variable X^ 

to input u^ , and 

13 
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S^^(w) is the CPSD between inputs u^ and u^. 

The expression for the PSD is obtained by making "JI" equal "m" in 

Equation 2-4. A common simplifying assumption is to assume that the 

inputs are uncorrelated. In that case, the CPSDs between the inputs 

vanish, and Equation 2-4 reduces to 

1=1 

2.3 Parameter Identification 

In general, parameter identification involves the estimation of 

parameters for a system model from measured experimental data points. 

Typically, the estimated values of the parameters are the values that 

minimize an error functional which measures the error between 

experimental points and model predicted points. 

Several forms of the error functional have been used in the past. 

In this work, the weighted least squares error functional was always 

used, although the parameter identification methods developed are not 

restricted to this error functional. 

The weighted least squares functional is defined as: 

N p 
Q(P.) = I W.(Y - F (P))^ 2-6 

1=1 ^ ^ 

where (i=l,...,N) are experimentally obtained components of an 

N-dimensional measurement vector; 

F^(P_) (1=1,...,N) are components of an N-dimensional, 

14 
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model-calculated vector that depends on the 

parameter vector, P_, i.e. F^(P) is a model 

prediction of the experimental point Ŷ ;̂ 

P is a K-dimensional parameter vector, with K<N; 

and 

Wĵ  (1=1,...,N) are the components of an N-dimensional weight 

vector usually taken as the inverse of the 

variances of the experimental data points, 

i.e. 

W = - - . 2-7 
^ var[Y^] 

Parameter identification, within the context of this work, can be 

defined as the process of finding the value of the parameter vector, 

P*, that minimizes the weighted least squares error functional defined 
* 

by Equation 2-6. The identified parameter vector, P̂  , is usually 

called the optimum parameter vector. 

When the functions F^(P_) are continous with continuous first 

derivatives, the following set of equations must be satisfied at the 

minimum: 

rdQ(l) 1 
dP = 0 , for 1=1,2,...,K . 2-8 

* i ^p^^p^ 

An explicit solution for P* from this set of equations exists 

only when the functions E^(P) are linear. A solution of Equations 2-8 

has been obtained through either iterative-analytical methods (6, 28, 

15 



29) or search methods (9-12). The learning parameter identification 

methods presented in Chapter 3 belong to the search method category. 

r 
2.4 Difficulties Associated with Parameter Identification 

r 
J There are several types of difficulties associated with parameter 

n identification related to the model formulation and to the experiment 

design. Some of these difficulties can be eliminated by a careful 

analysis of the model equations and by sensitivity studies, and others 

can be avoided by limiting the range of the parameters as discussed 

below. 

n The first, and simplest difficulty appears when the sensitivity 

of the model predictions F^(P) is zero for some parameter. That is n 
dF.(P) 

- = 0 for 1=1,2,...,K . 2-9 

This may happen when some cancellation effect makes the model 

predictions not a function of that parameter. Obviously, in that 

case, that parameter can not be identified. 

A second type of difficulty occurs when a group of parameters 

always appears in the model equations in a particular expression. For 

example, assume that parameters Pĵ  and Pj^ always appear as the product 

P^Pjj^in the model equations. In that case, their sensitivities are 

proportional, i.e. 

16 



dF(P) dF(P) 

~| and these parameters can not be simultaneously identified. 

The third type of difficulty arises when the error functional in 

Equation 2-6 is multimodal, i.e. there is more than one point where 

Equations 2-8 are satisfied. There are no parameter identification 

J methods that are guaranteed to converge to "the minimum" of Equation 

n 2-6 when the error functional is multimodal. The recommended 

procedure, when there is a possibility that multimodality exists, is 

to restart the parameter i'dentification from different initial 

parameter values with the hope that eventually it will converge to the 

L) minimum. 

n There are two distinct types of multimodality: 
U 

a. When there are two or more points in parameter space for 

1̂  which Equations 2-8 are satisfied yielding exactly the same 

model prediction, i.e. ' In that case, Q(P^) = 

QCE^) and the parameter identification is undefined. For 

example, this happens when a parameter appears squared in the 

model equations, such that the negative value and the 

positive value of this parameters give the same answer. It 

is possible to eliminate some undesirable solutions by 

limiting the range of the parameters in view of physical 

considerations. 

b. When the minimum is well defined (i.e. there is a point P* 
* It where Q(?_ ) < q(P̂ ) for all P_ P. , and for all other points 

17 
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satisfying Equations 2-8 the error functional is much greater 

than Q(P*) ). a hypothesis test can be performed to accept a 

-, particular solution as the optimum parameters, as will be 

discussed later. 

r 
U Even when the mathematical parameter identification problem is 

well defined, numerical problems may cause the parameter 

identification method to converge far from the true solution. Those 

problems are caused by the finite precision arithmetic of digital 

computers and by the convergence criteria utilized. These problems 

are largely dependent on the geometric characteristics of the error 

functional surface. These numerical problems can be detected by 

restarting the parameter identification from different initial 

1̂  parameter values. In addition, the use of higher precision arithmetic 

n 

^ 1 -

can avoid these problems with the penalty of increasing computational 

time and memory requirements. 

The last type of difficulty is caused by inperfections in the 

model. In that case, a mathematically well defined parameter 

identification problem can lead to identified parameters with little 

physical meaning. Two hypothesis tests were used in this work to 

evaluate the suitability of the model to predict the experimental 

data: 
2 

a. The x test. When the model predicts well the experimental 

data, the error functional is randomly distributed according 
2 

to a X probability distribution with N-K degrees of freedom 

(N is the number of data points, and K is the number of 
18 



parameters). 
n 
J b. The Wald-Wolfowitz test(30). This test checks the hypothesis 

-1 that the experimental data are independently, randomly 

distributed about the model predictions at the solution n 

n 
u 
n 

n 
L 

n 

2 

point. This method is usually more sensitive than the x 

test. 

In summary, there are some difficulties associated with parameter 

identification but most of them can be eliminated by sensitivity 

studies and by appropriate selection of the model parameters. The 

multimodality difficulty can be eliminated by either choosing a range 

for the parameters or by performing hypothesis tests to reject 

solutions for which the model predictions do not represent well the 

experimental data. Numerical problems can be minimized by using 

double precision arithmetic and by judiciously choosing the 

convergence criteria. The agreement between model and experiment is 

important, and must be studied before trying to use model predictions 

for diagnosis. After each parameter identification, the hypothesis 

test should be performed to accept only solutions for which the model 

predicts well the experimental data. 
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CHAPTER 3 

HEURISTIC LEARNING PARAMETER IDENTIFICATION 

3.1 Introduction 

Two heuristic learning parameter identification methods, the 

fixed-directions learning method and the single-direction learning 

method, were developed to introduce learning capabilities into the 

basic parameter Identification algorithm. In this basic algorithm, 
n 
[J the search for the optimum value of the parameters is performed in a 

L J 

n 

r 
L 
n 

sequence of unidirectional searches in parameter space. The 

computational efficiency of this algorithm depends on the sequence of 

directions selected. The basic parameter identification algorithm is 

explained in Section 3.2. 

The ability to characterize and memorize the search situations 

encountered is fundamental to learning parameter identification 

methods. Consequently, the experience gained during previous 

parameter identifications can be remembered to help perform other 

parameter identifications. The search situation and the 

simplifications made in its characterization for each learning 

parameter Identification methods are described in Section 3.3. 
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In Section 3.4, the Fixed-Directions Learning parameter 

identification method (FDL) is described. In the FDL method, the 

1 directions are selected from a set of fixed directions. In the 

beginning, equal weights are assigned to all directions. The weight 

of the direction selected, in the current situation, is modified 

according to the performance of the direction in minimizing the error 

functional. The weight of the direction selected is either reinforced 

or penalized depending on whether the direction produces a high or low 

performance. With this scheme, the method learns the weights of the 

directions thereby permitting it to improve its computational 

efficiency by selecting the directions with higher average 

performances. 

PI In the Single-Direction Learning parameter identification method 

(SDL), for the first identification, the directions are selected from 

the set of basic directions (as in the basic algorithm), and all 

points in the search path are memorized. At the end of each parameter 

U identification, the direction pointing from each point in the search 

path to the optimum parameter values is stored in a memory cell 

corresponding to the search situation. This extra learned direction 

is the one selected when the same search situation is encountered 

again. The SDL method is described in Section 3.5. 
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3.2 Basic Parameter Identification Algorithm 

In this section, the basic parameter identification algorithm 

used with both learning parameter identification methods is described. 

The algorithm is based on breaking the search for the minimum error 

U functional, in the multidimensional parameter space, into a sequence 

n of much simpler, unidimensional searches. A block diagram of this 
LI 

algorithm is shown in Figure 3-1. The algorithm can be divided into 

r four steps: 

a. Initialization. In this step, the experimental points are 

obtained as well as appropriate initial parameter values, 

from which the iterative search for the minimum error 

functional starts. 

b. Direction selection and unidirectional search. In this step, 

a direction is selected from a subset of basic directions 

containing all directions not included in the list of 

n unsuccessful directions. A search along the line defined by 
u • 

the selected direction and by the current value of the 

parameters is performed. This search is continued until the 

minimum error functional on the line is found. Details of 

the unidirectional search are given in Appendix C. 

c. Checking the search progress. This step checks whether or 

not the parameter values have changed significantly during 

the last search along the line. If they have not changed 

significantly, then the selected direction is included in a 

list of unsuccessful directions and step "d" is executed. 
22 
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FIGURE 3-1. Block diagram of the basic parameter identification 
algorithm. 
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Otherwise, the list of unsuccessful directions is changed to 

contain only the last selected direction. The last 

direction is always included in the list of unsuccessful 

directions because the parameter values after the 

unidirectional search are already at the minimum along that 

direction. 

d. Convergence check. This step verifies whether unsuccessful 

searches have been performed along all available directions. 

In this event, the iterative process has converged to the 

optimum parameters and the search is ended. Otherwise, step 

"b" is repeated by selecting a direction among those not 

J included in the unsuccessful list. 

j—j It can be shown (see Appendix B) that if the set of directions 

chosen spans a complete set in parameter space, and if the error 

functional is a unimodal function of the parameters, then this method 

always converges to the minimum. However, the efficiency of this 

J method will depend on the set of directions available and on the 

n selection of the direction in each iteration. 

3.3 Search Situation Characterization 

A learning parameter identification method requires: (a) the 

ability to characterize the situation and (b) a memory associated to 

_| each situation where the information learned is stored. The concept 

^ of regions in a feature space, used to characterize the search 

•""̂  situation for the two parameter identification methods, is described 
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in this section. 

For a given class of parameter identification problems, where the 

same model, F(P), is used to represent the experimental points, "Y^, 

the state of the search (or search situation) is completely 

characterized by the experimental points, "Y_", and the current value 

of the parameters, "F*. 

Let the situation space be defined as the (N+K)-dimensional space 

whose coordinates are the "N" experimental points and the "K" 

components of the current parameter vector. Let 5P, the correction 

r vector, be defined by 

1 6P = P* - P . 3-1 

j-j where P* is the optimum parameter vector for the given set of 
u * 

experimental points. Since the optimum parameter vector, P_ , is 

uniquely defined by the experimental points (except for pathological 

cases discussed in Section 2.4), each point in situation space 

corresponds to one, and only one, point in parameter correction space. 

This map of the situation space into the parameter correction space is 

described by the unknown functional relationship 

Although in principle one could consider a scheme to learn this 

functional relationship directly, the high dimensionality of the 

situation space makes this approach altogether impractical. Instead, 

a lower-dimensional space, the feature space, will be used to 

25 



characterize the search situation. 

Let the feature space be defined as an I-dimensional space whose 

coordinates, called features, are functions of the experimental points 

and of the current parameter values. These features can be expressed 

by the following functional relationship 

where f_ is an I-dimensional feature vector ( I < N+K ), and 

W(Y_,P) is some functional relationship that extracts the 

n relevant features from the situation space. 
u 

Equation 3-3 defines a map connecting each point in situation 

space to one, and only one, point in feature space. The maps of the 

situation space into the parameter correction space and into the 

feature space are illustrated in Figure 3-2. 

On the basis of the newly defined feature space, one endeavors to 

construct a functional relationship between the feature space and the 

parameter correction space in the form 

= M( f_ ) , 3-4 

which affords the advantage of being a much lower-dimensional 

mapping than the one defined by Equation 3-2. However, because of the 

reduction in dimensionality from the situation space to the feature 

space, the map defined by Equation 3-3 is not an invertible map, in 

the sense that two or more points in situation space may map into the 

same point in feature space. Therefore, as illustrated in Figure 3.2, 

n 

u 
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FIGURE 3-2. Maps of the situation space into the feature space and 
into the parameter correction space. 
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each point In feature space may correspond to more than one point In 

parameter correction space. 

To construct the functional relationship in Equation 3-4, the 

concept of "fuzzy-map" is introduced, which is defined as follows. 

Two spaces, "A" and "B", are said to be related by a fuzzy-map 

when to a generic point "â ' in "A" there corresponds a subset ( b^ } 

of points in space "B", that share some common characteristics (i.e. 

have a degree of similarity among themselves) as measured by some 

heuristically determined consistency index, "c". Then a map can be 

constructed that associates a generic point "â ' to one, and only one, 

point in "B" which is defined by the mean vector of the subset 

The application of the fuzzy-map concept to the feature and 

parameter correction spaces leads to the following mapping 

relationship: 

To each generic point in feature space, "f_", one associates a 

vector , 6P, in parameter correction space defined as the mean vector 

of the set { 6Pj } (j=l,...,J) which corresponds to the point "f_". 

The consistency index, "c", is defined by 

6P 
3-5 
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with 

J — 1 i 

and 

wr = 4 y. !6P. . 3-7 

On account of Equation 3-5, the consistency index is a number 

between zero and one that quantifies the degree of similarity between 

the vectors in the set { 5?^ }. Consistency values close to one 

correspond to a high degree of similarity between the correction 

vectors in the set { }, while values close to zero correspond to a 

PI low similarity between the vectors. 

^ There is not a systematic way to choose the feature space 

n coordinates, but the consistency is a criteria to rank different 

u 
feature spaces. 

Two types of features were used throughout this work: 

a. Feature spaces where the coordinates are moments of the 

residues; i.e. 

where p is the vr^ moment of the residues, n 

w^ is the independent variable, and 

(Y^-F^) is the residue at the point w^. 

b. The coordinates are differences between some relevant 

characteristics of the experimental points and of the 

29 
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calculated points. As relevant characteristics, the center 

frequency of resonances and the root aean square over certain 

frequency ranges have been used. 

For practical reasons, the continuous feature space was 

J coarse-grained by grouping similar feature vectors into hyperspheric 

—i regions defined by center coordinates and a radius. The current 

state of the search is said to belong to a feature region when the 

calculated features fall within a distance from the region center less 

than or equal to the region radius. In the event that the calculated 

features fall within more than one region, the state of the search is 

said to belong to the region whose center is closer. 

Let "R" be a generic region in feature space and let be the 

mean value of all correction vectors corresponding to any point in the 

region "R". The mapping defined by 

n 

n u 
R ==> 6P^ 3-9 

is the subject learned by the two learning methods described in the 

following sections. In the FDL method, the mean correction vector is 

approximated by one of the fixed directions, while in the SDL, an 

J estimate of the mean correction vector is learned directly. 

~| The definition of consistency of a point in feature space can be 

extended to consistency of a region by defining the mean values in 

Equation 3-5 over the set of all correction vectors corresponding to 

points within the feature region. 

U—I The consistency of a region can be used as a criteria for 

n 30 



r 

u 

U 

choosing the region radius. The selection of the region radius is a 

compromise between memory requirements and the region consistency. In 

Section 3.5.3, a way to estimate the consistency for the SDL method is 

described. 

3.4 Fixed-Directions Learning Parameter Identification (FDL) 

The FDL method introduces learning to the basic parameter 

identification algorithm described in Section 3.2. The term 

fixed-directions is used because the selection of directions is made 

among an initial set of directions, in contrast with the SDL method 

where an extra direction is learned for each different search 

situation. 

3.4.1 Overview of the FDL method 

|~ In Figure 3-3, a simplified block diagram of the FDL method is 

shown. After the initialization step, an iterative procedure starts. 

At the beginning of each iteration, the feature vector is calculated 

to characterize the search situation, and a check is performed to 

verify whether or not the calculated features belong to an existing 

region. If they do not belong to an existing region, then a new 

region with center coordinates equal to the calculated features is 

created. A direction is selected as explained in Section 3.4.4, and a 

search for the minimum error functional, along the line defined by the 

current value of the parameters and the selected direction, is 

performed (see Appendix C for details). At the end of the 
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FIGURE 3-3. Block diagram of the Fixed-Directions Learning Parameter 
Identification Method. 
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unidirectional search, the index of performance is evaluated (Section 

3.4.2), and the information in the memory cell corresponding to the 

feature region is updated (Section 3.4.3). The convergence check is 

performed as explained in Section 3.2. 

On the average, the parameter identification efficiency increases 

as more parameter identifications are performed because (a) the 

probability increases that the features fall in an existing region, 

which permits selection of the directions according to their weights and 

(b) the uncertainty in the weights decreases as more updates are 

performed. Eventually, the whole feature space gets partitioned in 

regions, all calculated features fall in existing regions, and all 

directions are selected according to their weights. 

[_ 3.4.2 Index of performance 
n 1 n 

p Let Q and be, respectively, the error functional at the 

beginning of iteration "A" and the error functional at the end of the 

same iteration; in which the unidirectional search was performed along 

the direction "1". The index of performance for direction "i" in the 

situation existing at the beginning of iteration " 1" can be defined 

as: 

I 5 ~ ' 3-10 
Qi 

The best direction for that situation, " j " , can be defined as the 

direction whose index of performance satisfies 
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= MAX . 3-11 
^ 1 

~ 1 The goal of the FDL method Is to learn how to select the best 

direction for each search situation. 

3.4.3 Memory organization and updating 

For each region in feature space, i.e. each search situation, a 

memory cell is assigned. The memory cell corresponding to a generic 

J region, "R", contains the following information: 

r-

'-̂  (1=1,2,... ,1) - coordinates of the region center, 

r (j=l,2,...,M) - the weights of each direction in the 

search situation corresponding to this region. 
n 
I Uj (j=l,2,...,M) - the number of times each direction was used 

within this region. 

I^ - the lowest index of performance of any 

direction when used within this region, and 

d - The average distance moved in parameter space 
independent of the direction used. 

n After performing each unidirectional search, the index of 
i—: 

performance is evaluated, and the information in the memory cell 

corresponding to the feature region at the start of the unidirectional 

search is updated. If direction " j " was selected to define the line 

' for the unidirectional search, its weight is modified by the linear 

n reinforcement scheme 
u 
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(W^) = a.W^ + (l-a).I^ , 3-12 
J up J 2 

where is the weight of direction j, in the feature region 

at the start of the unidirectional search, before 

updating, 

(W.) is the corresponding updated weight. j up 
I 
•j 
I . is the direction index of performance during the 

last unidirectional search, and 

a is the learning factor. 

The updated weight will increase when the index of performance 

is larger than the weight before updating, and it will decrease when 

the index of performance is smaller. The learning factor, "a", is a 
n 
LJ number between zero and one that controls how fast the weight is 

allowed to change during each update. When the learning factor is 

close to one the change is very slow, and when close to zero the 

change is very fast. A value of the learning factor given by 

R 

n. + 1 
3-13 

was typically used. This value makes the weight of a direction equal 

to the average index of performance in the region. 

The remaining information in the cell is updated as follows: 
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^^^up "j a, + i 

(if) = I^ if I^ < I? , otherwise remains the same. 

and (d^) = a.d" + (l-a).|P -P up '—o — 

where P^ is the parameter vector before the unidirectional search, and 

P_ is the parameter vector after the unidirectional search. 

3.4.4 Direction selection 

3-14 

3-15 

3-16 

Two schemes for direction selection were used. Before all 

directions have been used in a region, a direction not yet utilized is 

selected either sequentially'or at random. After all directions have 

been selected at least one time in the region, a direction is 

statistically selected from a selection probability defined as 

where j 

(W^ - if + 1/N^ )^ 
3-17 

M 
I (W^ 1/N^ )' 

1=1 

is the selection probability of direction j, 

is the total number of times the memory cell has been 

updated, and 

is the probability enhancement parameter, which should 

reflect the degree of confidence in the weights 

(typically k= N^/M has been used). 
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3.5 Single Direction Learning Parameter Identification (SDL) 

In the previous section, the FDL method was described in which 

the efficiency of the parameter identification is improved by learning 

how to select the direction that maximizes the index of performance at 

each iteration from a set of fixed directions. In the present method, 

the basic parameter identification is performed in the same way, but 

an extra direction is learned for each region in feature space (or 

each search situation). The learned direction is an estimate of the 

region mean correction vector defined in Section 3.3. 

Since, for this method, a new direction vector is defined for 

each region in feature space, the basic set of directions can be 

reduced to the minimum necessary to assure convergence. Typically, a 

number of basic directions equal to the number of parameters was used, 

where each direction is aligned with one of the coordinate axes in 

parameter space. 

r 
J 3.5.1 Overview of the SDL method 

In Figure 3-4, a simplified block diagram of the SDL method is 

shown. As in the FDL method, an iteration is started by calculating 

~| the features and checking whether or not the calculated features 

belong to an existing region in feature space. If not, then a new 

region is created whose center coordinates are the calculated 

features. After that, the region number and the current value of the 

parameters are saved for posterior updating of the memory (see Section 

3.5.2). In step "f", as in the FDL method, a direction is selected, 
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FIGURE 3-4. Block diagram of the Single-Direction Learning Parameter 
Identification Method. 
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and an unidirectional search is performed. In contrast with the FDL 

method, no memory updating is performed during the iterations, but 

only after the parameter identification has been concluded. 

When the search is finished, the region number and the parameter 

r values at the beginning of each iteration are known, as well as the 

optimum parameter values. The differences between the optimum 

parameters and the value of the parameters at the beginning of each 

iteration are samples of the correction vector defined in Section 

3.3. These samples are used to update the estimate of the region mean 

correction vector in the corresponding memory cells (see Section 

3.4.2). 

,_j Besides the region dependent information, this method keeps the 

,-| directions in a priority queue with the highest priority direction in 

front. When the learned direction is not available, the direction in 

f the front of the queue is selected. The priority of the directions 
lJ 

are updated according to the index of performance and according to the 

J direction of the last direction selected (see Section 3.5.5). This 

r-| priority queue helps to improve the parameter identification 

efficiency both during the first parameter identifications (when the 

learned directions are available for a few regions only) and at the 

end of each parameter identification, when the basic directions must 

_] be selected to assure convergence. 

— As in the FDL method, the parameter identification efficiency 

increases, on the average, as more parameter identifications are 

performed because (a) the probability increases that the features fall U 
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In existing regions, which permits selection of the estimate of the mean 

correction vector for the unidirectional search, and (b) the 

uncertainty in the estimate of the mean correction vector decreases as 

more updates are performed. Eventually, the whole feature space gets 

partitioned into regions, all calculated features fall in existing 

regions, and an estimate of the mean correction vector is available 

for all regions. 

3.5.2 Memory organization and updating 

The information stored in memory for region "R" in parameter 

space is: 

f^ (1=1,...,!) - coordinates of the region center, 

n - average correction vector, 

A - average magnitude of the correction vector, 

and 

N - total number of times the region has been 
updated. 

0 0 

Let R and P_ be the region number and the parameter vector at 

iteration "X" of a parameter identification, where "L" iterations were 

necessary for convergence. For each of the "L" iterations, the 

information in the memory cell corresponding to the region at the 

beginning of the iteration is updated as follows: 
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up 
R * X a.^r + (1-a). P -P^ 

and (N^)^p = + 1 , 

where a = j , 

+ 1 
* L 

and P = P , the optimum parameter vector. 

3-18 

3-19 

3-20 

3-21 

n 

3.5.3 Region consistency estimation 

The average magnitude of the correction vector and the average 

correction vector are used to estimate the consistency of a region, 

"R", as: 

P̂ 
.R 3-22 

n 
The consistency gives an idea of how much the correction vector 

varies in a region. If the direction of the correction vector is the 
R.I 

same every time the region is updated, "C " will be equal to one. In 

the extreme case where the directions are completely random, the 

consistency will asymptotically converge to zero as more updates are 

performed. 

The consistency is very useful in determining the adequacy of the 

feature space and region sizes chosen. It is used to attach a 

confidence index to the learned direction, in order to save 

computational effort during the unidirectional search (see 
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Appendix C), and co avoid selecting the learned direction when the 

consistency is lower than a threshold. 

3.5.4 Direction selection 

The direction selected is always the learned direction unless one 

of the following conditions exist: 

a. The current region is a new region (no learned direction 

available). 

b. The current region is the same as the one in the previous 

iteration. 

c The region consistency is less than 0.1. 

In the event that one of the above conditions arise, the direction 

selection is performed with the help of a direction priority queue. 

The direction in the first place of the queue, i.e. the direction 

having highest priority, is selected. 

In the beginning of a parameter identification, the priority of 

n the basic directions are initialized giving higher priority to the 

directions that have been used more frequently in past parameter 

identifications. However, for the first iteration, the direction in 

front of the queue Is the direction that has the highest average 

performance in the first iterations of previous parameter 

identifications. 

U 
n 
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3.5.5 Direction priority updating 

The priority of the direction selected is updated according to 

its index of performance (see Section 3.4.2), as follows: 

(^i>up = «-^1 +(l-«)Ii . 3-23 

where T̂ ^ is the priority of direction 1 before updating, 

(T^)^p is the updated priority, and 

is the index of performance of the selected direction. 

It is desirable to update the priority swiftly, therefore, a low value 

for the learning factor "a" (typically 0.1) is used. 

The priorities of all directions are updated to reinforce the 

directions that are very different from the selected one and to 

penalize the directions that are similar to the selected one. The 

following updating scheme is used: 

( T ) = T . [ ? , 3-24 
^ J 1 + 3.(cose.^)'^ 

where 0^^ is the angle between the selected direction and the 

one whose priority is being updated. 

With this scheme, the priority of the directions orthogonal to the 

selected one are doubled, while the priority of the directions very 

similar to the selected one are halved. 
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CHAPTER 4 

COMPUTER SIMULATION RESULTS 

4.1 Introduction 

During the development of the learning parameter identification 

methods described in Chapter 3, a large number of computer simulations 

were performed to compare different strategies for direction 

selection, weight updating techniques, and different feature space 

definitions; as well as to check the validity of the methods. In 

this chapter some basic results,as well as a comparison between the 

LJ FDL and the SDL methods, is presented. Also presented is a comparison 

r-j between the SDL method and the Direct Fit method of Hooke and Jeeves 

(12). 

Two system models, which are described in Section 4.2, were used 

for the computer simulations. The techniques used in the simulation 

L) of experimental data are described in Section 4.3. In Section 4.4, a 

|—j graphical technique to visualize the mapping between the feature space 

and the parameter correction space is described. In Sections 4.5 and 

[' 4.6, the results of some simulations with the FDL method and with the 

SDL method are presented. 
n 
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4.2 System Models Used for Parameter Identification 

Two system models were used in the simulations presented in this 

chapter: (a) a simple dynamic model represented by a second order 

ordinary differential equation, and (b) a fourth order state variable 

model for a U-tube steam generator. 

The second order ordinary differential equation model used was 

2 dx , dx , 1. du . , ,.1 y+ an +a„x = b.; + b»u , 4-1 
dt dt dt 

where x is the system variable considered measurable, 

u is the system single input, and 

aQ, a^, bg and b^ are constant coefficients. 

Laplace transforming Equation 4.1, assuming zero initial 

conditions, and rearranging yields 

LJ X ( 3 ) ^ I , 4-2 
u(s) s +a^s+ag 

which is by definition the system transfer function, g(s). Applying 

Equation 2-5 for a single input, single output system yields 

b^. .hi 

X X 2 9 2 2 
(ag - w ) + w a ^ 

where S (w) is the system variable PSD, and 

S (w) is the input PSD. uu^ ' *̂  
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Two parameters were identified with this model: â ^ and S^^ 

(which was considered independent of the frequency). The typical 

value of the coefficients and parameters were 

ao = 2 . a^ = 1 , bo = 1 , = 1 , and S^^ = 1 . 

The PSD of the system variable for two values of parameter a^ is 

shown in Figure 4-1; in Figure 4-2, the same PSD is shown for two 

different values of S^^. 

n The noise model for the U-tube steam generator was derived from 
u 

basic conservation equations ( see Appendix F ) in a similar way to 

that described by All (31). The state variables in this model are: 

1. STp - variation from equilibrium of the temperature of the 

primary water inside the tubes, 

2. STm - variation from equilibrium of the temperature of the 

metal tubes, 

3. 5P - variation from equilibrium of the secondary pressure, 

and 

4. anw - variation from equilibrium of the mass of secondary 

water. 
The input variables are: 

1. STpl - variation from equilibrium of the primary water inlet 

temperature, 

2. A I F I - variation from equilibrium of the enthalpy of the 

feedwater, 

3. A W F - variation from equilibrium of the feedwater mass flow 

rate, 

U 
n 
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FREQUENCY (Hz) 

FIGURE 4-1. System Variable PSD for a^ = 1 (thick line) and for 
a^ = 1.1 (thin line). 

47 

r . - i ' - . ' . R f- W l..!CL E APT: S 



n 

r 
I L 0.0 0.1 0.2 0.3 

FREQUENCY (Hz) 
0.4 

FIGURE 4-2. System Variable PSD for S^^ = 1 (thick line) and for 
S =1.1 (thin line), uu 
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4. a w s - variation from equilibrium of the steam mass flow rate, 

and 

5. aims - variation from equilibrium of the overall heat transfer 
coefficient between the metal tubes and the secondary 

side. 

The detailed model equations for a PWR steam generator are given 

in Appendix F. In Figures 4-3 through 4-7, the frequency responses of 

the primary water temperature, STp, with respect to each of the input 

variables are shown. 

4.3 Simulation of Experimental Data 

The experimental data were simulated by adding experimental 

n errors to the exact values calculated using the model equations. The 
L 

probability distribution of the errors added was similar to the 

probability distribution of experimentally measured data, as explained 

below. 

For experimental PSD data, it is known (32) that the relative 

standard deviation of the PSD estimates, Ŝ '̂*, obtained by averaging 

"n" estimates computed from independent time records (n-block 

estimate) is given by 

- £ L 1 ^ = n-^/2 . 4-4 

U Furthermore, the probability distribution function of the PSD 

estimates can be well approximated by a Gaussian distribution for 
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FIGURE 4-7. Frequency response of the primary water temperature to 
metal-secondary heat transfer coefficient. 
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number of blocks greater than 15 (32). 

To simulate an n-block experimental PSD with the above 

distribution, the following expression was used: 

s 

where Ŝ '̂ ^ is the simulated experimental PSD, 

F is the exact value of the PSD calculated with the model 

equations, and 

e is a random variable with a normal probability 

distribution. 

The normal random variable, e, was generated using the expression (33) 

e = (-2. Jin-Tĵ î ^ cos(2iii:2) , ^-6 

where -ĉ  and X2 random numbers uniformly distributed in the 

interval from zero to one. 

4.4 Features and Feature Space Consistency 

As discussed in Section 3.3, an essential aspect of the learning 

|—I methods is the utilization of a suitable feature space. For a two 

parameter, two feature, parameter identification, the adequacy of the 

feature space selected can be verified by graphical techniques. The 

"fuzzy map" from feature space to parameter correction space can be 

visualized using the following procedure: 

1. Simulate the experimental data for an arbitrary true parameter 
J T 

vector, P_ . 
55 
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2. Generate a random parameter vector, P_ , and evaluate the two 

components of the feature vector. 

3. Draw at the position corresponding to the calculated features 

a line segment making an angle with the axis fl equal to the 
T R 

angle that the correction vector, P_ -P_ , makes with the Pĵ  

axis. 

4. Repeat steps 1 through 3 until the map becomes well defined. 

Figure 4-8 shows a graph created using the above procedure. This 

graph was constructed using the second order differential equation 

model described in Section 4.2. The two dimensional feature space 

components were proportional to the area of the residuals and to the 

first moment of the residuals, defined by the following expresions: 

1 = — I W^/2 (Y^ - p p , and 4-7 
A 1=1 

N 
f2 = — ^ I - (w^ - w) , 4-8 

1=1 

N 
I 

i-1 

r III 
With A = }. W^' Y^ , and 4-9 

N 
w — I w. . 4-10 

^ 1=1 ' 

It can be noticed in Figure 4-8 that the directions of the 

correction vectors are well defined within regions in feature space. 

This indicates that this feature space has a high (close to one) 

consistency index (see Section 3.3). It can also be noticed that the 

u 
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FIGURE 4-8. Visualization of feature space into parameter correction 
space mapping. 
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direction of the correction vector differs more between neighboring 

points close to the origin than for neighboring points in the 

peripheric regions. It was for this reason that the regions radii in 

feature space were chosen as a linearly increasing function of the 

distance from the origin. 

This graphical technique is very useful in deciding the size of 

the regions and the adequacy of the feature space. Unfortunately, it 

is not possible to use this technique for higher-dimensional feature 

spaces or parameter spaces. 

4.5 Fixed-Directions Learning (FDL) Method Results 

4.5.1 Results with the second order differential equation model 

Many tests were performed with this model because of its 

intrinsic simplicity. In this section, a detailed presentation is 

given of the results of a series of paraneter identifications 

performed under the conditions specified in Table 4-1. For these 

results, a two dimensional feature vector, whose components are 

specified, respectively, by Equation 4-7 and Equation 4-8, was used. 

The learning ability of a parameter identification method can be 

shown as a learning curve, which is a plot of the computational time 

required per parameter identification as a function of the number of 

identifications performed. The learning curve presents statistical 

fluctuations due to the random nature of the parameter identification 

procedure. To decrease the amount of fluctuations, the learning curve 

is repeated several times and the results are averaged. Typically, 
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TABLE 4-1. Simulation conditions used to generate the results 
presented tn Figures 4-9 through 4-13. 

Model - Second order differential eq. 

Parameters identified " ^1 ^uu 

True parameters interval 

(uniformly distributed) . . . - 0.9 to 1.1 (all parameters) 

Initial parameter values . . . . - 1.0 (all parameters) 

Experimental points - S 

Number of frequency points . . . - 50 

U Frequency range (uniform) - 0.02 Hz to 1 Hz 

Experimental error - 1% 

Number of features - 2 

Region size - (radius) =0.003 + 0.2(distance) 

Number of directions - 13 

Precision criteria - 0.0001 

n Number of parameter 
[_ identifications per series . . - 50 

r 

u 

Number of series - 100 

59 



n 

the computational time required to perform the first parameter 

identification is high but it decreases rapidly for the subsequent 

- parameter identifications, reaching an approximately constant level 

—' after a certain number of parameter identifications. 

n The learning curve shown in Figure 4-9 was obtained by averaging 

100 series of 50 parameter identifications each. The number of 

unidirectional searches executed during each parameter identification 

was used as a measure of the computational time. It can be noticed 

^ that the number of unidirectional searches per parameter 

n identification decreases from an average of 90, for the first 
J 

parameter identification, to an asymptotic value of approximately 20. 

The corresponding total average number of regions in feature 

i—, space for these series of parameter identifications are shown in 

Figure 4-10. Predictably, the rate at which the regions are created 

per parameter identification decreases with the number of parameter 

identifications performed. The regions created in feature space 

during the last series of parameter identifications are shown in 

Figure 4-11. 

It can be seen in this figure that most of the space near the 

origin has been partitioned into regions. Each existing region has a 

learned direction; therefore, when the features fall in existing 

regions, the search proceeds along learned directions (which point 

toward the minimum in the ideal case). When the parameters are close 

to the optimum values, the features are close to the origin (i.e. in 

existing regions) from the feature definition. As a result, part of 

u 

u 

u 
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FIGURE 4-9. Learning Curve (conditions in Table 4-1). 
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the search path for all parameter Identifications is close to the 

origin of the feature space. These facts makes subsequent parameter 

identifications converge faster since their paths will pass near the 

origin, which is in a set of regions containing optimal learned 

directions. 

When the experimental data are computer simulated, the true value 

for each parameter is known. Thus, it is possible to plot the true 

value of the parameters versus the identified values to verify the 

variance of the identified parameters and any convergence problems of 

the parameter identifications. In Figure 4-12, a plot of the true 

value of parameter 1 versus the identified value of parameter 1 is 

shown for all the parameter identifications in these series. In 

Figure 4-13, the corresponding plot for parameter 2 is shown. The 

good agreement between the true parameters and the corresponding 

identified values can be noticed from these figures. The difference 

between the true parameters and the identified parameters is caused by 

the experimental error and, in the limit, when the experimental error 

goes to zero, the identified parameters become equal to the true 

parameters. 

4.5.2 Results with the steam generator model 

Tests were also performed using simulated data from the steam 

generator model with either two or three parameters. For the two 

parameter case, the results were, in general, similar to the results 

obtained using the second order differential equation model, with the 

significant exception that, for the steam generator model, the error 
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FIGURE 4-13. Plot of true-versus-ldentlfled Parameter 2. 
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functional surface is not unimodal, i.e. it exhibits more than one 

J minimum. 

-| Figure 4-14 is an isometric contour representation of the error 

functional surface for the PSD of the primary water temperature 

between 0.001 and 0.1 Hz as a function of the primary water mass flow 

rate and the overall heat transfer coefficient between the metal tubes 

J and the secondary side. It can be seen that this surface has four 

-] minimum points in the range plotted. The true minimum occurs when 

both parameters equal one, which is the normalized reference value for 

r each parameter. The local minima correspond to non-physical 

solutions where at least one of the two parameters is negative. 

J Sometimes during the parameter identifications, the search converged 

-| to the local minimum with positive mass flow rate and negative heat 

transfer coefficient, but these solutions were rejected by the 

hypothesis tests. The parameter identification, in that case, was 

restarted until convergence to the true minimum was obtained. 

Several tests were performed to verify the influence of various 

factors on the learning curve. Figures 4-15 through 4-17, for 

example, show the learning curves obtained under the conditions 

specified in Table 4-2, but for different numbers of directions, i.e. 

3, 13 and 25, respectively. It should be noticed from the comparison 

of the three curves that (a) three directions are obviously too few, 

hence hardly any learning is achieved, (b) the 13-direction case 

showed a substantial improvement in both learning speed and final 

performance, and (c) the 25-directlon case, although it showed a 

u 

67 



P a r a m e t e r 1 

FIGURE 4-14. Isometric contour representation of the error functional 
surface (for one PSD). 
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FIGURE 4-17. Learning Curve (FDL method; 25-directions). 
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TABLE 4-2. Simulation conditions used to generate the results 

presented in Figures 4-15, 4-16, 4-17 and 4-19. 

n 

Model - Steam generator model 

Parameters identified - Primary water mass flow rate 
Metal-secondary heat transfer 

coefficient 

True parameters interval 

(uniformly distributed) . . . - 0.5 to 1.5 (all parameters) 

Initial parameter values . . . . - 1.0 (all parameters) 

Experimental points - Primary water temperature PSD 

Number of frequency points . . . - 20 

Frequency range (uniform) - 0.001 Hz to .1 Hz 

Experimental error - 1% 

Number of features - 2 

Region size - (radius) =0.0005 + 0.3(distance) 

Number of directions - 3, 13 and 25 (see text) 

Precision criteria - 0.0001 

Number of parameter 
identifications per series . . - 100 

Number of series - 50 
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longer learning period due to the increased number of directions and 

the resulting increased number of associated manipulations, produced 

better estimates of the parameters than the 13-direction case. 

In the three parameter tests, the PSD of the variation from 

equilibrium of the steam mass flow rate was used as the third 

parameter identified. This PSD was considered independent of the 

frequency (white) in the frequency range used. A three dimensional 

feature vector was used in these tests, with the first two components 

given by Equations 4.7 and 4.8, and the third component given by 

N 

f 3 = - ^ I W j / ^ Y ^ - F^)(w. - w)2 . 4-11 
1=1 

'~ which is the second moment of the residuals. A set of simulations 
L 

were performed to compare different strategies in the direction 

selection: 

a. Normal selection. This is the selection strategy normaly 

used (see Section 3.3.4), 

b. tUndom selection. In this case, any available direction can 

be selected with the same probability, 

c. Sequential Selection. The directions are selected 

sequentially for this case, and 

d. Best direction selection. In this strategy, a search is 

performed in each direction and the parameter values are 

returned to the initial value after each search. The direction 

for which the search results in the lowest error functional 

LJ 

73 



n 

Is selected. For the purpose of the comparison below, the 

unidirectional searches performed to find the best direction 

are not counted. 

The same series of parameter identifications were accomplished 

using each direction selection strategy under the conditions specified 

in Table 4-3. For the random selection strategy, the series of 

parameter identifications was performed twice with different random 

numbers for the direction selection. The results of these simulations 

are summarized in Figure 4-18. 

As expected, on the average, the best direction selection 

presented the best performance followed by the normal selection (which 
n 
U should, in the ideal case, converge to best direction as more 

j—I parameter identifications are performed). The sequential selection 

ranked next in performance and the random selection demonstrated the 

worst performance. However, it may happen that a sequence of randomly 

selected directions perform better than a sequence of best directions, 

as in parameter identification number 8 (see Figure 4-18). This 

behavior is due to the discretization of the directions, and it can 

appear at some points in the search path when none of the directions 

point from the search point toward the minimum. 

Looking in detail at the directions selected during the parameter 

identifications for the best direction selection strategy, it was 

noticed that, for many parameter identifications, a sequence of three 

directions were consistently repeated. It was then hypothesized that 

the four dimensional error functional surface presented the equivalent 

n 
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TABLE 4-3. Simulation conditions used to generate the results 

presented in Figure 4-18. 

n 

L J 

n 
i 
u 

Model 

Parameters identified 

- Steam generator model 

- Primary water mass flow rate, 
Metal-secondary heat transfer 

coefficient 
Steam flow PSD 

True parameters interval 

(uniformly distributed) . . . - 0.9 to 1.1 (all parameters) 

Initial parameter values . . . . - 1.0 (all parameters) 

Experimental points - Primary water temperature PSD 

Number of frequency points . . . - 20 

Frequency range (log-uniform) . . - 0.001 Hz to .1 Hz 

Experimental error - 0.3% 

Number of features - 3 

Region size - (radius) =0.003 + 0.3(distance) 

Number of directions - 13 

Precision criteria - 0.0001 

LJ 

I—I 
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FIGURE 4-18. Comparison of several direction selection strategies 
(FDL method; conditions in Table 4-3). 
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0 
of a valley in a three dimensional surface. This valley was not 

aligned with any of the available directions, so that the search had 

to proceed in small steps. 

To test this hypothesis, the average direction, after several 

sequences had repeated, was calculated. This extra direction was 

added to the set of 13 directions, and the parameter identifications 

were repeated. After adding the extra direction, no more sequence 

repetition was observed, and the number of unidirectional searches 

decreased drastically. 

To quantify this improvement, a series of 100 parameter 

identifications were performed using the normal selection strategy, 
n 
[J both with 13 directions and with 14 directions. The average number of 
r 

n u 

u 

unidirectional searches required for convergence in the last 10 

parameter identifications were: 156 for the 13 directions, and 32 for 

the 14 directions. This vast improvement confirmed the hypothesis set 

forth previously and triggered the idea of the SDL method. 

4.6 Single-Direction Learning (SDL) Method Results 

In this section, some results of the SDL method for the steam 

generator model are presented. Some of the parameter identifications 

solved by the FDL method were also solved with the SDL method, so that 

a comparison of the two learning methods could be performed. A 

comparison with the Direct Fit method of Hooke and Jeeves (12) is also 

presented. 
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4.6.1 Results with the steam generator model 

The set of parameter Identifications for the conditions specified 

in Table 4-2 were repeated using the SDL method with three basic 

directions. The learning curve obtained is shown in Figure 4-19. 

This learning curve can be compared directly with the learning curves 

for the FDL method shown in Figures 4-15 through 4-17, which were 

obtained under the same conditions. For the best of the three cases 

with the FDL method (13-directions; see Figure 4-16), the average 

number of unidirectional searches, for parameter identifications 91 

through 100, is 39. The corresponding number for the SDL method is 

13, which gives a reduction of approximately a factor of three in the 

number of required unidirectional searches, 

p] In Figure 4-20, a learning curve is shown for a 3-parameter 
1 

identification problem obtained under the conditions specified in 

Table 4-4. A four dimensional feature vector was used whose 

components were the first four normalized moments of the residuals, 

given by 

N _ N 
f, = [ I (w,-w)2(J-l)]-l/2 ^ 1/2^^ ^ ^ ^ j - 1 ^ ^_^2 
J 1=1 ^ 1=1 ^ ^ ^ 

for j = 1, 2, 3 and 4. 

These features are normalized so that the variance at the convergence 

point is one. 

Another series of tests was perfomed using as experimental data 

two noise descriptors: the PSD of the primary water temperature and 

n 

L J 
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FIGURE 4-20. Learning Curve (SDL method; conditions in Table 4-4 with 
one PSD). 

80 



TABLE 4-4. Simulation conditions used to generate the results 
presented in Figures 4-20, 4-22 and 4-23. 

n 

Model - Steam generator 

Parameters identified - Primary water mass flow rate 
Metal-secondary heat transfer 

coefficient 
Steam flow PSD 

True parameters interval 

(uniformly distributed) . . . - 0.9 to 1.1 (all parameters) 

Initial parameter values . . . . - 1.0 (all parameters) 

Experimental points - Primary water temperature PSD 

(and steam pressure PSD) 

Number of frequency points . . . - 20 

Frequency range (log-uniform) . . - 0.001 Hz to 0.1 Hz 

Experimental error - 0.3% 

Number of features - 4 

Region size - (radius) =0.5 + 0.5(distance) 

Number of basic directions . . . - 3 

Precision criteria - 0.0001 

Number of parameter 
identifications per series . . - 50 

Number of series - 50 

81 



the PSD of the steam pressure. The minimization of the combined 

squared error of both PSDs improves the identifiability of the 

parameters. For two parameters, this fact can be visualized by 

plotting the error functional surface. In Figure 4-21, the combined 

error functional surface is shown as a function of the parameters: 

the PSD of primary water mass flow rate and the metal-secondary mass 

heat transfer coefficient. Comparing this surface with the one 

associated with the PSD of the primary water temperature only (see 

Figure 4-14), it can be noticed that, using the two PSDs, a new ridge 

appeared, separating the true minimum from the local minima. Hence, 

the likelihood of convergence to the local minima is decreased. 
n 
U In Figure 4-22, a learning curve is shown for the case of two 

n PSDs and three parameters. The other conditions are the same as the 

ones specified in Table 4-4. A four dimensional feature vector was 

used, where the features were the zeroth and the first normalized 

moments of each PSD. 

It can be seen, comparing Figures 4-20 and 4-22, that minimizing 

the error in both PSDs simultaneously significantly decreased the 

required number of unidirectional searches per parameter 

identification. This decrease is predominant for the first parameter 

identifications, i.e. before a significant learning is achieved. 

This means that for the case of one PSD only, the parameter 

identification is more difficult to perform. However, the SDL method 

still achieves comparable asymptotic numbers of unidirectional 

searches in both cases. 

n 
I 

u 
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FIGURE 4-21. Isometric contour representation of the error functional 
surface (for two PSDs). 
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4.6.2 Comparison with the Direct Search method 

Comparison of the SDL method with the Direct Search method (12) 

was made by solving some series of parameter identifications using 

both methods under the same conditions, i.e. the same initial value 

for the parameters and the same accuracy in the determination of the 

optimum parameters. The comparison was done for several cases using 

the steam generator model under the conditions specified in Table 4-4. 

Either the primary water temperature PSD only or the primary water 

temperature PSD and the steam pressure PSD were used as experimental 

r data. The following cases were used: 
L 

1. Primary water temperature PSD as experimental data, and 

1_| initial value for all parameters equal to 1.0. 

2. Primary water temperature PSD as experimental data, and 

initial value for all parameters equal to 4.0. 

3. Primary water temperature PSD as experimental data, and 

initial value for the parameters: parameter one equal to 

2.0, parameter two equal to 3.0, and parameter three 

equal to 4.0. 

4. Primary water temperature PSD and steam pressure PSD as 

experimental data, and initial value for all parameters 

equal to 1.0. 

5. Primary water temperature PSD and steam pressure PSD as 

experimental data, and initial value for all parameters 

equal to 5.0. 

In these comparisons, the total number of error functional evaluations 
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was used as a common measure of computational time. 

The number of error functional evaluations required by each 

method for a series of 50 parameter identifications of Case 1 is shown 

in Figure 4-23. It can be seen from this figure that even though the 

Direct Search method required less functional evaluations than the SDL 

method during its learning period ( first five parameter 

identifications), on the average, the SDL method required considerably 

less error functional evaluations than the Direct Search method. For 

instance, the average number of error functional evaluations for 

parameter identifications 21 through 50 was: 46 for the SDL method, 

and 148 for the Direct Search method. 

A series of 50 parameter identifications were solved by both 

methods also for the other four cases. The average number of error 

functional evaluations required by each method to perform the 

parameter identifications 21 through 50 of each series is given in 

Table 4-5. It can be seen in this table that the SDL method required 

less error functional evaluations for all cases. The advantage of the 

SDL method over the Direct Search method varied from a factor of 

three, for Case 4, to a factor of 10, for Case 5. 
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TABLE 4-5. Comparison between the Single-Direction Learning (SDL) 
method and the Direct Search method. 

CONDITIONS (other 
conditions in Table 4-4) 

Nvimber of PSDs parameter 
Case as experimental initial 

Number points values 

Number of error 
functional 

evaluations 

SDL 
Direct 
Search 

n 1 1 1. 1, 1 46.2 147.8 

2 1 4, 4, 4 65.3 234.2 

3 1 2, 3, 4 44.3 275.5 

4 2 1, 1. 1 34.3 99.9 

5 2 5, 5. 5 41.0 390.9 
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CHAPTER 5 

APPLICATION OF THE HEURISTIC LEARNING METHOD TO THE DIAGNOSTICS OF 

AN EXPERIMENTAL PRESSURE LOOP 

5.1 Introduction 

After the development and the testing of the learning methods 

n using computer simulated data, a "real world" application was achieved 
u 

by developing an automatic surveillance system for diagnostics of a 

\̂  experimental pressure loop. 

The description of the pressure loop is given in Section 5.2, and 

' the model for the loop pressure noise is described in Section 5.3. In 

~| Section 5.4, an overview of the automatic surveillance system is 

given. The results obtained are presented in Section 5.5. 
r-

„ 5.2 Description of the Experimental Pressure Loop 

The pressure loop is a small experimental device designed to 

_ study pressure noise, pressure sensor responses and sensing line 

^ responses. Although the loop is quite scaled down and operating at 

low pressure (typically 15 psl), it shows most of the pressure noise 

characteristics observed in the primary system of PWR plants. 
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A diagram of the experimental loop is shown in Figure 5-1, where 

the components were given labels corresponding to the analogous PWR 

components. The reactor vessel and the pressurizer are plexiglass 

tanks, and the lines are copper tubes. The dimensions of these 

components are given in Table 5-1. The pump shown is a centrifugal 

pump driven by a 1/2 HP eletric motor. The three pressure sensors are 

wide band pressure sensors, Valldyne model DP-7. These sensors 

present flat responses in the range of frequencies used in these 

experiments (below 10 Hz). 

In Figure 5-2 through 5-7, the PSDs of the three pressure signals 

and the CPSDs between these signals are shown. A resonance at 1.2 Hz 

is observed in those spectral densities, which is the Helmholtz 

resonance of the pressurizer—surge line—reactor vessel system. It 

arises from the oscillation of the water in and out of the pressurizer 

through the pressurizer surge line. This resonance can be modeled in 

terms of the oscillations of a spring loaded oscillator, whose 

inertial mass is the mass of water in the surge line, with an spring 

constant determined by the compressibility of the water in the reactor 

vessel. This type of resonance is observed in PWR plants in the range 

0.5 Hz to 1.1 Hz (27). A similar resonance is observed at 3.9 Hz, 

which is the Helmholtz resonance of the sensing line. This type of 

resonance has also been observed in PWR plants (27). 
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TABLE 5-1. Dimensions of the experimental pressure loop components. 

Component 

Dimensions 

type value unit 

n 
L 

Reactor vessel 

Pressurizer 

Sensing line 

Surge line 

Flow lines: 
pump to sensing line connection 

sensing line connection to 
surge line connection 

surge line connection to 
reactor vessel 

reactor vessel to pump 

diameter: 0.548 ft 
height: 2.417 ft 

diameter: 0.333 ft 
total height: 1.687 ft 
water level: 0.917 ft 

area: 2.01*10"'^ ft2 
length: 17.58 ft 

area: 2.01*10"^ ft^ 
length: 3.46 ft 

area: 1.115*10" 3 ft 
length: 7.08 ft 

area: 1.115*10" 3 ft 
length: 2.21 ft 

3 ^ 
area: 1.115*10" ̂ ft 
length: 7.50 ft 

area: 3.588*10" 3 ft 
length: 2.58 ft 
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5.3 Loop Pressure-Noise Model 

The model for the pressure noise at low frequencies used in this 

work was developed by Mullens and Thie (27). In this model, the water 

in the lines was considered incompressible, and the main physical 

phenomenon for the pressure noise in the tanks was considered to be 

the compressibility of the fluid inside. The electric analog circuit 

representing the pressure loop model is shown in Figure 5-8, where the 

inertia of the water inside the lines is analogous to inductance, the 

compressibility of the fluid in the the tanks is analogous to 

capacitance, and the deviation from equilibrium of the volumetric 

n water flow is analogous to current. 
u 

The inductances of the lines are given by (34) 
r 

0 ~ 
" where p̂ĵ  is the density of the fluid inside line "i", 

1^ is the length of line "i", and 

A.^ is the flow area of line "i". 

The capacitances of the fluid inside the tanks are given by (34) 

^1 = ' 5-2 
Pi ^1 

where is the volume of tank "i", and 

v^ is the speed of sound in the fluid inside tank "i' 
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FIGURE 5-8. Electric analog model of the pressure loop noise. 
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In Table 5-2, the values for all the pressure loop model 

parameters are given. The Inductances, and the capacitance of the 

pressurizer tank were calculated using Equations 5-1 and 5-2, 

respectively. The remaining parameters were obtained from a least 

square fit of the model to the measured spectral densities. 

The equations for the analog circuit in Figure 5-8 are obtained 

using the classical Kirchhoff electric network laws. Applying the 

first law to the three nodes yields the following equations: 

X^(s) + X^Cs) + X^(s) = 0 , 5-3 

J X2(s) - XjCs) + X^(s) = 0 , and 5-4 

X^(s) + X3(s) - Xg(s) = 0 , 5-5 

where X^(s) is the Laplace transform of the deviation from 

equilibrium of the volumetric flow rate in 
n 
Ll line "i". 

The application of the second Kirchhoff law to the closed path formed 

by lines 1, 2 and 3 (see Figure 5-8), with the path closed through the 
r 
;J ground, yields 

] - X^(s)Z^(s) + X2(s)Z2(s) + X3(s)Z3(s) - U2(s) = 0 , 5-6 

where Z^(s) is the complex impedance of line "1", given in general by 

n Z^(s) = sL^ + + l/(sC^) . 5-7 

— The corresponding equations for the closed paths formed by lines 3, 4 

and 5 , and by the lines 1, 5 and 6 are given, respectively, by 
n 101 
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TABLE 5-2. Experimental pressure loop parameter values. 

Parameter value Parameter value Parameter value 

n 

r 
i _ 

- - ^1 1.24*10"^ - -
4.41*10^ - - ^2 3.75*10^ 

5.46*10^ 3.20*10"^ ^3 3.27*10^ 

h 1.24*10^ - - \ 2.57*10^ 

1.07*10^ 5.74*10"'^ 2.79*10^ 

\ 4.20*10^ - H 2.71*10^ 

u 1 -4 Units for inductances are: Ibm.ft 
2 4 2 -1 Units for capacitances are: ft .s .Ibm 
3 -4 -1 Units for resistances are: Ibm.ft .s 
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X3(s)Z3(s) + X (̂s)Z (̂s) - X^(3)Z^(s) - û Cs) » 0 , and 5-8 

- X^(s)Z3^(s) + X3(s)Z5(s) + X^(s)Zg(s) - U g ( s ) = 0 . 5-9 

n 

U 

n 
I 

u 
n 

The signals measured are the deviations from equilibrium of the 

pressure in the reactor vessel, SPĵ ; of the sensing line pressure, 

5P3; and of the pressurizer pressure, 6P3. These pressures are 

related to the corresponding currents in the capacitors by the 

following expressions: 

X (̂s) = sĈ f̂iP̂ Cs) 

X̂ Cs) = sC36P3(s) and 

5-10 

5-11 

X̂ Cs) = sC36P5(s) 5-12 

U 

n u 
n 

By substituting Equations 5-10 through 5-12 into Equations 5-3 

through 5-6 and into Equations 5-8 and 5-9, and then eliminating 

X2(s), X^(s) and Xg(s), one obtains 

B(s) = H(s) 

OUj^(s) 

6u2(s) 

5u3(s) 

5-13 

where B and H are complex matrices with the non-zero elements given by 

b^3^(s) = -sC^[Z^ + + ̂ I'^e^^z^ 5-14 

b^2(s) = sC3Z3Z^/Z2 , 5-15 
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^ ^^3(3) = SC5Z3 , 5-16 

J b2i(s) = sĈ Ẑ Ẑ /Z2 , 5-17 

J ^22(3)= sC3[Z3 + Z^ + Z3Ẑ/Z2] , 5-18 

[] b23(s) = -sC5Zg , 5-19 

1 b3̂ (s) = sC^ , 5-20 

n b33(s) = SC5 . 5-22 

L. 

r 
L 

h^j^(s) = Z^/Z2 , 5-23 

h^3(s) = 1 , 5-24 

h2j^(s) = Z^/Z2 , and 5-25 

h22(s) = 1 . 5-26 

Equation 5-13 is in the same format as Equation 2-1, the general 

noise model equation. Therefore, Equation 2-5 can be used directly to 

calculate the spectral densities for the loop model. 

This model, although simple, predicts very well the loop pressure 

noise in the range from 0 to 5 Hz. In Figures 5-9 through 5-14, the 

model calculated PSDs and CPSDs of the three pressure signals are 

shown. These spectral densities were evaluated with the parameter 

values given in Table 5-2. The comparison of these calculated 

spectral densities with the corresponding experimental spectral 
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FIGURE 5-9. Calculated Reactor Vessel pressure PSD. 
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densities in Figures 5-2 through 5-7, shows very good agreement 

between the model and the experiment. 

5.4 Automatic Surveillance and Diagnostic System 

The analog signals from the loop pressure sensors were connected 

to the analog to digital converter of a PDP-11/44 computer with a 

RSX-llM operating system. The automatic surveillance system was 

implemented as a multi-task system supervised by a command file 

program. The information flow diagram between the different tasks (or 

programs) is shown in Figure 5-15, where the boxes represent the 

programs and the arrows represent the flow of information. The stacks 

are last-in-first-out storage areas. 

The four major programs in the automatic surveillance system are 

described below. 

SAMPLR. This program digitizes the signals from the three 

pressure sensors and stores them in time data files. This program 

also checks for overloading of the analog to digital converter. When 

an overload is encountered, the partial time data file is deleted, a 

message is issued, and digitization is restarted. At the end of the 

data sampling period, the digitized time data file is stored at the 

top of the time data stack. 

SPECTR. This program removes a time data file from the top of 

the time data stack, evaluates the spectral densities and stores the 

spectral densities data file at the top of the spectral data stack. 

DOCTOR. This program removes a spectral densities file from the 
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FIGURE 5-15. Information flow diagram for the task coordinator in the 

Automatic Surveillance and Diagnostic System. 
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top of the spectral data stack and analyzes the spectral densities 

looking for possible anomalies. It calculates some spectral 

characteristics (e.g. center frequency of resonances and power within 

certain frequency ranges ) and compares them with normal 

characteristics. When the evaluated characteristics compare favorably 

with the normal characteristics, the diagnosis is ended with the 

statement that the loop is in normal operation. When the 

characteristics do not compare well with the normal ones, a warning 

message is issued, the FITEXP program is activated, and the DOCTOR 

program waits for FITEXP to perform the parameter identification. At 

the end of the parameter identification, the DOCTOR program receives 

the values of the identified parameters and issues the final 

diagnosis. The spectra that have been analyzed are stored in the 

analyzed spectral stack. 

FITEXP. This program receives the experimental spectral 

densities from the DOCTOR program and performs a parameter 

identification using the SDL method (more details are given in the 

next section). At the end of the parameter identification, it passes 

to the DOCTOR program the values of the parameters identified, the 

final error functional, and the number of runs from the Wald-Wolfowitz 

test. 

The overall control of the above programs is accomplished through 

a command file program. This control program is responsible for 

starting the other programs when input data are available for them and 

for keeping the current information displayed on the terminal screen. 
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This display shows the current date and time, which programs are 

active, and the number of data files in the stack. 

In Figure 5-16, a typical screen display is shown. The screen is 

divided into three major areas with contrasting backgrounds to aid the 

user in locating and assimilating the information provided. 

The top area is where the command file program displays the 

current information. On the left side of this area, the current time 

and date is displayed. The central part displays the active programs. 

Finally, the number of data files in each data stack is displayed on 

the right side. 

The central area is used to interact with the computer and to 

_ display temporary infotrmation. For instance, in Figure 5-16 the 

r-| calculated characteristics of the current set of spectra being 

analyzed is displayed. 

The bottom area is used by the program DOCTOR to display the 

diagnostic messages. Each message begins with the time that the data 

_J was obtained, followed by the diagnosis of the loop operational 

r-i condition. The information concerning the current set of data being 

analyzed is displayed on the top (of the bottom area). When the final 

diagnosis is made, the information in this area is moved down to make 

space for the information on the next set of data to be analyzed. 

J With this procedure, the most recent analysis information is kept on 

—I the screen. For instance, in Figure 5-15, the data which was sampled 

starting at 21:13 is being analysed, and at 21:34 an anomaly was 

diagnosed as voids in the reactor vessel. 

Q 

1 114 



U l 

Rr-RES. 1,27 
-SL-FES. 3.97 

fiMS-PSDl RhS-PSD2 RhS~PS03 
0.l?97E'01 0.350ÛE-03 
0.2287E-0a - 0.50a6E-Oi -

Indication of aOCCES SENSIN6 LINE ••INVESTICATIk:' 

ÎÂnoaaïû diagnosed as tw^^lv^''^! 

O.Bcc 

lAnowala diagnosed 

FIGURE 5-16. Sample screen display from the Automatic Surveillance and Diagnostic System. 



Q 

u 

U 

5.5 Learning Paraiaeter Identification in the Diagnostics System 

— 

The FITEXT program performs the parameter identifications by the 

r~ Single-Direction Learning Method. This program is a version of the 

' SDLPI program (listed in Appendix E) which was adapted to operate with 

J the other programs in the automatic surveillance system. The 

objective of parameter identification in this system is to detect and 

quantify three types of anomalies, either separately or 

simultaneously. The three types of anomalies are: 

1. Air in the sensing line. This kind of anomaly usually 

occurs during the installation of the sensor, and it 

reduces the response of the system to high frequencies. In 

terms of the parameters of the model, the sensing line 

capacitance is increased. The most important effect of this 

anomaly seen in the spectral densities is the shift of the 

sensing line resonance to a lower frequency than normal- In 

Figure 5-17, the sensing line PSD for the normal operation 

condition is compared with the air in the sensing line 

anomaly. 

2. Clogged (or frozen) sensing line. This anomaly happens 

when deposits partially or totally block the sensing line 

internal area. Frozen sensing lines have also been observed in 

PWR reactors. The effect of this anomaly on the loop 

parameters is an increase of the sensing line resistance. In 

the spectral densities, this anomaly lowers the amplitude of 

the sensing line resonance. In Figure 5-18, this effect is 
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shovra in the reactor vessel PSD. This anomaly is implemented 

in the loop by partially closing a valve in the sensing line. 

3. Voids in the reactor vessel. This type of anomaly happened 

during the Three Mile Island accident, when steam, and later 

hydrogen, accumulated in the reactor vessel. The capacitance 

of the reactor vessel increases when any kind of fluid more 

compressible than the water is present. Figure 5-19 shows the 

P-. effect of this type of anomaly on the pressurizer pressure 

PSD. This anomaly was implemented by injecting air into the 

~1 reactor vessel. 

It should be noted that, although these anomalies can be observed in 

the pressure spectral densities, they do not cause significant changes 

in the steady state pressure. 

The reactor vessel capacitance, the sensing line resistance, and 

the sensing line capacitance were identified by the SDL method. The 

error functional included the PSDs of the three pressure signals and 

the three CPSDs, in the. range from 0 to 5 Hz. The real and the 

imaginary parts of the CPSDs were treated independently for the error 

functional evaluation. The statistical weights (Equation 2-7) 

utilized upper limits for the variance of the estimates (32) given by 

U 

r 
! U 

n 

^ n 

where C is either the real or the imaginary part of the CPSD xy 
variables "x" and "y". 
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FIGURE 5-19. Experimental Pressurizer PSD for normal operation (solid 
line) and for Voids in the Reactor Vessel anomaly (dashed 
line). 
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S is the PSD of variable "x", 
X X 

S is the PSD of variable "y", and 
yy 

n is the number of independent blocks in the CPSD estimate. 

For the pressure loop parameter identifications, a different type 

of features than the ones utilized in the previous work was used. As 

it can be seen in Figures 5-2 through 5-7, the pressure noise spectral 

densities present some characteristic resonances. The center 

frequencies and the amplitudes of these resonances change with the 

loop operational condition (see Figures 5-17 through 5-19). These 

characteristics were used to define the six dimensional feature vector 

components as follows: 

fl is the difference between the experimental and the model 

calculated reactor vessel resonance center frequency. 

f2 is the difference between the experimental and the model 

calculated sensing line resonance center frequency. 

f3 is the difference between the experimental and the model 

calculated amplitude of the reactor vessel resonance 

observed in the reactor vessel pressure PSD. 

f4 is the difference between the experimental and the model 

calculated amplitude of the reactor vessel resonance 

observed in the pressurizer pressure PSD. 

f5 is the difference between the experimental and the model 

calculated amplitude of the sensing line resonance 

observed in the reactor vessel pressure PSD. 

f6 is the difference between the experimental and the model 
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calculated amplitude of the sensing line resonance 

observed in the sensing line pressure PSD. 

In Figure 5-20, a learning curve is shown which was obtained 

under the conditions specified in Table 5-3. For the first 38 

parameter identifications in this curve, the experimental data were 

measured with the pressure loop in normal operation. For the other 12 

parameter identifications in the curve, one of the anomalies was 

implemented in the loop, as follows: 

Parameter identification Operational condition 

1 through 38 Normal operation 

39 through 42 Air in the Sensing line 

[-] 43 through 46 Clogged sensing line 

47 through 50 Voids in the reactor vessel. 

It can be seen in this figure that, for the parameter identifications 

r under normal operational conditions (1 through 38), the number of 
u 

error functional evaluations necessary for convergence decreased from 

aproximately 100, for the first parameter identifications, to 

aproximately 30, for parameter identifications 20 through 38 (after 

learning). For the anomalous data, the number of error functional 

evaluations increased, but to a level substantially lower than the 

initial level. This fact shows that part of the information learned 

with the experimental data under normal operational conditions can be 

used to help perform the parameter identifications under anomalous 

operational conditions. 

G 
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FIGURE 5-20. Learning curve (SDL method in the Automatic Surveillance 
and Diagnostic System). 
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TABLE 5-3. Parameter identification conditions used to obtain the 
results presented in Figure 5-20. 

n u 

n 

r 
L 

Model - Pressure loop noise 

Parameters Identified - Sensing line resistance 
Reactor vessel capacitance 
Sensing line capacitance 

Q 

Initial parameter values . . . . - PI = 0.50*10° 
P2 = 0.20*10 q 
P3 = 0.15*10 

Experimental points - Reactor vessel pressure PSD 
Sensing line pressure PSD 
Pressurizer pressure PSD 
CPSD between RV and SL 
CPSD between RV and PRZ 
CPSD between SL and PRZ 

Number of frequency points . . . - 42 

Frequency range (log-uniform) . . - 0 to 5 Hz 

Experimental error - 10% 

Number of features - 6 

Region size - (radius) =0.05 + 0.2*(distance) 

Number of basic directions . . . - 3 

Precision criteria - 0.0001 

Number of parameter 
identifications per series . . - 50 

Number of series - 1 
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The average value for the three parameters identified is given in 

Table 5-4, for each operational condition. It can be seen in this 

table that the only parameters that changed significantly following 

system anomalies were indeed the ones that should have varied during 

the anomalies. This shows that the FITEXP program did correctly 

identify the pertinent parameters. 

In Table 5-5, the volume of air injected, either in the reactor 

vessel or in the sensing line, is compared with the value of the the 

volume calculated from Equation 5-2 with the values of the parameters 

given in Table 5-4. It can be seen that the Identified values for the 

parameters give a reasonably good approximation for the true volume of 

air injected. 
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TABLE 5-4. Value for the Identified loop parameters for four 
operational conditions. 

Parameter value 

Type Normal Air in SL Clogged SL Voids in RV 

R, 3.27*10 

1.24*10 -8 
3.06*10' 

1.24*10 -8 

3.20*10~-'-° 4.04*10"-'-° 

6.68*10' 

1.23*10 -8 

3.06*10 -10 

3.23*10' 

2.18*10 -8 

3.16*10 -10 

n u 
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TABLE 5-5. Comparison between the identified and the measured volumes 
of air. 

Volume of air 

Anomaly Measured Identified 

Air in SL 

Voids in RV 

1.9*10~5 ft^ 

1.15*10"^ ft^ 

1.5*10"^ ft^ 

1.20*10"-^ ft^ 

u 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

A new Heuristic Reinforcement Learning Method has been developed 

and proven to be successful for the on-line detection of anomalies in 

an experimental pressure loop. This technique has far-reaching 

implications for on-line surveillance and diagiiostics of dynamic 

systems such as Nuclear Power Plants, Fossil Power Plants, and many 

other Industrial and manufacturing facilities. 

The accomplishments of this dissertation are highlighted in 

Section 6.2. Suggestions for further research are included in Section 

6.3. 

6.2 Accomplishments 

A general heuristic learning algorithm for parameter 

identification purposes has been implemented. During the 

implementation process, a completely new heuristic learning method 

(the Single-Direction Learning Method) has been developed, which 

learns faster and provides more accurate results than previous 
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algorithms, such as the Direct Search method. 

The success of heuristic parameter identification techniques 

hinges on the utilization of an appropriate low dimensional space, the 

feature space, to characterize the search situation. For the 

development of such a suitable feature space, the new concept of 

"fuzzy" maps was introduced. The introduction of this rather 

unorthodox concept highlights two characteristics of heuristic 

algorithms: (1) the need for minimizing computer memory requirements 

and (11) the intrinsic "fuzziness" of the input data themselves, due 

to statistics and fluctuations imposed by the environment. Because of 

the "non-analytical" nature of heuristic learning methods (in the 

sense that analytical manipulations are drastically reduced), it is, 

in general, very difficult to prove the existence of optimal solutions 

in an entirely rigorous manner. This issue has been addressed in this 

dissertation both analytically and by computer simulation methods. In 

Appendix B, it is shown rigorously that, for unimodal error 

functionals, the present heuristic learning algorithm yields the 

optimal solution. For non-unimodal error functionals (i.e. for those 

functionals exhibiting several minima) the validation was performed 

via computer simulations utilizing as input data the results of a 

steam generator noise model (see Chapter 4). 

In the realm of applications to "real world" problems, an 

original development has taken place with the implementation of the 

present heuristic learning parameter identification method to an 

experimental pressure loop. This development has resulted in the 
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creation of a trainable surveillance and diagnostics system, which is 

capable of detecting and quantifying anomalies in dynamic system. 

In summary, the initial objective of implementing Heuristic 

Reinforcement Learning techniques for parameter identification 

purposes and applying these techniques to an actual physical system 

have been accomplished. 

6.3 Recommendations for Further Research. 

There are at least two main areas of future development which 

should be pursued; the first is related to the method itself and the 

-| second to its applications. Concerning the first area of development, 

one should (1) do extensive work on the relationship between the 

errors in the identified parameters and the uncertainties of the input 

experimental data and (ii) study the issue of the dimensionality of 

feature space vis-a-vis the parameter space dimension and the 

limitations in the available computer memory. 

The second area of development refers to the fascinating 

possibilities for the minimization of variational principles, whose 

optimal trajectories (representing neutron flux profiles or 
n 
U trajectories in dynamic problems) could be obtained by the present 

U 
heuristic learning method. The solution of the Euler-Lagrange 

equations associated with a given variational principle by this method 

would be of extraordinary interest in fields like Reactor Design and 

Robotics. 
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APPENDIX A 

SPECTRAL DENSITY EQUATION 

Equations for the spectral densities in terms of the transfer 

functions of the system and of the input spectral densities for 

particular dynamic systems have been derived in several references, 

but the derivation for a general linear dynamic system has not been 

found. In this appendix, the equation for the spectral density 

between two system variables is derived for a general multiple input, 

multiple output, linear dynamic system. The derivation is performed 

in a similar way to that used by Perez (35) for a dynamic model of a 

nuclear reactor. 

The equations for a linear, lumped parameter, dynamic system can 

be written as 

.1 ,1-1 
A — x ^ ( t ) + A — x̂ (t) + ... + A^(t) = 

I I-l dt^ dt^ 

C j — u ( t ) + C ^ _ ^ ^ u(t) + ... CQu(t) , A-1 
U dt^ dt"^"^ 

n 

where Â ^ and C^ are constant matrices, 

Cj_, X 2 , ... x ^ T X = (x,, x~, ... X ) are the system variables, and 
T 

û  = (uj^, U 2 , . . . n^) are the system inputs. 

y—I 
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Laplace transforming Equation A-1 and assuming zero initial 

conditions yields 

B(s)X(s) = H(s)U(s) , A-2 

where B(s) = s^A^ + s" ^^n-1 " ' » ^̂ ^̂^ 

H(s) = s^C + ŝ '̂ '-C . + . . . + . 
m m-1 0 

Left multiplying Equation A-2 by B~^(s), one obtains 

X(s) = G(s)U(s) , A-3 

where G(s) - B~^(s)H(s) 

A generic element of Equation A-3 is 

M 
Xj^(s) = 52g^(s)u^(s) , A-4 

k=l 

where 8jjĵ (s) is the transfer function from input "k" to system 

variable "A". Inverse laplace transforming Equation A-4 using the 

Faltung theorem gives 

M t 

k=l 0 
(t) = Sl/gioc^h^" (t-t̂)dt̂  , A-5 
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where Sjĵ Ct) = ̂ '^ { S^is) ] , and 

u^(t) = U ^ ( S ) 

Observing that Sjjĵ Ct) and u^^(t) are equal to zero for negative 
time, the limits of integration in Equation A-5 can be extended to 

infinity, i.e. 

M « 
,(t) = US g^(t,)u^(t-t,)dt A-6 

k = l - » 

The definition of cross correlation function (autocorrelation is 

the same as cross correlation when the two variables are the same ) is 

given by 

S (T) = S. (T) = E 
X „x ^ ' Jîm̂  ' J L m 

LX^(t)x^(t-t) A-7 

n 

u 

u 

where E means the expectation or ensemble average. 

Substituting Equation A-6 into A-7, one obtains 

M « M " 
S^(^)=E[Ej*g^(t^)u^(t-t^)dt^i:J'8,j(t2)Uj(t-H.-t2)dt2_ 

l C = l - « j = l - o o 

A-8 

Rearranging dummy indexes and variables and taking in account the 

deterministic nature of the transfer functions. Equation A-8 can be 

rewritten in the form 
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k=l j=l -GO —OO 

In View of the definiton of crosscorrelation in Eq. A-7, Eq. A-9 can 

be written as 

M M " 
S^(i:)=E Il/dt,|it2g^(t^)g^.(t2) 3^.(t,+T-t2) 

k=I j=l - c 

A-10 

-00 —00 

n u 

n 

This provides the relationship between the input and the output 

correlation functions. 

In order to obtain the corresponding expresión for the spectral 

densities, the functions inside the integrals in Equation A-10 are 

written in terms of their respective Fourier transforms as 

g^j(t2) 

— OD 

OO 

iw^t^ 

1 A iw2t, = —Jdw2g^.(w2)e - , and A-12 
— oo 

00 

2u 
iw3(t^+T;-t2) 

A-11 

A-13 

Substituting Equations A-11, A-12 and A-13 into Equation A-10, and 

Fourier transforming Equation A-8 yields 
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J ^ J J o o o o 00 oo CO CO 

Ĵ = 1J = 1 —00 —00 — oo —00 —wo —00 

n 

itCwj-w) itĵ Cŵ +Wg) It2(w2 - W 3 ) 
* e e e . A-14 

To deal with the various Integrals in Equation A-14, the 

following definition of Dirac's delta function is utilized. 

1 /* 
5(y) - —J e dv . A-15 

Applying the above definition. Equation A-14 can be written as 

M M " " " 

Sjj^(w)=rEjdwJdwJdw3g^(w^)g^.(w2)S^.(w3)6(w2 -W3)6(w^4v3)6(w3-w) 
Ĵ =:]_j=i —00 — 00 — 00 

A-16 

In view of the properties of Dirac's delta function, straightforward 

integration of Equation A-16 yields 

M M 

k = l j = l 

Utilizing the following property of transfer functions, 
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8kj^"*^ ' ^kj^^^ 

Equation A-17 reduces to 

M M 

k=l j=l 

which is the general equation for the spectral density. 
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APPENDIX B 

PROOF OF CONVERGENCE OF THE PARAMETER IDENTIFICATION METHODS 

The convergence criteria used to stop the iterative search in the 

-J learning parameter identification methods requires that an 

~j unsuccessful unidirectional search be performed along each direction 
J f 

1 . 1 » l 2 » ^ 2 ' " ' where dj=(djj^, d^2' **j3''"^jn^ ^ directional 
vector in parameter space. Let the error functional, Q(P_), be a 

continuous, unimodal function of the parameter vector, 
T 

P=(Pj^, P2,....Pjj) , with continuous derivatives. In that condition, 

|~ the optimum parameter vector, P_ , is the only solution to the set of 

equations 

8Q' = 0 , 1=1,2,3,...n . B-1 
* 

A unidirectional search starting from a parameter vector P^, 

along the line dL is defined by the solution for the equation 
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dQ(P + sd_,) 
=i 

ds 
B-2 

and the unidirectional search is said to be unsuccessful when Equation 

B-2 is satisfied for s=0. In that condition. Equation B-2 can be 

written as 

U 9Q' 

BP, 
d^2 + ... 

ap _̂  ' i n 
0 B-3 

From the convergence criteria. Equation B-3 is satisfied for all 

directions at the convergence point, P_ 
condition can be written as 

,+. In a matrix form, this 

U 
B-4 

u 
r 
L 

where 

l3^ 

3 im 
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"aQ" 
> 

-,T "aq" 

ap 
L nJ P^ 

, and 

0 is an m-dimensionl zero vector. 

If the set of directions contains a complete set (i.e. there are 

"n" linearly independent vectors in the set), the rank of matrix "D" 

is "n". Therefore the only solution of Equation B-5 is 

U 

or 
aQ" 

ap. . L 3J«-̂  
0 , for 1=1,2,... n. 

B-6 

B-7 

Comparing with Equation B-1 and considering the unimodalidaty of the 

error functional, it can be concluded that 

+ * 
P = P B-8 

Therefore, the learning parameter identification methods do converge 

to the optimum parameter vector whenever Q(P̂ ) is a continuous, 

unimodal function of the parameter vector. 
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' APPENDIX C 

THE UNIDIRECTIONAL SEARCH 

In this appendix, the unidirectional search used with both 

learning parameter identification methods is described. A few small 

^ differences exist between the versions of the unidirectional search 

used with the FDL method and with the SDL method. The description 

that follows is for the version used with the SDL method, which is 

more general. The version for the FDL method is, for all practical 

purposes, equivalent to the one described with the confidence index 

always equal to zero. 

The unidirectional search is equivalent to a unidimensional 

search where the parameter vector, P, is allowed to vary on a straight 

line defined by an initial parameter vector , P^, and a directional 

vector, d. Any point on this line can be defined by a single scalar, 

s, as 

P . ( S ) = P Q + sd_ . C-1 

The unidirectional search seeks for the parameter vector along 

the line defined by Equation C-1, that minimizes the error functional, 
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Q(P). Implicit in the method is the assumption that the error n 
functional is a continuous, positive, unimodal function of the 

* parameters within the domain defined by a minimum and maximum value 

' for each parameter. 

~| A method similar to the one described by Powell (10) was used for 

the unidirectional search. The method is divided into three steps: 

(a) the generation of the three first points, (b) the iterative 

P I selection of a fourth test point, and (c) the convergence check. 

^ (a) Given an initial parameter vector, JP^ , the correspondent 

error functional, qQ°^(PQ)» and a guess for the optimum value 

of s, §; the first and second test points are always: the 

J origin, S|^=0, and the guess, S 2 = ^ . As specified in Table 

| - j C-1, the third test point is selected on the basis of the 

error functional, calculated at the second test point, 

8 2 » and a confidence index, Ic. Once the third test point, 

s^, is selected, the correspondent error functional, is 

evaluated. 

(b) The selection of the fourth test point, s^, is performed by 

calculating the second order polynomial, M(s), that passes 

through the three test points: (sji.qĵ), (s2,q2) and ( S 3 , q 3 ) . 

If the second derivative of the polynomial, M"(s), is 

positive, the fourth test point, s^, is selected as the point 

that minimizes the polynomial M(s) ( M'(s)=0 ; M"(s)>0 ). 

The three possible cases when the second derivative is 

non-positive are illustrated in Figure C-1. In the first two 

U 
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TABLE C-1. Selection of the third test point. 

Third trial point 

Confidence index q2 < ql q2 > ql 

0 2*s - 3 

1 2*S 0.5*3 

2 1.6*s 0.66*3 

3 1.3*s 0.75*S 
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(a) - qĵ  qj 

•-.^ STEEPEST SLOPE 

S2 S3 

(b) - qi = q3 

qi q2 qs 

Ŝ ^ - undefined. 

S2 S3 

(c) - qi = q2 = q3 

FIGURE C-I. Selection of the fourth trial point when the second 
derivative of the interpolant polynomial is negative 
or zero. 
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cases, the fourth test point is chosen as the point where the 

linear extrapolation reaches zero. In the third case the 

• direction that rainimizes the functional is completely 

'—' undefined. After evaluating the error functional at the 

~ fourth point, s^, this step is repeated with the current best 

point and either its left and right neighbors, if they exist, 

or its two nearest neighbors, 

(c) The above iterative procedure is terminated when the distance 

P between the fourth point, s^, and the previous best point is 

~| smaller than a variable convergence criteria, whose values 

are shown in Figure C-2. This variable convergence criteria 

was adopted to reduce the total number of error functional 

evaluations, since a minimum far from the origin indicates 

that the overall search is still far from converging; in 

which case, an accurate determination of the unidirectional 

minimum is not necessary. 

J To assure that the unidirectional search is performed within the 

p-| allowed domain, before accepting a test point, the correspondent 

parameter values are compared with their respective limits. If one or 

more parameters are outside the range, the value of the test point is 

modified such that all parameters are inside the range or at the 

limit. 
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FIGURE C-2. Convergence criteria as a function of the distance from 
the origin and confidence index. 
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APPENDIX D 

LISTING OF THE "FDLPI" COMPUTER CODE 

In this appendix, the listings of the FDLPI program is presented. 

This program is the final version of a series of programs used during 

the development of the Fixed-Directions Learning method described in 

Chapter 3, Section 3-4. 

n 
L 
n 
Ll 

u 
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Rotti le nane: F D L P I 

l i en i on X 0 1 . M Las t edit: 01~JI IL-83 i 3 : S 2 
S t a t u s : Omiopnent/QelMigsing 
R w i s i o n h i s t o r i j : 

Vers ion mM 23-JUN-83 18 :43 - O l - J U L - 8 3 13 :52 
Created b y : E .mCHAOO 

0«-
SUBROUnNES C A L L E D : 

6ETEP - SUBROUTME TO SET THE EXPERinERTRL P0IMT5 (USER SUPL IED) 
6ETPA - SUBROUTINE I D SET PflRRHETER INFORIIOTICil (USER S U P L I E D ) 

FUKCTIOi lS :F« IC - RETURNS THE MALUE OF THE FUNCTION 

n 

n 
u 

PARANETER NEOII tzS^ ! 
PARANETER NPein:2 ! 
PARANETER H R O I H = i m ! 
PARANETER IIN0III=13 ! 
PARANETER NF0in=2 ! 
DINENSION V ( H E O I N ) 
DINENSION »(HEOin) 
OINENSION UCNEDIN) 
DINENSION P ( N P O ! » ) 
DINENSION PN(NPOIN) 
DINENSION PTOtPDIH) 
DIRERSIOH CENT(NFDIN#NRDin) 
DINENSION UTQiHOIN) 
DIHENSION NTH(NHOIH) 
R E A L i 4 BP 
R E A L M SP 
R E A L M AP 
R E A L M RPDT(HHDIN> 
R E A L M FHT 
DINENSION 0(NP8IR/NH9in) 
DIHENSION IHU(NKO!N} 
DINENSION PLUCNHOIB} 
DINENSION I8EST(Hiffiin) 
DIHENSION R8(NF0IR) 
DIHENSION P K N P O I N ) 
DINENSION R O K N F D I H ) 

I EXPERINENTRL POINTS 
t OF PARARETERS TB F I T 
• OF RE6I0NS IN FEATURE SPACE 
t OF HEURISTICS RULES 
i OF FEATURE SPACE VARIABLES 

! DEPENDENT MARIABLE ARRAV 
! INDEPENDENT MARIABLE ARRAV 
! UEISNTS ( l / V A R I A N C E ) OF i 
! PARANETER ARRAV 
! NEU PARANETER ARRAV 
! TRUE PARARETERS 
! RE6I0N CENTER COORDINATES 
I AUERA6E PERFORNANCE 
! t OF T I R E S IH UAS USED IN IRES 
! LAR6EST PERFORNANCE 
• SHALLEST PERFORRANCE 
! AVERA6E PERFORNANCE IN IRES 
! AMERA6E DELTA 
! t OF T INES IN REGION 
! DIRECTIONS 
> L A S T USED RULES 
! PERFORNANCE OF LAST USED RULES 
! BEST PERFORRANCE COUNTER 
! FEATURE COORDINATES 
!S I N I T I A L PARANETER ARRAV 
! « I N H I A L FEATURE ARRAV 

L O S I C A L l l T I T ( T 0 ) ^ S 0 A T E ( 1 0 ) / T D A T E ( 1 0 ) / S T I H E ( 8 ) / T T I N E < 8 ) 
LOSICALS l ICONi^IBES^TBST 
COHRON / T O A T A / P T 
COHNON / S E E D E P / I $ E P 1 / I S E P 2 
COHHON / S E E D S H / I S S K 1 / I S S N 2 

SET UERTION CHARACTER FOR F I L E NANES 

LOSICALS i H E A 0 ( 1 9 ) » H E N 0 ( 1 2 ) « F I T L ( 1 2 ) . L C U R ( 1 2 ) / I P C ! i A R 
DATA H E A O / ' H ' , ' E ' » ' f t ' -
DATA N E R O / ' H ' » ' E ' 
DATA F I T L / ' F ' - ' T ' 
DATA L C U R / I ' 

, ' H ' , ' L ' , ' « ' , ' ' , 0 / 
» ' V ' , 

' C ' , ' U ' , ' R ' / ' P ' , ' E ' » ' . ' , ' N ' , a ' , ' 0P£N(UNn:i.NANE=1IERSI0N.CHA%ACCESS='SE8nENTIftL^ 
1 F O R H = W O R B A T T E D % T V P E = ' O L D ' J I E A O O N L V , R E C O » D T V P E = ' M R I A B L E ' ) 
REAO(l ) I t fCHAR 
CLOSE <8HIT=1) 
HERD(8)=iyCRAR 
nEnQ(10)=IliCHAil 
FITL(10)=IPCa«S 
LCUR(10)=Ii*CHftR 
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n 

c 

n 

IPRI:1 • PRINT LEVEL 
^ ISa:l ! HEURISTIC SELECTION RSIE (1-4) 

IUP0=1 ! UPDATE FLA6 (0 - HO UPDATING) 
] LC:1 

HREST=0 ! NURBER OF RESTARTS 
J NBRzO ! 8«« 

LOOPlsl ! K« 

153 

C DETERfllNE DIRECTKMS 
C 

DO 1 I=l«NHDin 
0(l/I)=COS(3.1415927SFL0flT(M)/aOftTaiHDIR)) 

1 D(2/I}=Sni(3.14iS927SFL9AT(M)/aOATaiHDin)) 
IEDFL6=4S 
IBCX=0 
NPftsliPDin 
NEMEDin 
HHE=IIHDIII 
ISEP1=1419S 
ISEP2=133C8 
ISSN1=0223 
ISSN2=(289 
URITECŜ iOOO) 

im FORRRTC ENTER <RT> TO START A NEU RUN%/̂  
1 ' OR 1 TO RESTART AN OLD RON : S$) 
REAB(4»2(S0)ISTART 
IF(ISTART.Ea.O»0 TO 31 

C 
, C RESTART OLD RUN 
u c 

OPEN(UNn=l/NANE=(CAD«TVPE='OLO'fACCESS='SEaUENnAL% 
pn 1 FORNsWORHATTEDSSHARED) 
n READCDHT 

READ(l)SOATÊ TINE«TBATE«niRE 
REA0(1)NEP.NPA.«REST»HHE/NFÊ NDFIT.NBREP«NRE6̂ HBF,HBR«TNFIT, 
1 ISEP1/ISEP2 ÎSSN1 ÎSSN2 
REAOa)PRÊ RAO.RNIN«NIT#NIIT/IPRI«IPLT#ISEL/IUPÔ  
1 LC/L0OP1AOOP2 
CLOSE (WITrl) 
0PEN(UNn:l«NAHE=NEnÔ TVPE='0LD'WICCESS:'DIRECTS 
1 FORNsWORNATTEOSSHAREO) 
DO 20 II=1/NRE6 

20 REA0(1'II)UT,NTN^BP/$P^P/AW)T/FHT*IBEST/ 
1 (CENT(JJ/II)/JJ=1/HFE> 

^ CLOSE CUNIT=t) 
n NREST=NREST*1 
M 60 TO 49 
^ C 

C NEU RUN 
C 
30 CAa TinECSTOlE) 

CAa OATE(SDATE) 
UNITE (54100) 

1100 FORNATC ENTER TITLE C70 CH J ' ) 
READ(4»1200)nT 

L) 1200 FORNAT(TMl) 
C 
C INHIALS n c 

PRE=l.E-4 ! RaATIUE PRECISION 
RAD=.05 
RRDi=.001 

- 1 NFEsNFDIH 
NIT=2000 ! HAN. tOF ITERATIOHS 

J NIIT=2000 ! NAN 8 OF INNER ITERATIONS 
HBREP=100 
NBFIT:50 
IPLT:0 ! PLOT LEVEL 



u 

c 

INEC=18 ! FON H T T I E 
OPENCUNITzI/NMEsflENO^IVPEs'NEN '/ACCESSz'SEOUENmS 
1 F O R N z W O R I f l T T E O ' / N E C O R O S I Z E s I l t E C / S H f l R E O ) 
U R I I E C D T I T 
C R U O R I E ( T D R T E ) 
C M l TINE(niNE) 
URITE(l)SDRTC#STINE«imTE/mHE 
URITEdMEP/NPR^NREST^NHE/NFE^NBFIT^NBREP/NRES^HBF^HBR/TNFIT , 
1 ISEP1/ISEP2/ISSN1/ISSH2 
HRnE(l)PRE«RftO^RIX,Nn/nin/IPRI*IPLT«ISa/IüPO/ 
1 LC/L0OP1rLO0P2 
CLOSE (URn=l> 
I R E C = ( ( M H E * 2 ) t N F E ^ > / 2 
0PEN(UNITrl/HAHE=NEN0»1VPE='NEU'/ACCESS='DIRECT% 
1 F O R N r W O R H A T l E O ' ̂ 0R0SIZE=IREC/SNARED) 
CLOSE (UNIT=1 ) 
I R E C = C ( l H P 0 I i M > N F D I H « 1 4 ^ ) / 2 

n OPEN<ÜNn=l/NANE=Fni*TVPE='NEH',ACCESS='SEíyENnAL', 
1 F0RN:'UNF0RnAT1ED%REC0RDSIZE=IREC/SHARED) 

U CLOSE <ÜNIT=1) 
IFaC.EO.0)60 TO 40 
OPEN ( Ü N I T = l / N A H E d . C U R / T V P E = ' N E H % A C C E S S = ' D I R E C T S 

n 1 SHARED#RECORDSIZE=10) 
U CLOSE (0N IT=1 ) 

C 
C REESTART LOOP 
C 
40 T N F I T = 0 . 

T I N N E z O . 
NRE6=0 
HBF=0 ! > » 
IFaC.EB.0)60 TO SO 
NBR=NBR«1 ! ssx 

49 URITE(54300)NBR 
1300 F O R N A T C NBR = M4) 

IFaC.NE.O . A N D . NBR.6T.NBREP)60 TB 910 ! «K 
C 
C 6ET EXPERINENTAL POINTS 
C 
» NBF=NBF-^ ! «M 

IFaC.NE.O . A N D . NBF,5T.NBFIT)60 TO 40 ! « « 
I S E P l I r l S E P l 
ISEP2I=ISEP2 
C A U 6ETEP(NEP>V/X/U) 
T N F I T = T N F I T * 1 

C 
C S E T FUNCTION PARRRETIRS 
C 
80 C R U S E T P A ( H P A / P / P N I / P R A / I P F / 1 ) 

isa=o 
T IHNE=0 . 

C 
C CALCULATE I N I T I A L SSD 
C 

C A U S T A T U S ( H £ P » X / Y / U / P f S S D O / N F E / R O x O ) 
I F C I P R I .SE .l)URITE(S/13S0)TNFIT/N£P«SSD0/RO/ 
1 (a#Pa))W=l/NPA> 

1350 F O R N A T ( / / , ' F I T MMBER : ' , F 1 0 . 0 , / , ' NURBER OF POINTS 
1 I4f//' I N H I A L UEISHTED SUN OF DEVIATIONS SOUAREO = % 6 1 0 . 4 / / / 
1 ' FEATURES : ' , < N F E > ( F 7 . 4 / 3 X ) , / / , 
1 ' P A R . • Ï N I T . V A L U E ' / / / 
1 20(4X/I2.3X/S13.7//)) 
SSDI:SS0O 
DO 85 1 = 1 / N F E 

85 ROI(I)=RO(I) 

C OPEN F I L E S M O STBRE I N I T I « . OftlR 
C 

154 



u 

r 
Li DO 87 lsi,m 

87 PI<I)=I»<n 
SST=0.0 MITISL IBES=0 IROLD=0 0ELTFT=.L HHU=0 C C * C OUTER ILERFLTIOR LOOP S C « 150 DO 800 IT=NITI«NIT IFDPLT 10.-1 .AND. ISa.Ea.O)CAU SPLA(NFE.R0,HPA/P/O) IF(IPLT£a.-L)LSFL=L IF(IT.Ea.L)IROLO=0 CAU. READEFCIEPFIS/IEFUIS) IF(IEFLA6.EO.0)G0 TO 160 CALL CLREF(IEPFLG) 60 TO 910 !L C IN THE OLD REGIDN ? C „ 160 CONTINUE n IF<I8EG1T.0)S0 TO 350 

iJ IFaiRE6ia.0)S0 TO 250 
c C CNECK IF IN AN EXISTENT REGION C RAD2=0. DO 170 II:1/HFE 170 RAD2=RAD2«R0(II)XR0(II) RAD1=RAI»S8RT(RAD2)«RNIN RA02=RA01>X2 Ü DIST0=RA02*.L IREGS-1 00 190 IR=1.NREG DIST=0.0 DO 100 IFESL/NFE IF(ABS(R0(IFE>-C£NT(IFE/IR».6T.RAD1)G0 70 190 0ISTR0IST*<R0(ÍFE)-CENT<IFE»IR»W2 n 1S« IF<DIST.ST.RAD2)G0 TO 190 IF(DIST.6E.0IST0)G0 TO 190 U IREG=IR 0ISTO=DIST ^ 190 CONTINUE n IF(IRE6.EO.IR0L0)G0 TO 300 0PEN(UNIT=L»NANE=HEN0/TVPE='0L0'/ACCESS3'DIRECT% 1 FORNSWORNATTEDSSNAREB) IFCIPRI JE .4 .AND. IR0U).6T.0)URnEC6«1400)IR0LD/BP/SP/AP/FNT/ n 1 CCUTCII)/NTR(ID>AN0T(II))/II=1/HHE) 1400 FORNATC RE6=M3,' 8P='/F7J,' SP=%n.3,' AP=',F7.3,' FHT=',n.O# J 1 /,<' HT='*F7.3/ NTH=M5,' AMDT=V7.5)) IFCIR0LD.6T.0)URITE(L'IR0LD)UT/NTn/BP.SP/AP/AI'DT/FNT/IBEST/ 1 CCENT<II/IR01B),II=1/NFE) C C RETRIEPE INFO FROH NENORV 
^ IF(IREG.6T.0)READCL'IRE6)UT,NTH/BP/SP/AP>AROT/FNT>IBEST IF(IPRI.6E.4 .ANO. IREG.GT.0)BRITEC6/14O0)IRE6/BP/SP/AP/FNT, 1 CCHTCII),NTH(II),AYDTCII)),II=L,NHE) CLOSE CÜNIT=1} IFCIREG JT.0)60 TO 300 
C 
C CREATE A NEU REGIOK C 250 IFCNRE6J.T.NR0IN)6a TO 270 

U 

n 
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u 

r 
u yRnE(6,150Î) 

1500 FOHMTC NO NORE NENORV SPACE') 
^ 60 TO 910 
1 210 IFCIPRI JE .3)URITE(6/1600)NRE6-»1.R0 

1600 FORNATC CREATIR6 8E6I0H M3/' AT: '/613.7/<NFD(' ; %613.7)) 
NRE6=NRE6*1 
IREGsNRES 

n spsi. 
RP=0. 
00 200 IFE=1,NFE 

280 CENr(IFE/IRE6)=R0(IFE) 
^ FNT=0 ! NURBER OF TINES IN THIS RE6I0N 

DO 290 IH=1/NNE 
J NTH<IH)=0. 

AUDT(IH)=0.0 
IBEST(IN)=0 

n 290 NT(IH)=0. 
C 

^ C FIND THE BEST HEURISTIC 
C 

n 300 IF(IT.E0.1)IRE6I:!RE6 
I IHB=0 
J IF(IBCK1D.0 .AND. I$EL.XE.4)60 TD 350 

SSOBsSSBÔ.l 
^ DO 330 IN=1/NHE 
n IF<NNU.EO.O)SO TO 320 

DO 310 II=1/NHÜ 
310 IF(IH.EO.IH0(II))60 TO 330 

DELTA:.1 
n IF(FHT.6T.NHE)0EL1R=AVDT(IH)X(FNT4FL0AT(NHE))/FNT 

320 CALL SB60AL(NEP/X/V/U/PRE/0aTA/HPA/P/PN/0(l/IH)..iPRI/NFE/ 
LJ 1 R0/INNER/RIIT/SS/SSD/SSD0/ISD6II) 

IF(SSD.LT.SSOB)IHB=IH 
„ IF(SSD.LT.SSD0)SSD8=SSD 
' 330 CONTINUE 

U IF(IBCI{J>T.0)IBEST(IHB)=IBEST<IHB)+1 

C SELECT A HEURISTIC 

n c 

i 350 IFdSEL JT.3)68 TO 360 
^ C-350 IF(FNT.6E.NNE .AND. ISa.6T.3)68 TO 360 

FFNTsFNT 
n IFCIRE6I8.IR0LD m . FNT.6T.NHE)FrNT=HHE 

CAU SELHEU(NHU/IHU/NflE.NPA/D/FFNT/NTnd)»UT, 
J 1 AP/BP/SP/IPRI>ISIIER«IH/ISEL) 

GO TO 400 
_ 360 IHsIHB 
n c 
[ C GET niHIHUN SSO 0SIN6 HEURISTIC 

400 DELTA: .1 
n IF<FNT.6T.NHE)DELTA=AUDTda)»(FHT*fL0AT(NHE))/FNT 

CALL SB60AL(NEP#X/V/8/PR£/0aTA/NPA/P/PN/0d/IH)WPRbNF£̂  
J 1 R0/INNER#RIIT/S$/SSD/SSD0fISB6tf) 

TINNE=TINNÊOATdNNER) 

I C CALCULATE PERFORRANCE 

J C 

FIPS=(SS00-S80)/SSD 
C 

O C UPDATE UEI6NTS 
C 

L J IF(IUP0Ifi.0)S8 TO 740 
C~ IF(FNT.Ea.NME)GO TO 540 

^ IF<FIPSJT.8P)BPrFIPS 
IF<FIPSiT.SP)SP=FIPS 

J AP=(FNT»AP*FIPS)/(FNT*1.) 
AWIT<IN)=<FLOAKNTH<IH))«AI/BT<IH)̂S)/<FLOÄT(HTn(IH))*l.) 
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J IF<FIIT.Ea.O)M>OT<IH)=SS 
TinES=H11KIH) 
yT(IH)=ainE»UT<IM)-»f ffS)/CTIBE8*l.) 
IFOITOtlH) .LT.320M)IITn<IH)dlTB(IH)*l. 

M 540 F«T=F«T*I. 
740 COIITIIlOE 
C--740 IF<FJIT.L£.IIME)iO TB 750 

1 C 
C KEEP TRACK OF USED HEURISTICS 

-J C 
DO 750 n=NHE/2/-l 

. PL0<II)d»LU<IM) 
750 IHU(II)=IHU(II-1) 

PUKDrflPS 
IHU(1)=IH 

C 
1 C CHECK IF AT THE SARE POINT 

C 
^ IF(ADS(SS).6T.PRE)60 TO 7(0 

IFdPRI JE .7)URITE(6/1700)IH 
-, 1700 FORNATC IT IS AT A RININUN ACCORDINC TO RU.E:%I3> 

NHU=NHU-»1 
J 60 TO 770 

760 NHUsl 
^ 770 IR0LD=IRE6 
n DO 700 J=1#NPA 

700 P(J)=PNa> 
^ IF(IPLTja.-l)CAlL SPLÄ<NFE/R0,HP»/P,2) 

CALL STATUS<NEP,X/V/U/P/S$00/NFE/R0/2> 
1 790 IC0N=32 

IF(NHU.6T.1)IC0N=35 
J TBST=32 

IF(IH.E0.IHB}TBST=43 
„ IBE6=32 
n IF(FNT.LE.NHE)IBE6=42 

IFdPRI JE .1)URITE(6<1800)IT/SSD0/IRE6#I6E6.FNT, 
1 TBST/IH/SS/ICON/FIPS 

1000 FORRATC M 4 / ' X2=%F10.3/ 
1 1 ' RE=M4,A1/'(',F8.0*')'/A1,'H=M2*' SS:',F7.5,fil*' IP='/F9.4) 

IFdPRIJE.2)URITE(6»in0)IiMER«SSD> 
•> 1 <a,PNa),(p(j)-PNa))),j=i,NPA) 

1900 FORNATC INNER ITIRATI0NS:M5/' SSO = '/613.7/// 
. 1 ' PAR.i HEU MAL. LAST CHANGES/ 

1 /99(3X/I2/2X/613.7/1X»613.7//)) 
J C- IF(FNT.LE.NHE)IBEG:-1 

IFaiHU.Eft.HHE)GO ID 810 
SST:SST̂ BS(SS) 

n 800 CONTINUE 
C > 

^ C END OF OUTÎR LOOP » 
C t 

n C>XS>ai»HS3»»»S3l«»»ia3fSS»»SJHXXS»M«H»i«iSSX«SXS«»X83aiSS»SS 
c 

J URITECĜOOOMIT 
2000 FORRATC NOT CONVERGED AFTER ITERATIONS") 

URITE(5/2000)NIT 
GOTO 910 

C 
C EXn ON CONVERGENCE 
C 

-7 810 IFdPRIJE.0)URITE(6.2400)THFIT/IT/TINNE/SSD>HRE6/IRE6 
2400 FORRATC// 

U 1 ' X FIT '/F7.0/' CONVERGED AFTER M3 / ' OUTER & '/ 
1 F5.0/'IHNER ITERATIONS'/// 

^ 1 ' SUN OF THE S8UARE OF DEVIATIONS :'/G13.7/// 
1 ' TOTAL t OF regions: M 4 / ' C0NVER6ED IN REGION M4//) 

J IRUNrO 
DO 840 1=1/HEP S 157 



I S f c S I S I I d . , ( Y ( I ) - f U M C f f l d ) , ? ) ) ) 
I F d . E a . l ) 6 0 TQ 3 3 0 

^ IFdSI .Ef t . ISmN>60 TO 0 4 0 
^ 8 3 0 I S R O f e l S I 

IRUN=n0N«l 
8 4 0 CORTINOE 

RÜII=FL00T(NEPV2.̂ . 
S T R U N = S a R T ( F L 0 A T ( I I E P ) S F L O A T a i E P - 2 } / ( 4 J l F L O A T ( X E M ) » 
I F d P R I M . 0 ) » R I T E ( 6 / 2 » 0 ) I R Ü N / R n i / S T R U N 

2 5 0 0 F O M R T C t OF R U N S : ' # I 4 / ' EXPECTED i R U H S : ' / F 5 . 1 / ' V - ' , F S.2) 
I F d P R I JE . 0 ) U R I T E ( 6 / 2 ( 0 Q ) ( a « P d > / P T d } } f J = l / X P f t ) 

2 ( 0 0 F O R i l R T C P R R . t UALUE TRüEmS/# 
1 20(3X/I3/4X/S13.7/2X/S13.T,/)} 
OPENtUHmi/mflEsNEftO/TVPEs'UNKHOUNSACCESSs'SEOUEHTnLS 
1 FORÜ: WORnATTEOSRECDRDSIZE=IREC/SHRRED> 
U R I T E d ) T I T 
C f l U DRTE(TDf lTE) 
C f l U TIREmiRE) 
URITEd)SDflTE/$TinE/TDATE/TTinE 
U R I T E d ) N E P / R P f l / N R E S T / N H E / N F E / H B F I T / N 6 R E P / N R E 6 / H B F / R B R / T 1 i F I T / 

n 1 ISEP1/ISEP2/ISSH1/ISSH2 
' DRITE( l )PRE/RAD/RI I INfNn/n in / IPRMPLT/ ISa#I ] iPO« 

1 LCA00P1AO8P2 
CLOSE ( U N I T = 1 ) 
COKTIHUE 
OPENCOHn 

J 1 F O R H s W O B I A T T E D ' / S M A R E D ) 
I F C I P R I J E . 4 ) U R I T E ( ( « 1 « 0 ) I R E 6 / B P / $ P / A P # F N T * 
1 C ( D T d I ) . N T n d D , A y D T d I } > / I I = l / N H E ) 
i n n E d ' I X E ( ) y T / H T 1 l / B P / S P / A P > A r o T # F H T / I B E S T / 
1 C C E N T ( I M R E 6 ) / I I : 1 ^ F E ) 
CLOSE C Ü N I T s l ) 
OPERCÜRn=l/»ABE=FITL*TVPE='OLO'*ACCESS='APPEI!OS 
1 F0Rn= '0NF0Rf lAT1ED '#SHARED> 
flIIT=IFIX(TINNE) 
l i R n E C l ) I R E ( I / I S E P l I / I S E P 2 I f P I / P T . R 0 I , S S D I / I R E S / P / R 0 < . S S D . I R U N , 
1 I T / f l l I T / S S T / N R E S 
CLOSE ( U N I T = 1 ) 

iFac.Ea.o)(o TO 020 
OPEN ( U N I T s 1 ^ H E : L C 0 R . T V P E = ' 0 L 0 S A C C E S S = ' D I R E C T S 
1 SHARE0«REC8R0SIZE=10) 
S T S S = 0 . 0 
DO 8 2 5 JJ :1 /NPA 

8 2 5 STSS=STSS*<Pai ) -P I<JJ) )«« 
STSS:SBRTCSTSS) 
SST=SST/ST5S 
HTHSsO 
A t f I T z O 
A P I T 2 = 0 
A N I I T : 0 
A » I I T 2 = 0 
ASSTsO 
ASST2=0 
IFCNBR.6T. l )REf tDa 'H8F)NTHS^NIT^MIT2«AI>m/Ai l I IT2/ASST/ASST2 
HTRS=NTnS-̂ 1 
A P I T = ( A M I T 9 l F L 0 A T ( N T R S - l ) ^ L 0 A T C I D ) / F L 0 A T C N T R S ) ! H « 
flVIT2=(APIT2»FLOAKNTffS-l)«CFL0ATdT)«2))/FLOATCNTnS) ! 
A I > I I T = C A P I I T » F L 0 A T C N T B S - l ) * n N N E V F L 0 A T C N T 1 I S ) ! 
ANIIT2=CftllIIT2liFl0AT(NTnS-lMTINNExx2}VFL0ATCNmS) ! »> 
A S S T = C A S S T X F L O A T ( N T n S - l ) - ^ S T ) / F L O A T C H T n S ) '. M* 
A S S T 2 = ( A S S T 2 3 f F L 0 A T ( N T n S - l ) - » ( S S T X s 2 ) ) / F L 0 A T C X T 1 I S ) ! XM 
ttRITEd'NBF)NTnS/Ai>IT«Ai>IT2^tfimAVIIT2/ASST>ASST2 
CLOSE C U N I T = 1 ) 

8 2 0 CONTINUE 
9 0 0 IFaOOP1.ST.O}CO TO 5 0 

I F a 8 0 P 2 . S T . 0 ) S 8 7 6 8 0 
910 N I T I r l T 

URnEC5/2(10)TIT 

n 

n 
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D 

r 
L 

»10 F0IHiflT(/.lX«10ftl///' enter: 0- TB 6ET NEU OATfl POINTSS/. 1 ' 1- TB CHRNSE PRECISION/ PRINT-PLOT LEUa...'/// 
1 ' 2- TO TO CHANGE PARARETERS''// 
1 ' a- TQ CONTINOE ITERflriON'/// 1 ' 4- TO CHANGE DEVICE FON LOGS// 
1 ' 5- TD START OPER'/// 
1 ' 6- TO STOP ?'/$) 
REA0(4/2650/ERR=910)IAN$ 

2650 FORHATdlS) 
60 TO (50/920/80/150/9TO/40/990>/IAN$-»1 
60 TO 910 

920 URITE(5/2100>TIT/RAD/RRIN/PRE/HIT/IPRI/IPLT/L08P1/L08P2/IBCK/ 
1 ISEL/IUPB/NIIT 

2700 F0RHAT(//1X/?0A1// 1 /' 1. RAO ='/811.5/'2. RHIN =',611.5/2X/'3. PRE :'/611.5/// 1 ' 4. NIT =',I4/7X/'5. ffRI ='/I4/9X/'6. IPLT='/14/// 
1 ' 7. L00Pl='/I4/7X/'8. L00P2='/I4,9X/'9. IBOCr'/IS/// 1 ' lO.ISEL =',I4,7X/'11.1ÜPD ='/I4/9X/'12.RIIT =',I4/// 
1 ' ENTER PARANETER • TO CHANGE:'/$) 
REAO(4/2650/ERR:920>IANS 
IFdANSlT.l .OR. lANS JT.12)60 TO 920 

930 URITE(5/2000) 2800 FORNATC ENTER NEU VALUE: '/$) 
IFdANS JB.l)REA0(4/2900/ERR=930)RA0 
IFdANSJ0.2)REA0(4/2900/ERR=930)RRIN 
IFdANS iO.3>READ(4/2900/ERR:930)PRE 
IFdANS ifi.4)REA0(4/2650/ERR=930)NIT 
IFdANS JD.S)READ(4/2650/ERR=930)IPRI 
IFdANS iD.(}REA0(4/2650/ERR=930)IPLT 
IFdANS lft.7>READ(4/2650/ERR=930XOOPl 
IFdANS .EB.8)REflD(4/2650/ERR=930X00P2 
IFdANS I&.9)READ(4/2650/ERR=930)IDCK 
IFdANS lB.10)REA0(4/2650/ERR=930)ISEL 
IFdANS JR.ll)READ(4/2650/ERR=930}IUPD 
IFdANSiD.12>READ(4/2650/ERR=930)niIT 

2900 F0RnAT(F15.0) 60 TO 910 
970 URITE(5/3000) 3000 FORRATC ENTER DEVICE C EX: Tn:0/C633] :'/$> 

REA0(4/3100/ERR=970)II/III/IIII 
3100 F0RRAT(A2/I10/I10) 

IFdIII 10.0)1111:6 
CAa ASHLONdlll/II/III) 
60 TO 910 

990 STOP 
END 

r 
L. 
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n 

n 

n 

n 

n 

ia=0 CALCÚLATE EilERVTKING 
: 1 CALCULATE SSO ONLV 
=2 CALCULATE SSO« AO AIO R I 

DIHENSION X ( N E P ) > V ( N E P ) / U ( N E P ) / P ( 1 ) / R 0 ( N F E ) 
IFaa.6T.0)60 TO 200 
XBAR=0.0 
U8AR=0.0 
AR£A=0.0 
DO 100 I r l , N E P 
XBAR=XBAR«X<I) 
HBAR=UBAR-»SORT(»( I» 
AREf l=AREA-»V(I )XSQf iT(H( I ) ) 

100 CONTINUE 
XBAR=XDAR/FLOAT(NEP) 
XBAR2:XDARSXBAR 

200 SSO:0 .0 
DO 300 I = 1 / N E P 
F I = F U N C < X ( I ) , P ) 
D E I f c W D - F I ) 
SSDsSSD^OEPXOEIt tUd) 
I F ( I F L . E 8 . 1 ) ( 0 TO 300 
U D E y s D E P S S a R T ( U ( I » 
DO 290 I I = 1 / H F E 
I F ( I . E D . 1 > R 0 ( I I ) : 0 . 0 

290 R O ( I I ) = R O ( I I M I D E M S ( X ( D - X B A R ) » ( I M ) 
300 CONTINUE 

I F ( I F L . E t t . l ) R E T U R N 
R 0 ( 1 ) : R 0 ( 1 ) / A R E A 
R0(2 )=4J IR0(2 ) / (AREASXBAR) 
I F O I F E . S T . 2 ) R 0 ( 3 ) : 1 . 3 3 S l R 0 ( 3 ) / ( A R E A i X B A R 2 ) 
RETURH 
END 
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TO 

n 
Ll 

100 

nodule none: F O L P I S l 

Mere ion X01.00 Loot e d i t : 30-Jini-03 1S :05 
S t a t u s : Dei»elopnent/Oeiwg9ing 

Revis ion h i s t o r y : 

Vers ion R O l . O O 23- I0N-03 1 8 : 3 7 - 30-JUN-03 15:05 
Created i ty: E .mcHR0O 

SUOROUTINE 6 E T E P ( R / V / X > i l ) 
DR1R » 1 / 1 5 2 / 0 / 0 / 
DlflERSION y ( N ) / X ( i l ) / U ( l l ) 
DIHENSION P T ( 2 ) 
COHRON / T D R T R / P T 
N=50 
P T < 1 ) = . 9 * . 2 » R « N < I S 1 / I S 2 ) 
P T ( 2 ) : . » » . 2 S R R N ( I S 1 / I S 2 ) 
B U I O O O O . 
DO 100 I = l / N 
X ( I ) = . 0 S F L 0 f i T ( I ) 
X l d l ( I ) 
X2=X1>X1 
V < I ) = F 0 N C ( X < I ) / P T ) 
X R 1 = R A N ( I S 1 / I S 2 ) 
I F ( X R 1 . L E . 0 . ) 6 0 TO 70 
X R 2 : R f t N ( I S l / I S 2 ) 
XR=S8RT(-2 .SAL0S(XR1 ) ) « 0 S ( 6 . 2 8 3 1 8 X X R 2 ) 
F A C T = 1 . ^ R / S 8 R T ( 8 L ) 
N ( I ) = B L / ( V ( D « y ( I ) ) 
V < I ) = F R C T » Y ( I ) 
CONTINUE 
RETURN 
END 

r 
L 
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J SUBROUTINE 6ETPA(iC/P/Pni/PHfl/IPF/IFL) DIHENSION P(2),PHI(1)/Pnfl(l)/IPF(1) ir-, DRTR ISl/IS2/0,0/ 
'n P<1)=1. !.5*RAN<IS1,IS2) P(2>rl. ! .5-»RftR(IS1»IS2) IF(IFL.6T.0)RETURN K=2 
1 DO 100 ;=1,K 

URITE(5»1000>J 
J 1000 FORNRTC ENTER WLUE/ HIN.* BRX. a FLflfi FOR PRR. f M2/' :',$) 

100 REftD(4,iioo)p(;).PRia)/pnAa}«iPFa) 
. 1100 FORHATCSFIS.0,115) 

RETURH 
END 

n 

n 

r 
L 
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J FUKTION FUNC(X/P) 
DINENSION P(2) 

, B0=1. 
Dl=l. 
00=2. 
A1=P(1) 
B02=D0XB0 

1 D12=Bim 
. ftl2=ftl»M 
LJ 0N=P<2) 

N1=XX2.X3.1415927 
n X2=X1«X1 
! FUNC=(B02-»X2X812)«IN/((ft0-X2)S(A0-X2)-Ht2Xfl12} 

RETURN 
END 

'n 
iL 

n 

n 
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J SUBROUTINE SPLR(NFE/R8/NPft,P«IFL) 
DINENSION RO(NFE)/i>(aPR) 
I F ( I F L . S T . 0 ) 6 f l TO 100 
OPEN ( U N I T = 1 . N R N E = ' S P L R . H L Z S T V P E r ' N E U ' , f t C C E 8 S : ' S E 9 U E S T I R L S 
1 F 0 R N = ' U N F 0 R N f l T T E D ' , R E C 0 R 0 S I Z E = ( N P « * N F E * l ) / 2 ) 

^ aRnE(l)NFE,NPfl 
60 TD 200 

n I W OPEN ( U N I T = l J « H E = ' S P L Ä . B L Z M Y P E = ' O L D S A C C E S S = ' f t P P E N D ' , 
1 F 0 R N : ' U N F 0 R H R T T E D S R E C 0 R D S I Z E = ( N P f l W E - ^ ) / 2 ) 

J 200 URITE(1)R0#P 
CL0SE(UNIT=1) 

. RETURN 
END 

n 

u 
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G nodule none: F0LPIS2 
C 
C Version XOl.00 Lost edit: 23-IUIhe3 19:01 
C Status: DeMelopnent/Oebugging 
C Revision history: 
C Version XOl.00 23-JUN-83 18:24 - 23-JUN-83 19:01 C created by: E.mCHAOO 

C3I«- . SUBROUTINE SaNEU(NNU/IHU#HHDIH«KDIN/0,FNT/ 1 NTNfHT/RP/BP/SP/IPRI/IVER«IH«ISEL> 
C C THIS SUBROUTINE SELECTS R HEURISTIC ( IH ) C 
C ISEL = 1 - HORHRL SELECTION C = 2 - RRNOOn (EOUAL PROBRBILITIES) SELECTION 
C = 3 - NEXT RULE SELECTION 

r 
I 

U 

U 

n 

n c 

PARRNETER HH0in=25 
OINENSION IHU(NHOIN),NT1l(NH0IN)/UT(NHOin)/O(KOin/NHOIR) 
BINEHSION SELU(nHOIN)/IRUL(nNOIN) 
CONHON /SEE0SH/IS1/IS2 
IVER:1 
IF(NHDIN.6T.nH0IN)URITE(S«1000) 

1000 FORNATC OIHEHSION ERROR IN SELHEU ') 
IFaiHDIH.GT.nHOIH)STOP 
IFdSEL £ 0 . 3 X 0 TO 300 
IFdSEL 18.2)60 TO 410 
IF(FHT.6E.NH0IH)60 TO 410 

C H BEFORE USING ALL RULES H 
300 IH:IHUa)«l 

IFdH.LE.O)IH=l 
U 390 IHdlODdH-l#NHOin)*l 

IFdSEL 1B.3)RETURN 
IF(NTN(IN).Ea.O)RETURN 

^ IH=IH+1 
60 TO 390 

^ C n AFTER ALL RULES HAVE BEEN USEB S> 
C 

n C « STOCHASTIC SELECTION n 
410 JH0=O 

U FKrFNT/aOATfflHOIN) 
SUN=0. 

.-̂  DO 410 II=l/NHDin 
IF(NHU.E8.0)60 TO 430 DO 420 III=1/NHU 

^ 420 IFdNUdII).Ea.II)GO TO 410 
430 SHOsO 

n 460 JNUsJHU4l 
IFdSEL J E .2)SELydHUJsd .-SN0)«aiT(II)-SP-*l/FNT)S3iFK 

^ IFdSEL J0.2)SELHaNU>=l. 
IRULaHU):II 
SUN=SUR-»$EL«aHU) 

470 CONTINUE 
RAN0=SUNsRANdSl/IS2) 
IFdPRIiD.3)URITE(6/13B0)NHUJH0>SUR̂<tANDi. 

1 (aJ/IHU(J;)/IRULdJ)«UTUJ>/SELUaJ)>«JJ=l/NHDIN) 

n cp=o.o 
DO 480 II=1,JHV 

^ I H s I R U L d I ) 
CPrfP*SaHdD 

n IF(RAHDJ.E.CP)RErifliN 400 CONTINUE 
yRnE(5,1380)N»U,JNU,SUn«RAND« 
1 (aJWHÜd;>,IRÜLaJ)/UTdJ),SELHdJ))JJ=l>ilOIH) 
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1390 F O W I Ä T C NNU = M 5 , ' J « I = M 5 , ' S Ü M = ' , 6 1 2 . 5 , ' R « I O = ' r f l 2 . 5 , / , 
1 100 (1X/ I2^X f 
1 ' IHU:M5,' m : M 5 , ' U T : ' 4 1 2 . 5 , ' 8aii:'/612.5//)) 
U R I T E ( 5 ^ 0 1 0 ) 

2010 FORRRTCSNO RULE S E L E C T E D . EXTER RULE HUHBER : ' ) 
REftO(4/2020)IH 

2020 F Q R R A T d l S ) 
RETURH 
END 

n 

n 

u 
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n 

n 

n 

n 

n 

SOSROOTINE SKOftKR/K/V^U^PRE/AMDT/KOIll/P/ni^O/IPRI/IIFDIll/RO/ 
1 INRER,HIIT/SS/SSO/SSOO«III£R) 

C 
c SET nnnuR sso usiw HEURISTIC 
c 

DIHENSION P(KDin) 
DINENSION PNOCOIH) 
OIHEHSION D(KDin) 
OIHEHSION ROOlFOin) 
DIHENSION 0(3),SO) 
IPE8=1 
INNERsO 
DELTRsflUDT 
IF(DELTR.LT.PRE)DaTR=l.HtPRE 
sa)=o 
&<1)=SS08 
S(2)=DELTA 
DO 510 J:l/K01fl 

510 PNa)=pa)*s<2)»oa) 
CRU STflTUS(N,l(,VJ,PN,SSO/HFDIN^O,l) 
ft(2)=SSD 
IF(a(2) J.E .0(1))S(3):S(2)^TR 
IFa(2) JT.&a))S(3)rS(l)-DaTfl 
DO 520 JzUaW 

520 PN(J)=Pa)*S<3)»0a) 
CRU. STRTIIS(N,X»y>H,PN,SSD/NFDIN^O,l) 
t(3)=SSD 

CXSSS«SSfHXXS«»S«l«SS»X«» 

INNER LOOP 

n 

ü 

REORDER 

530 INHER: IHNER«1 
DO 5S0 1 1 = 1 / 2 
I N I N r l I 
00 550 I I I = I M f 3 

550 I F ( S ( I N I N ) . 5 T . S C I I I ) ) I N I N = I I I 
IFdHINia.IDSO TO SSO 
S S s S ( I I ) 
08=0(11) 
S(II>=S(iniN) 
t(ii)=a(iaiN) 
S(iniN):SS 
a(iHiN)=8a 

5S0 CONTINUE 
iaRflx=i 
l O N I N z l 
DO 510 11=2/3 
IF(a(iaRRX).LT.8(II))IQnRX=II 

510 iF(a(iaHiN).ST.a(ii))ianiN=ii 
D E L T A = S ( 3 ) - S ( 1 ) 
Di=(a(2)-a(i))/(S(2)-s(i)) 
D2=(a(3)-a(2))/(S(3)-S(2)) 
I F ( D 2 . L E . D 1 ) S 0 TO 580 
S l = ( S ( l ) ^ ( 2 ) ) / 2 . 
S 2 = ( S ( 2 > » S ( 3 ) ) / 2 . 
S S = ( D 2 S S l - D l x S 2 ) / ( 9 2 - D l ) 
60 TO 590 

580 iF(a(3)JE.a(i))ss=s(i)-a(i)«(S(3)-s(i))/(a(3)-aíi)) 
IF(B(3)ia.a( l))SS=S(I0HIN) 

590 I F ( S ( 1 ) - S S . 6 T . D E L T R ) S S = S ( 1 ) - D E L T R 
I F ( S S - S G ) .6T.OELTa)SS:S(3)40ELTA 
DO 600 J= l /KDI f l 

600 pNa)=pa)*ss»o(j) 
CALL S T A T U S C N / X / V / U / P N / S S O / N F O I B / R O / l ) 
aa=sso 
I F d P R I JE.9 )URITE(6 /1450) (S( j ; ) / JJ= l /3 ) /SS/(a ( ; i ) / J I= l /3)/aa 167 



n 
1450 

U 

n 

F O « l « T < ' SI S2 S3 S S S / / 
1 4 ( U { ^ 1 3 . Î * 1 X ) , / / 4 ( 1 X / 6 1 3 . 7 , 1 } | ) ) 

C J i m « S l F ( I P L T J E . S ) C f l L L 0ISPLA(H/V/X/P/2) 
IF(U.6E.a(I8ni)X))$0 TO $(0 

C 
C CHECK CONMERffHCE 
C 

IF(INNER.6E.RnT)eO TO SSO 
IF(ABS(SS-$(IQniN)).LTJ>RE/10.)60 TO SSO 
IF(RB$(S$-S(ianiN)).LTJ>RE J N O . DELTA.LT .20 .3PRE>60 TO SSO 
60 TO (630 / (40 /S50} , I0HIN 
S<3)=SS 
0(3): f l f l 
60 TO 530 
IF(SS.LT.S(2))60 TO S30 
S(1 )=SS 
t(l)=0«i 
60 TO 530 

CONVERGED IHRER ITERRTION 

END » H E R LOOP 

ÕH<SSS»XS9a»XSiJ»S»XS«»X»»S 
(60 IF(U.LT.a(IGHIN))60 TO 600 

S S s S d O N I H ) 
S S O s O d O R I H ) 

680 DO 690 1 1 = 1 / K O I H 
690 PNd I)=PdD^SSDdI> 

RETURN 
END 

630 

640 
(50 

U 
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n 

APPENDIX E 

LISTING OF THE "SDLPI" COMPUTER CODE 

In this appendix, the listings of the SDLPI program is presented. 

This program is the final version of a series of programs used during 

the development of the Single-Direction Learning method described in 

Chapter 3, Section 3-5. 
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csa- RoAilc iMRc: Single Direction Leorning Porwcter Identification 

iieroiofl m M iatt edit: vr-m-83 11:12 
Status: Developneni/Oeiwgging 

Revision history: 
Version XW.0O M-m-93 14:M - Ol-JOL-DS Ii:i2 
Created Dy: Ê-RachadQ 

CM-

SUBROUTIMES CALLED: 
6E1EP - SUBROttTINE TO SET THE EXPERIRENTAL POINTS (USER SUPLIED) 
fillM - SURMUTINE TQ KT PARAflETEN INFORNATION (USER SUPLIED) 
STATUS- e5SStE?THE m sSSd DEVIATION AND FEATURES 
SBSOS- FINOS THE NININNUR AL0N8 A DIRECTION 
POPt - RENOVÉ FIRST ELERENT FROH 80EUE 
PIACEQ- PLACE AN aERENT IN lUEUE 
REQROa- REORDER 8UEUE 

f i l e s : VERSION.CHA 
HEAOJLX 
RERORV.aLS 
FITL08.9U 
LCURVE-DLS 

input : Tnc character for file nanes (x) 
output : Seneral infornation 
output : Region nenoru 
output : Log of ail Pf 
output : Learning curve (if requested) 

PR8SRAR SDLPI 
PARARETER N00in=2 
PARANETER NEDIH=20 
PARARETER NP0IN=3 
PARARETER NROIRslOOO 
PARANETER NB0IRS3 
PARARETER NFOINs* 
PARARETER RAXIT=S«0 
PARANETER RAXST=1000 
DINENSION X(ME0IR) 
DIHENSION Y(NE0IH,NB0IH) 
DIHENSION FKNOOIR) 
DIHENSION ISRUN(NDOIH) ^ 
DIREHSIQN HCNEOIR/NOOIB) 
DINENSION RSSD(NOOIN)̂  
OINENSION IRRUN(HDOIR} 
DIIENSION P(NPOIR) 
DINENSION PNOIPOIR) 
OIRENSION PT(NPBIH) ^ 
OlilENSION PRINCNPOIR) 
DIHENSION PnAX(NPQIR) 
DIMENSION PAVECNPDIR) 
OIRENSION PSOV(NPOIN) 
DINENSION PPR£(NPOIR) 
OIRENSION IPF(NPOIH) 
VIRTUAL CEXTQIFDIR/NROIH) 
REALX4 FNT 
OIRENSION 00(NPDIR/N89IR̂) 
OIRENSION ROCNFDIH) 
DIHENSION PKNPOIN) 
OIRENSION ROKHFOK),̂  
OIRENSION I8UEUE(NB0IR<1) 
DIREHSION 0PRI8R(X80IR«1) 
OIRENSION BPRIDRCNBOIR) 
OIRENSION CPRI0R(H8DIR) 
OIRENSION DDa(N80in) 

! t DEPENDENT VARIA8LES 
! » EXPERIRENTAL POINTS, 
! i OF PARARETERS TO FIT 
! tOF RE6I0NS IN FEATURE SPACE 
! t OF 8ASIC DIRECTIONS 
! 8 OF FEATURE SPACE VARIADLES 
> RAXIRUR 8 ITERATIONS 

! RUN SISN (for 8 runs calculation) 
! UEISNTS (1/VARIANCE) OF V 
! DEPENDENT VARIA8LE RELATIVE SSO 
! DEPENDENT VARIA8LE 8 RUNS 
! PARANETER ARRAV 
! NEU PARARETER ARRAV 
! TRUE PARARETERS 
! RINinun PARARETER LIRIT 
! RAXIRUR PARARETER LIRIT 
! AVERA8E PARARETER ARRAV 
! PARARETER STANDARD DEVIATION 
! PARANETER PRECISION 
I not used 
i 8E6I0N CENTER COORDINATES 
! 8 OF TIRES IH RE6I0N 
! BASIC DIRECTIONS 
! FEATURE COORDINATES 
!X INITIAL PARARETER ARRAV 
!S INITIAL FEATURE ARRAV 
! DIRECTION OUEUE ARRAV 
! DIRECTION PRIORITY ARRAY ^ 
! DIRECTION PRIORITY FOR START (IT=1) 
! DIRECTION PRIORITY FOR IT>1 
DIRECTIONAL OaiA 

L08ICALS1 7IT(70)#S0ATE(10),TDATE(10),SnaE(8),mflE(8) 
L06ICALX1 ICON 
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J unm isRE6(iMxsT)/Si>AR(iirain#nMiST) 
DMRSION RMilCC(Rrain) 

-, DIKHSION BD$I6N(NB0in) 
COnnON /TDRTR/PT 
COnnON /SEEDEP/ISEP1/ISEP2 
COnnOH /SEEDPR/ISPfll/ISPR2 
LOSICRLXi HE«)(10)/nEn8(12)/FITia2)/UUR(12)/IKHRR 

n ORT» HERO/'HS'ES'RMIS'.S'RS'L','»'/' SO/ 
DATA BERO/'HS'E','BS'OS'R','V','.S'iSaS'»S' SO/ 

J OATR FlTl/'FS'IS'TSaS'OS'SS'.S'aS'LS'lS' SO/ DATR LC0R/'LS'CS'O'*'RS'PS'ESSS'asaS'«S' SO/ 
. DRTR PR»E/1.4wl./ ! DEFAUT VALUES 

DATK Pnn/.0001,.0001,.0001/ ! DEFAUT VALUES 
DATA PRAX/2.,2.,2y ! DEFAUT VALUES 
DATA PPRE/.O0Ol,.OOO1, JOOl/ ! DEFAUT VALUES 

G2 DATA PAVE/1.,1./ ! DEFAUT VALUES . 
C2 DATR Pfl»/.0001/.0001/ ! DEFAUT VALUES 
C2 DATA PnAX/2./2./ ! DEFAUT VALUES 

^ C2 DATA PPRE/.0001/.0001/ ! DEFAUT VALUES 
C 

1 C SET VERTION CHARACTER FOR FILE HAHES 
C 

^ REA0(1)IVCHÂR 
n CLOSE (UHITst) 

MEA0(8>=IVCNAR 
^ HER0(10)=IVCHAR 

FITL(10)=IVCNAR 
1 LCUR<10)=IVCRAR 

C J C DETERHIHE DASIC DIRECTIONS AND INITIALIZE 8UEUE 
C 

. CM- 600D FOR HPDINdlODIH -010 
COS- ie. basic directions = one paraneter at a tine -tfO 

DO 1 I=1/N8DIN DO 1 J=l/N80in 1 BDa/I)d).0 
1 iFa.Eftj»oa/i)=i.o 

^ c 
Cii 6000 FOR 2 PARARETERS ONLV 

-> C 00 1 I=1/N80IH 
C D0tt/I)=C0Sa.î415î2T»a0AT<I-1)/FL0AT<H80IR)) 

J CI 0D(2/I)=SIN(3.141592lKa0AT(I-1)/FL0AT(K80IR)) 
JDESzl 

_ JDAD=0 
n J8ADNA=1 
i IPAFL=4 
^ nRITE(5/1000) 

1000 FORRATC ENTER <R1> TO START A NEH RUNS// 
1 1 ' OR 1 TO RESTART AN OLD RUN : S$) 

REA0(4/2650)ISTART 
J IF(ISTART.Ea.0)60 TO 30 

C 
C RESTART OLD RUN 
C 

0PEN(UNn=1/NARE:NEA0/TVPE='0L0'/ACCESS='SEaUENnAL' 
1 F O R R r W 
REAO(l)nT 

1 REAOaiSOATE/STIRE/TDATE/TTIRE 
READ(1)NEP/N0V/NPA/NREST/NDD/NFE/N8FIT/H8REP/RHRE6/NRE6/N8F/H8R/ 

U 1 TNFIT/ISEP1/ISEP2/ISPA1/ISPA2 
READ(l)PRE/RflO/RRIN/NIT/HHSSD/IPRI/ISa/IUPO/ 

. 1 LC/L0OPC/L3OP2/IEVFL6/J8AD/NAVE/IPAFL 
READ(1)PAVE 
READ(1)PS0V 
REAOCDPRIH 
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REM(l)PliAX 
REM(1>PPRE 
REflO(l)BPRIOR 
READCDCPRIOR 
REflO(i)OELOLO,J)OEL 
CLOSE (UNIT=1> 
0PEN(URrr=l/NfinE=flEnO/TVPE='0L0'/ACCESS='0IRECT% 

n 1 FORnsWORnftTTEOSSIMRED) 
DO 20 I I = 1 , N R E 6 

U 20 REROd'inFNT/WPEC/RlitMG/ 
1 (CENTaJ/II),;j=l/RFE) 

™ CLOSE ( f l l l IT=l) 
N R E S T = K R E S M 

J HDIR:NBD*1 
IFCniFIT.Eft.O.O)60 TO 40 
60 TO 49 

n c 
CXSXS»SM«MS»XSS« NEU RUN Si«XH«»Xn»S«S>XfiHXX»H 

u c 
30 CAU TinE(STinE) 

n CAU DATE(SDATE) 
UN H E ( 5 / 1 1 0 0 ) 

J 1100 F O R N A T C ENTER T I T L E C70 CH J ' ) 
READ(4/1200)nT 

1200 F0RnAT(70Al) n c 
C I N I T I A L S 

u c, 
IEI IFL6:45 

n NBO=NBDIN 
NDIR=NB04-1 

U ISEP1=31013 
ISEP2=-19579 

^ I S P A 1 : - 1 2 3 0 
ISPA2:11504 

C PRE=2.E-4 ! RaATIUE PRECISION 
RA0=.5 ! RE6I0N RADIUS IS 6IPEN BY: 
RNnk.5 ! (BISTANCE)XRAD4RNIN 

n NEP=NEDIH 
HOIbNODOl 
NFEsNFDIH 
NNiESsNniR n NIT=RAXn ! N A X . t OF ITERATIONS 
NNSSDsHAXIT ! NAX t OF INNER ITERATIONS 

J NBREP:50 
NBFITsSO 
I P R I i l ! PRINT L E U E L 

n ISa:2 !XX HOT USED XXHEURISTIC SELECTION HODE ( 1 - 4 ) 
IUP0=1 !XX NOT USED XXUPDATE FLA6 (0 - NO UPDATIN6) 

^ L C s l 
HREST=0 ! HUHBER OF R E S T A R H 
HBR=0 ! HURBER OF REPETIT IOUS (FOR LEARNIN6 CURUE) 
L00PC=1 ! LOOP CONTROL ( 6ET A HEN SPECTRA EPERY PASS) 

U OELOLO=100. 
C A U GETPA(HPA/P/PRIN/PRAX/PAPE/PSDM/NAME/PPRE/IPF/0) 

_ DO 35 I=l/NPfl 
n 35 P A P E ( I ) = P ( I ) 
^ C OPEN F I L E S AND STBRE I N I T I A L DATR 

n 

C 
OPENaiNIT:l/NAflErNEAB/TVPE='NEil'/ACCESS:'S£aU£NnALS 

-i aRnE(l)TIT 
C A U OATE(TOf lTE) 
C A U TIHE(niRE) 
nRITE(l)SDATE/$TIIE/TDATE/TTIRE 

U URITE(l)NEP/MiP/NPA/NREST/NDD/HFE/NBFn /NBR£P/RHRE6/NRE6/NBF/NBR/ 
1 T N F I T , I S E P l f I S E P 2 , I S P A l , I S P A 2 
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c •» TKFITzO. ^ 7IISS0=«. 
n DO 41 Irl/NBQ 

D 

u 

UI)nia)PRE/M0#8niK/NIT*nNSS0,iraMSEL/IUP0/ 
1 LC/L00PCA00P2/IEPFl6,J8M)/N0VE/IPftFL 
HXITE(1)P8ME 
IMITECDPSOil 
URnE(l)Pnili 
URnECDPIiflii 
URHECDPPRE 
URnE(l)BPRIOR 
nRITEdXPRIOR 
I 1R ITE(1 )DEL0L0 /0DEL 
CLOSE (UNIT=1) 
IRECsNFE-HIPDin-̂  
OPEN(ONIT=lfmnE=ffEnO/1WE='NEH'>RCCESS='OIRECTS 
1 FORII=WORRftTTEOSRECOROSIZE=IREC,SHRREO) 
CLOSE (0NIT=1) 
IREC=(S3«POIIM3lNFDIR«lS-»l)/2̂ 1 
0PER<UmT=l/«RIIE=FnL*TYPE='REH'»flCCESS='3IRECT'-
1 FORRs'UNFORn 
CLOSE (UNIT=1) 
IFaC.E8.0)60 TO 40 
OPER (URIT=l/NAIIEd.COR#TVPE='REHSACCESS='OIRECT' 
1 SHRRED/REC0R0SIZE:10) 
CLOSE (IMIT=1) 

C 
C START OPER LOOP 

ooa(i>=i. BPRI0R(D=1. 41 CPRI0R(I)=1. NAI€=0 NBF:0 ! SH IFaC.E8.0)60 TO 50 HBRzWR-K • nx 49 IFUBES JE .0»RITE(S,12S0)TIT/NPOI»/NDOIR,HE0Ifl,«8OWIFOIR/IEPFL6 1250 F0RRftT(//lX/10Al/// 1 ' i PARARETER 'A3,' i KP. MR. 'A2,' i EXP. POI. 'AS,/, 1 ' t OAS. DIR. M3/' i FEATURES URITE(6/1300)NBR 1300 IFaC.NE.0 .AHD. NBR.6T.XBREP)80 TO 910 ! i» 

C SET EXPERIRENTAL POINTS C 50 JBES=0 NBF:NBF-»1 ! ns IFaC.NE.O .AND. «F.6T.NBFIT)60 TO 40 ! » X ISEP1I=ISEP1 ISEP2I=ISEP2 ISPA1I:ISPA1 ^ ISPA2I=ISPA2 n TNFIT=TNFIT*1 IEPFL=1 SO CAU SETEP(N£P/NOP/V/X/(l/IEPFL> C n C SET FUNCTION PARARETERS C 
80 CAU 6ETPA(NPA/P/PRIH/?RAX,PflME/PSDV/NAPE/PPRE/IPF>IPfiFL) 
C 
C CALCULATE INITIAL SSO C CAU STATUS (NEP /NOP / X /V/U ,f /SSDO /ftSSD /NFE /RO ,0) TNSSD=1. 
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0 

n 
ROIST=0 . 
DO 01 J z l / M F E 

81 RDIST=MIST«f iO(J)9«e (J) 
RDIST=S8RT(R0IST) 
I F d P R I JE .l)iiRm(S,1350)HBF/SSD8/RSS0/R0IST/R8,l>/PAPE 

1350 FORf lATC/ / 
1 ' F I T t : M 5 / ' S S D : '/613.7///<R8P>(«/F7 J),/, 
1 ' D I S T : ' / F 7 . 2 , / , < R F E > < 1 X / F 7 . 2 ) / / / 
1 ' I N I . P A R . S < N P A > ( 2 X / 6 1 3 . 7 ) / / / 
1 ' A U E . P A R . % < N P A > ( 2 X / S 1 3 . 1 ) / / ) 
SSOI:SSDO 
DO 05 I : 1 / N F E 

n 85 R O I d > : R O d ) 
DO 07 I : 1 / N P A 

^ 87 P I d ) = P d ) 
CPNAXzO. 

n DO 08 I : 1 / N B D 
IF(CPRI0Rd).6Tj:PNAX)CPnAX::CPRI0R(I> 

U 88 B D S I 6 N d ) : l 
NODEUEsO 

_ 00 09 I d / N B D 
n í P R I D R d t e C P R I O R d V C P N A X 

CALL P L A C E O d / O / I 0 V E ü E / N 8 U E V E / N 0 I R / B P R I 0 R / N B D / I E R R ) 
^ I F d P R I J E . 5 . A N D . Na0E0E.6T.0)HRITE(5/998)l/HayEUE/ 

1 (d I / I8UEUEdI)/aPRI0R<I80E0EdI )» / I I= l /NOyEI IE) 
n 998 F O R N A T C M 1 / 2 X / ' 8 U E 0 E M 2 / / / ( 1 X / I 4 / 2 X / I 4 / 2 X / F 1 S . 4 » 

89 I F d E R R J T . 0 } « R I T E ( 5 / 9 9 9 ) I E R R / I / N 8 y E U E 
U 999 F O R N A T C aUEüE ERROR M 2 / 2 X / I 2 / 2 X / I 4 ) 

0 P R I 0 R ( N D I R ) : 1 . 
r - , S S T : 0 . 0 

I Nrn:i 

J IROLD:0 
C 

D E L 0 L D : 0 E L 0 L « I 3 . 
n IC0N:32 

IPRTN:0 
U N N f c - l 

C 
r-, Cxs«x»»saxxi»>xs«xxs«xxx»sxs»sssja»««x«inHX3Q»xxaxsxHsxi» 

C X 
J C SEARCH ITERATION LOOP X 

C X 
_ 150 DO 300 I T : N I T I / N I T 
n IFdTja.l)IROLD:0 

CALL R E A D E F d £ P F L 6 / I E F L A 6 ) 
^ I F d E F L A S . £ 8 . 0 ) 6 0 TO 160 

C A U C L R E F d E P F L 6 ) 
n 50 TO 910 

C 
U C CHECK I F IN AN E X I S T E N T RE6I0N 

C 
^ 160 C O N F I D : 0 . 
1 IF (NRE6 Ja.0)60 TO 250 

I F d C 0 N J E . 3 2 ) I R £ S : I R 0 L D 
I F d C O N J E .32)60 TD 300 
R A 0 2 : 0 . 

n 00 1 7 0 I I : 1 / N F E 
170 R A 0 2 : R A D 2 ^ 0 d I ) X R 0 d I ) 

^ RDIST:S0RT(RA02) 
RA01:RADXRDISTHiRIN 
RAD2:RAD1XX2 
DIST0:RAD2«^. l 
I R E 6 : - 1 
DO 190 I S : 1 / H R E S 
O I S T : 0 . 0 
00 180 I F E : 1 / N F E 
I F ( A B S ( R 0 d F £ ) - C E I i T ( I F E / I R ) ) . 6 T . i M 0 1 ) 6 0 TO 190 
0IST:DIST*<R0<IFE)-CENTdFE,IR))xx2 

I 
1 

u 

D 

L 



r 
J IM IF (0 ISTJT.J IM2)6 Í TO 150 

I F ( 0 I S T J E . 0 I S T 0 ) 6 0 TO 150 
UE5=n 
OISTOsOIST 

150 CONTIMIE 
I F ( I R E ( 1 T . 0 > 8 0 TO 250 

n C RETRIEPE REGION INFORflftTION 

U " I F ( I R E 6 1 t . I R 0 L 0 ) S 0 TO 300 
CONSIS=0.0 
GRLL P0Pt(N0IR/0/I8UEüE/NSIIEUE/IERR) 
I F d P R I JE.S . A N D . N8UEUE.6T.0)aRITE(S/59B)2/N0UEUE/ 
1 ((IMaOEDEdI),aPRI0Rd80EOE(II)))>II=l/N8yEilE) 
IFdPATN.LE.l)GO TB 154 
DO 153 II=1/IPATN-1 
IFdSREGdDlO.IREOGO TD 300 

153 CONTINUE 
154 0PEN(UNIT=l/NAHE=REnO/TVPE='OLD'/ACCESS='DIRECTS 

1 F O R R s W O R N A T T E D S S H A R E D ) 
REAOd'IREG)FNT/AWIEC,AMnAG 
CLOSE < U N I T = « 

U I F ( F N T . E O . O . ) G O TO 300 

_ UHASN=0. 
n 00 155 I I =1 ,NPA 

| lHA6NrUHA6N->^ (APPECdI ) /PPREd I ) }»2 
^ 155 P R A G s P N A G ^ A W I E C d D l A P K C d l ) 

I F ( P N A G 1 0 . 0 ) y R I T E ( S / 5 0 T S > I R E G / F N T / A I W E C / A W I A G 
n 5016 F O R N A T C R E 6 . M 4 / ' t OF T INES ' / F 1 . 0 / 3 ( 2 X / 6 1 0 . 3 ) > 

I F ( P R A G 1 R . 0 . > G 0 TB 300 
U PRA6N=SBRT(PHA6N) 

PRA6=S0RT(I«A6) 
CONSISzWIAGN/APNAG 

/ I F ( C 0 N S I S . L T . . 1 } G 0 TO 300 
DO 200 I I = 1 / N P A 

200 B B d I / N B I R ) = A P » E C d I ) / W f A 6 
OPRIOR(HOIR>=0. 

n C R U P L A C E & ( H D I R / O , I B U E U E / N t t E 0 E / N D I R / O P R I 0 R / l / I E R R ) 
I F ( I P R I J E . 5 . A N D . N f lUEUE.GT .0 )URITE(5 /55S)3 /NOÜEUE/ 

^ 1 (d I/nUEUEdI ) /8PRI0RCI0UEU£dI ) ) ) , I I= l /N0UEUE) 
IF(CONSIS . 6 T . 0 . 2 ) C 0 N F I D = 1 . 

n IF(CONSIS . G T . 0.50 . A N O . FNT.GT.10 .}C0NFI0=2. 
j IFCCONSIS . G T . 0.85 . A N D . F N T . G T . 2 0 . ) C 0 N F I 0 = 3 . 

J ^ 60 TB 300 

C CREATE NEU REGION 
n c 

250 CALL P0P8(N0 IR /0 / I8U£UE/N0UEUEf IERR) 
^ CONSIS:0 .0 

FNT=0 • NUNBER DF TINES IN THIS REGION 
n IF(NRE6J.T.»NRE6)60 TO 270 

I F d P R I J E . 2 . A N D . HNRE6.6TJ)yRITE(6,lS00) 
U 1500 F O R N A T C HO HORE HERORV S P A C E ' ) 

60 TD 350 
_ 270 I F d P R I JE .5 . A H O . HOUEUE.6T.0)URITE(5/55B)4,HaUEÜE/ 
1 1 (dI/I8UEüE(II),aPRI0Rd8UEUEdI)))/II=l/NeUEUE) 

I F d P R I J E .3)I!RITE(6/1600)NREG-»1/R0 
^ 1600 F O R N A T C CREATING REGION M3/' AT: '/613.7///<NFE>C 

NRE6=NRE6*1 
n IRE6=NRE6 
; 00 280 IFE=1/NFE 
U 280 CENT(IFE/IRE8)=R0dFE) 

0PEN(URn=l/HflnE:IER0,1VPE='0LB'/«CCESS='DIRECTS 
^ 1 FORHsniHFORHATTEDSSHARED) 
{ HRITE(l'IRE6)FNT/APl'EC#APnA6/ 
M 1 ( C E H T d I , I R E G ) , I I : l , N F E ) 
^ CLOSE ( U H I T r l ) 
'n 175 
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c 

C 
U CALL SB60AL(HEP/H0i»/X/V/U,PRE/OELTA,HPA,P/PniN/PRAX/PN, 

1 BBd/IO)/IPRI/NFE/ 
^ 1 C0NFIBfR0/NSS0/RNSS0/SSP/SS0fRSSD/SS00#ISB6P) 
1 SSáSP/PRE 

C- LEARN SISN AND BELTA FOR EACH BASIC DIRECTION ~ 
IFdO.LE.NBD .AND. SS.NE.0.)BBSI6Nd0)=SS/ABS(SS) 

C 
IFdT.E0.1 .ANO. I0a.EJBD)Da0L0=.lXABS(SSVDDELdDH.9XDEL0L0 
IFdT.E0.1 .ANO. ID.6TJBB)DEL0L0=.1IABS(SSH.9>SEL0L0 

IFd0.LE.NS0)0EL0LD=.0XABS(SS>/DDELdD)«.2SABS(BELTA/PRE) 
IFdD JT.HBB)OELOLD= .8iflBS(SS)*.2xBEL0LB 

C 
C=====IFdB.LE.HBB JND. IT.6T.l>DDELdD>=.55X00adD>».0SXfl8S(SSP/DELTR) 
C 

IFdT10.1 .AND. ID.LTJ0IR) 
1 BPRIORdB>=.»BPRIBRdB)MX(SSDO-SSD)/SSDO 
IFdT .6T . l .AND .ID 1T.NDIR.AHD .SS J E .0 .)CPRIOR(ID)=CPRIORdO)«.01 
aPRI0RdO)=.lsaPRI0RdD)-».9l(SSDO-SSDVSSDO 

C 
C PENALIZE DIRECTIONS SIHILAR TO LAST ORE C 

DO 366 IIsl/NBUEUE-^l 
Pn:0.0 
pnx=o.o 

n PHVtO.O 
00 364 JJ:1/NPA 

^ PBX=PBX*<DBdJ,IIVPPREan»»2 
PRYi:PBY*(00(»/IDVPPREaJ))»2 

1 364 PBd>R4eoaJ/II)lBOa7/IO)/(PPREaJ)»2) 
PB:(PB/PHX)S(PH/Pfly) 

J 366 0PRI0RdI)=QPRI0RdI)>2./(l.«3.XPn) 
C 
C CHECK IF C0NIIER6IH& 
C 
36$ IF(ABS(SS).ST.1.)6D TD 370 
C 

n 176 
L 

C STBRE RE6I0N MO PRRRflETERS FOR »PD«nR6 C 
300 IF(IRE610.0 .OR. IPRTH.6E.ilflXST»0 TO 350 

IPRTH=IPRTH+1 
ISRES(IPRTK)=IRE6 
00 310 II=l/HPfl 

310 SPAR(IMPflTH)=P(II> 
IF(IPRTN.Eft.l)IRE6UIRE6 

C 
C saECT R BIRECTIOR 
C 
350 CRU. P0PtCID/l/I8BEUE/H0BEaE/IERR) 

IFdPRI JE .5 .ARO. RtüEUE.6T.0)URm(5/998)5/H0liEUE/ 
1 ((IM0UEUEdI)/8PRI0R(I8üEUEdI)))/II=l/HflüEüE) 
IFdERRJT.0>URITE(5/9»)IERR/I/H0ÜEUE 
PHX:0.0 
00 360 II:1/HPA 

360 PnfePnX*<B0dI/I0)/PPREdI))»2 
PRE:l./SaRT(PnX> 
OELOLOrOELOLD/3. 
IFdD.LE.NBO)OELTA=80SI6NdO)XBEL0LBlPREXO0ELdB> 
IFd0.6T.N8D)0aTA=MflA6 
IF(ABS(OELTA)J.T.PRE .ANO. BELTAJE.O) 
1 DELTA=1.1XPREX0ELTA/ABS(0ELTA) 
IF(ABS(BELTA>.LT.PRE .ANB. BELTA J(l.0)0ELTA=l.l8PRE 
IFdPRI JE .3)NRITE(6/8145)ID,BEL0lO/PRE/OELTA 

0145 FORNATC IB=M3/ ' DEL0LD='/612 J , ' PRE=S612 J , ' 0EUS612 J ) 
C 
C UNIDIRECnONAL SEARCH 



• I 

lJ 

n 

u 
n 

C COmiERGINC 
C 

CALL POPVroOt/O/iaOEOE/ilQUEIIE/IERR) 
IFCIPRI JE.9 .m. HaüEÜE.6T.0>URITE(5,998)2/il«iEOE> 
1 CCII/iaUE0E(ID/VRI0RCiaüEÜE(II)))/II=l/il&liEÜE7 
60 TO 100 

C 
C « O T C8IWER6IN6 
C 
310 NHlisO 

IF(flBSCSS).LT.7.)HHV=1 
-REORDER DIRECTIONS IN OOEUE-CALL REOROt(0/IfiOEUE/N80EUE/8PRIOR,NOIR/IERR) 

IFCIPRI JE.5 .AND. N8UEDE.6T.0}URITECS/998)6/N8!iEQE/ 
1 (CII/IOUEÜE(II>,OPRIOR(iaUEU£(II»)/II=l/NOUEÜE) 
IFCIERR JT.0)HRITE(5/999)IERR,I/N0NEUE 

PUT LAST DIRECTION IN TME flOEUE END 
TOO IPL=N6UEUE 

CAU PLACED(IO/IPL/I80EUE/NaUEUE/NOIR/aPRIOR/NOIR/IERR> 
IFCIPRI JE .5 .AND. N0IIEUE.6T.0)URITEC5/998>1/N0IIEUE/ 
1 C(II/nUiEOECII),OPRI0R(I&0EÜECII))>/II=l/N«iE(E) 
IFCIERR JT.0)HRITE(5/999)IERR/I/NailEÜE 

C 
C B00KKEEPIN6 
C TNSSO=TNSS0-»fL0ATCNSSO> 

SSTiSST̂ BSCSS) 
IR0L0=IRE6 

rn SS00=SSD 
DO 180 ;=1/NPA 

J 180 P(J)=PNa) 
c 
C ITERATION PRINTODTS 
C 

IC0N=32 
IFCABS(SS).LT.1.)IC8N=35 
IFCIPRI JE .i)URITEC6fl000)IT/SSD0/IFIX(TRSS0)/RDIST/IRE6/ 

n 1 IFIXCFNT)W:8NSIS/ID/SS/IC9N 
1800 F0RHAT(1X/I3/ X2=SF10.0/' H = ' 

U 1 ' C=SF4.2/2X,'H='»I2,' S=SF0.1/A1) 
IFCIPRI JE .2»IRITE(6,1900)(PNCJ)*J=1,NPA) 

1900 FORNATC PAR. UAL. S<BPA>C2X,G13.1)) 
IFCNHU.Eft.NB0)60 TD 810 

800 CONTINUE 
C 
C * 
C » 
C END OF SEARCH LOOP X 
C » 
CXX » ) Q » » » S » H X » « X H « X H « » S « i « S » » « S a i H » I « » X»MSnXXSn 

c 
URITEC6,2000)NIT 

2000 FORNATC NOT CONVERGED AFTER ITERATIONS') 
60 TO 910 

C 
n C EXn ON C0NPER6ENCE 

810 LRUN=0 
IFIRST=1 
DO 020 J=1,NDV 

820 IRRUNCJ)=0 
DO 850 1=1/NEP 
IFCI.Ea.NEP)IFIRST=-l 
CALL FUNCKXCD/P/FI/IFIRST) 
00 840 l=l/NDII 
IFIRST=0 
ISI=SI6N(1.,<Y(I,J)-FICJ))) 

Li 
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n 

IF(I.Ea.l)60 TB 83B 
IF(ISI.EB.ISRÜNa)»0 TB 840 

838 ISRORa)=ISI 
n, IRRÜNU)=IRRüNa>*l 

840 CBNHHUE 
850 CORTIRUE 

00 880 J=1/R0M 
880 LRORzLRON^IRRtfMa) 

R U H r F L 0 A T ( N 0 » ) » ( F U M I T ( R E P ) / 2 . « 1 . ) 
U S T R 0 N = S Q R T ( F L 0 A T ( M E P ) X F L 0 f l T ( N E P - 2 > / ( 4 J l F L 0 A T ( R E P - l ) ) ) 

STR0lir$TR0R>S8RT(FL0ATO(BP ) ) 
I F C I P R I M . 0 ) t t R I T E ( 8 / 2 4 0 O ) R B R , N 6 F , I T / I F I X ( T N S S B ) / R 0 I S T , R 0 , S S D / L R U H / 
1 RSSD,IRRUN/P/PT 

2400 F O H I A T C / / 
1 ' NBR: M 5 , 2 X . ' F n : M 5 / 2 X , ' I T M 5 * ' HSSB 
1 <NFE>(lX,nJ)>/, 
1 ' SSD: S 6 1 3 . T . ' RONS M 3 , / , 
1 < N D V > ( 1 N / F T . 5 ) , / , 
1 < N D 9 > ( 2 X , I 3 , 3 i ( ) , / , 
1 ' F I N . P A R . ' / < N P A > ( 2 X # 8 i 3 . 7 ) , / , 
1 ' TRUE P A R . S < N P A > ( 2 X / 8 1 3 . T ) V ) 

C 
C CHECK I F THE F I T IS ACCEPTABLE 
C 
C CHECK t RONS 
C CNECK SON OF S8IÍARES 

0 c 
IFCSSD J . T . 5 .SFL0AT(NEPSH0N»80 TO 885 
J S ñ ^ B A O ' ^ i 
URITE(8 ,2001)NBR,HBF,SS0/JBAD 

2001 FORNATC 

1 ' HS BAO F I T S H i H B R : M 3 , ' F I T : M 3 , ' S S 0 : S F 8 . 0 , / , 
1 ' M « i » « X S m i a H % / , ' ' , 1 8 , ' T I R E S ' , / ) 
I P A F L S : I P A F L 
I P t f L : 2 
I F ( I B A D J . T . J B A D R A ) S O TO 00 

885 IFaBABJT.O)IPAFUIPAaS 
IBflD:0 

C CHECK F I N A L PARARETERS VALUES 
C 
C KEEP AVERAGE PARARETERS 
C 

I F C H A V E 1 T . 3 ) H A V E : H A V E - » 1 
BB 810 J : 1 , N P A 
IFCNAVE M .2)S2:FL0ATCNAVE-2)XPS0VCJ)«PS0Va)4-
1 FLOAT(NAVE-l)SPAVECJ)i»AVEa) 

n PAVE(J):CFL8ATCNAVE-l)«PAVEÜ)-H>a))/aOATCNAVE) 
810 IFCNAVE JE . 2 ) P S 0 V ( J ) : S 8 R T C C S 2 ^ ( J ) > P C J ) -

1 aOATCNAVE)«PAVECJ ) « P A V E C J ) ) / F L O A T C N f l V E - l ) ) 
C 
C UPDATE REHORV 
C 

IFCIPATH.E8.Ö)G8 TD 090 
0PEHC0HIT:l,HÄRE:ffiRO,TWE:'DLD'pACCESS='OIRECT', 
DO 885 I I : 1 , I P A T H 
I R E G : I S R E 6 C I I ) 
R E A D C 1 ' I R E G ) F H T , A W E C , A V R A G 
VRAG:0 . 
00 880 I : 1 , H P A 
V E C I : P C I ) - S P A R C I , I I ) 
AV!IECCI):(FNT«AVVEC(I)4VECiyCFNT«l) 

880 VRf lG :VRAG«CVECI /PPRE<I ) )H2 
VRA6:SaRT(VRA6) 
I F < V N A G 1 T . 1 . 0 ) 6 0 T9 885 
AVflA6=CFNT)tf iVRA6*{'HAG)/CFNT^) 
F N T : F N T * 1 

LS* 
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n 

URnE(l'IRE6)FNT,WtfEC,AP»ft6/ 
1 (CEilTaJfIRES),JJ=l,MFE) 

885 CONTIIIUE 
CL8$E (8NIT=1> 

C 
C STORE UPOATED H E M 
C 
890 0PEN(VNns1#HftRE:flER0,1VPE='0L0',ACCESS='SEaUERT!ALS 

, 1 F O R f l s W O R R R T T E D S S H R R E O ) 
U MRnECDTIT 

CALL OATE(TBATE) 
n CALL TIBECniRE) 

ttRITE(l)S0ATE/STIHE,11lflTl/TnflE 
J HRnE(l)REPfM0M,NPA,NREST,ttB0,HFE,IIBFrr,NBREP,RNRE6,NRE6,H8F/H8R, 

1 TNFIT#ISEP1,ISEP2,ISPA1,ISPA2 
URnE(l}PRE>RAD,fiRIH/KIT,RISSD/IPRI/ISEL/I«*0, 

n i L C / L 0 O P C / L O O P 2 / I E i > F L S J B A O # R A I € / I P A F L 
iiRITE(l)PAt>E 

^ HRni<l)PSDU 
U R I T E ( l ) P f l I N 

n HRITECDPRAiC 
U R H E d Y P R E 

Li U R H E C D B P R I O R 
U R H E d X P R I O R 

_ URnEd)OELOLO,OOa 
n CLOSE ( O R I T s l ) 

CONTINUE 
^ C 

C L06 THIS PRRARETER IDENT IF ICAT ION n c 
IREC=(NBR-1)«IBFIT4«BF 

U O P E N(ONn : l / N A R E = F I T L / T Y P E = ' O L O ' , A C C E S S z ' B I R E C T S 
1 FORHs 'UNFORHATTEDSSNARED) 

^ U R I T E d ' I R E C ) I R E S I / I S E P l I / I S E P 2 M S P A 1 I , I S P A 2 I , P I , P T # « 0 I , S S D M R E 6 , 
j 1 P ,R04SD,LRUN,IT,IFn (TNSS0) ,SST,NRE6WBAD 
J CL88E ( U N I T r l ) 

IFaC.EB.0)58 TB 895 
C 

n C UPDATE LEARHIN6 CURVE F I L E 
C 

LJ OPEN < U N I T = 1 J I A « E = L C U R , T V P E = ' 0 L B ' , « C C E S S = ' B I R E C T ' * 
1 SHARED/RECOROSIZEs lO) 

ri STSS=0.0 
DO 892 JJ=1/NPA 

J 892 STSS=STSS*«P«J)-PiaJ))/PPREaJ))«« 
STSS=SaRT<STSS) 
SST=SST/STSS 

n NTllSsO 
AUITsO 

^ APn2:0 
AVI IT=0 

n AI»IIT2=0 
ASST=0 
ASST2=0 
IF(NBR.GT.l)R£fl0d'NaF)NTHS,APITfAUIT2,AUin ,AUIIT2,ASST,ASST2 

_ NTNS:NTHS+1 
n AUIT=(AUIT»FLOf lT<NT!!S- l )«fLOATdD)/FLOAT<NTl lS) ! «H 
i AMIT2=(AUIT2ffL8AT(NTnS-l)*<FL0ATdT)»2»/FL8AT(NTnS) ! H» 
^ AMI IT=(API ITWL0AT(NTT!S-1 )+™SS0) /FL0AT(NTHS) ! « » « 

AUIIT2=(AMIIT2«FL0AT(NTHS-l)*<TNSS0»«2))/FL0AT<NTflS) ! » » » 
ASST=(ASSTlEFL0Ar(N7RS-l)4SST)/FL0AT(NTRS} ! «H 
ASST2=(flSST2!ffL0AT<NTllS-l)*<SST»«2))/a0ATaiTnS) • «« 
URITEd'NBF)NTH$,APIT,AUIT2,AUIIT,APIIT2,ASST/ASST2 
CLOSE ( U N I T : ! ) 

895 CONTINUE 
900 IF(L0OPC.E8. i )G8 TB 50 

IFaD0PC.E8.2)G0 10 80 
IFa00PC.Ea.3}60 TD 40 179 

U 
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910 lim=IT 
U R I T E ( 5 , 2 S 1 0 ) T I T 

2S10 F 0 M M T ( / , l X , 7 Q 0 1 / / > 
n 1 ' H I T E B : 0 - TO S E T NEil OUT* P O W T S ' , / , 

1 ' 1 - TO CHftWE PKCISnM, P 8 H T - P L 0 T L E V E L . . . V , 
1 ' 2 - TO T3 OHINSE P « ! I M W E 7 E I I S ' , / , 
1 ' 3 - TO coiniwE mmm*,/» 

I 1 ' 4 - TO CHORSE OEPICE FOR L O S S / , 
1 ' 5 - TO STRRT O V E R S / , 

U 1 ' S - TO FORCE C 0 N V E R 6 E N C E ' , / , 
1 ' 7 - TO STOP ? S $ ) 
REflO(4,2S50,ERR=910)IAI iS 

2S50 FQRI I f l Td lS ) 
60 TO (50 ,920,80,1S0,910,40,900,990>, IARS*1 
60 TO 910 

920 URnE(5,2700)TIT,»ID,R!IIH/PRE,HIT,IPRI,nNRE6,L00PC,i l8REP,IEVFL6, 
] 1 ISEL,IUPO,flRSSO,NBFn,IPRFL 

2T00 F 0 R i M T ( / , l X , 1 O A l , / , 
J 1 ' 1 . RRO : S S 1 1 . 5 , ' 2 . RRIN = S 6 1 1 . 5 , 2 X , ' 3 . PRE = S 6 1 1 . 5 , / , 

1 ' 4 . R I T = S I 4 , ? X , ' 5 . IPR I : S I 4 , 9 X , ' S . B R R E G r S W , / , 
, 1 ' 7 . L 0 0 P C = S I 4 , 7 X , ' 8 . R8REP=SI4,9X, '9.IEVa6=SI5, / , 

1 ' l O . I S E L = ' , r 4 , 7 X , ' l l . I 0 P 0 = S M , 9 X , ' 1 2 J J I I S S B = S I 4 , / , 
1 ' 1 3 . 8 B F r r = S I 4 , 7 X , ' 1 4 . 1 P f t F L = S I 4 , / , 
1 ' ENTER PARANETER • TO C N A N 6 E : S $ ) 
REA0(4,2650,ERR=920}IANS 

n I F d A N S l T . l . O R . lANS J T . 1 4 ) 6 0 TO 920 
930 NRnE(5,2800) 

^ 2800 F O R N A T C ENTER NEO V A L U E : S $ ) 
I F d A N S ja . l )REA0(4,2900,ERR=930)RA0 

n I F d A N S lt.2)REA0(4,2900,ERR=930)RniN 
I F d A N S ia .3)READ(4,2900,ERR=930)PRE 

j I F d A N S 1&.4)READ(4 ,2650,ERR:930)NIT 
I F d A N S l t t .53REA0(4,2650,ERR=930>IPRI 
I F d A N S 18.6>REAB(4,2650,ERR=930>nNRE6 
I F d R N S 1 8 . 7 ) R E A 0 ( 4 , 2 6 » , E R R = 9 3 0 X 0 0 P C 
I F d A N S 1S.8)REA0(4,2650,ERR=930)N8REP 

^ I F d A N S 18.9»EAD(4,2650,ERR=930)IEVFLS 
I F d A N S 18 .10)REA0(4,2650,ERR=930)ISEL 

n I F d A N S J& .11 )READ(4 ,2650 ,ERR=930 ) IUP0 
' I F d A N S 18.12)8EA0(4,2650,ERR=930)RNSS0 
J I F d A N S lft.l3)READ(4,2S50,ERR=930)NBFn 

I F d A N S 1&.14)REA0(4,2650,ERR=930>IPAFL 
T 2900 F0RRAT<F15.0) 

60 TO 910 
970 URITE(S,3000) 
3000 F O R N R T C EHTER DEVICE Z E X : T T E 0 , C 6 ] 3 ] : S $ ) 

R E f l D ( 4 , 3 1 0 0 , E R R : S 7 0 ) I I , I I I , I I I I 
1 3100 F 0 R H A T ( A 2 , I 1 0 , I 1 0 ) 

I F d I I I 1 0 . 0 ) 1 1 1 1 = 6 J CALL ASNLUN(IIII,II,III) 
60 TD 910 

n 990 STOP 
END 

n 

n 

U 
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C nodule Mne: S O L P I S l : GEIPA a FWCI 
C 
C Meroion XOl.00 Last edit : 01-JÜL-03 16:09 
C Status: Developnent/Oeiwggiflg 

C Revision history: 

C Mersion X01.00 03-J0L-82 13:34 - 07-JÜL-a3 «:09 
C Created by: E . nftCNftOO 

om-
SOBROUTINE 6ETEP(H,nOP,V,X/U#IFL) 

C 
C IFL = 1 Senerate paraneters at randon for experinental points generation 
C : 2 use paraneters in connon for experinental points generation 

PRRARETER N00in=l ! DEP. PAR. 
Ü PARARETER NEP0n=20 ! t EXPERIRENTAL POINTS 

PARANETER HPDR=3 > « OF PARARETERS 
CORRON /SEEDEP/IS1,IS2 
OIRENSION y(N«NODin),X(N),U(N/NDDIR) 
DINENSION FKNDDIR) 
OINENSION P(NPOR) 
CORRON mm/? 
OIRENSION FEA(S) 
CORRON /FEATUR/FEA 

J LOSICALU STIREU) 
ERR=.l 
DL=100000 

] I F I R S T r l 
NzNEPDN 
I F d F L .£0.2)60 TD 80 
DO 50 I:1/NP0R 

1 50 P(I)=a.-ERR)«2.SERRxRAN(ISl/IS2) 
80 DELTF=.001 

^ DO 100 Is l /N 
C 

n C L06 SPACED M\ TO .1 HZ 
C 

U X(I)=DELTr«1.274«x(I-l) 
C A U F U H C I ( X ( I ) , P , F I / I F I R S T ) 
IFIRST=0 
00 90 J=l,N00in 
Y ( I * J ) = F I ( J ) 

^ 70 XR1=RAN(IS1/IS2) 
IF(XR1.LE.0)G0 TD 70 

1 XR2:RAN(IS1/IS2) 
XR:S8RT(-2.SAL06(XR1))IC0S(2.X3.1415927IXR2) 

J FACT:1.4KR/SaRT(BL) 
V(I,J)=FACTXV(I,J) 

^ B<IW)=8L/<¥<I,J)«V<I,J)) 
n » CONTINUE 

100 CONTINUE 
^ RETURN 

END 

r 

U 

n 
Ll 
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SUBROUTINE 6ETPfl(IC/i>#raiN/?RRX/PRVE/PS0tf,NRPE,PPRE/IPF,IFL) 

n 

C P(I)=(PAUE(I)SFL0AT(HAilEMPNAX(I)'»PRIN(I)V2.J/FL0AT(nAyE-»l> 
P(D=PAUE(I) 

850 P(I)=P(I)S(.5̂ AH(ISPA1/ISPA2)) 
182 

C CHANSESt 
n c ^ ^ B E 3 : - 8 ^ (a) imiubeb rrx/Nin and aue (b) initial guess iiodified 

C 10-Jan-B3 use of I F L as described belon: 
C l a = 0 READ initial ^ess fron T I 
G : 1 initial guess equal to the average 
G : 2 initial fiess selected at ramhw uithin interval 
G = 3 initial mess selected around noving average valw 
G : 4 KEEP I N I T I A L SUESS CONSTANT , EOUAL TO LAST IN IT I f l L 6IESS 
C 

PARANETER NPDIR=3 ! t OF PARARETERS 
OIRENSION P ( N P B I R ) , P R I N ( N P D I N ) / P R A X ( N P O I N ) , P A U E ( N P D I R ) , I P F ( N P D I R ) 
OIRENSION PSBI ICNPDIR) /PPRE(NPDIR) ,PT(NPDIN) 
DIREHSION POLOCNPOIR) 
L O S I C A L U lANS 
DATR ICOUNT/3 / 
CONNOR /TDATA/PT 
COHRON / S E E D P A / I S P A 1 / I S P A 2 
KsHPDIN 

p . SO TD (90/300,500,800,900)#IFL^ 
90 DO 100 l3l,NP0in 

LJ P(I)=PAI»E(I) 
UNITE ( S 4 0 0 0 ) I , P ( I ) , P N I N ( I ) , P R A X ( » , P P R E ( I ) , I P F ( I ) 

1000 F O R R A T C M 2 , ' P : S S 1 3 . S / ' HIN:',S13 J * ' R A X : ' , S 1 3 . S , 
n 1 ' PRE:',S13.S,' FL :M3 , / , ' DO VOU UANT TO CHANSE CN3 ? ' , $ ) 
i READ(5,1100>IANS 
-J 1100 FORNAT(A l ) 

I F < I A N S J E . ' Y ' ) S O TO 100 
p, URITE(54200 )P( I ) 

1200 F O R N A T C P:E'*613 J , ' ] NEH M L U E : S $ ) 
U READ(5/1300)HANS,ANS 

1300 F 0 R R A T ( R , F 1 S . 0 ) 
IF (NAHSJT.O )P ( I }=AHS 

n URnE(5,1400)PRIH(I) 
1400 F O R R A T C P R I H : E S 6 1 3 . S « ' ] HEN U A L U E t S S ) 

^ REA0(5,1300)HANS,ANS 
IF(NAHSJT.O)PRIN(I):ANS 

n URITE(5 ,1500)PRAX ( I ) 
: ISOO F O R R A T C P f l A X : E S S 1 3 . S , ' 3 NEU i > A L U E : S $ ) 
\J REA0(5,1300)RANS,ANS 

I F ( N A H S J T . O ) P N A X ( I ) = A » 
^ HRnE(5,lS00)PPRE<I) 

I ISOO F O R N A T C P P R £ : C S 6 1 3 . S , ' 3 NEU PALUE:S$) 
j REA0(5/1300)NANS/ANS 

^ I F ( N A N S J T . O ) P P R E ( I ) = A H S 
HRnE<5,1700)IPFa) 

n " 0 0 F O R N A T C I P F I M 3 , ' ] NEH UALUEr'.J) 
I READ(5#1300>HARSrANS 
U I F ( N A N S J T . O } I P F ( I ) = A H S 

100 CONTINUE 
SO TO 990 

300 DO 350 I=1,NP0IR 
U 350 P<I)=PAUE<I) 

60 TO 990 
500 DO 550 I=1,NPDIR 

n 550 P( I )=PRIN ( I)^RAXa ) -PRIN ( I ) ) iRAN(ISPAl / I$PA2) 
60 TO 990 

BOO CONTINUE 
C RAME=RIH0(HAi)E,10O) 
C F I X E D TB REPEAT SANE I N I T I A L SUESS 3 TOES — 

' ICOUNTzICOUNT^l 
L) I F < I C 0 0 N T . L T 4 ) 6 O TD 900 

ICDUNT=0 
DO 050 I=1,NP0IR 

C 



J 50 TO 950 
900 00 510 bl/HPOin 510 P(I)=P0L0<I) 

n REiumi 
550 DO 555 I=lfNPOIil 
555 POLO(I)d>(I) 

END 
r 
L 

r 
u 

u 

n 
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0 

J SUnHHITHE FUNCI(X,P/f MFIRST) 
IHPLICIT REALS4 L 

^ PAMIIETBI NDOINsl ! 8 OF DEP. PfiSftRIfiDLES n PARMIE7ER HP0in=3 ! • OF PARflRETERS 
OIRENSION P(NPOIR>,FI(«0IR) 

^ OIRENSION ftLP<10) 
, DRTR RLP/-.2J70«5«-4,-.12804583E*l,-.43661313£+l,-47873907E*i, 
n 1 .61125833,.22234778E*l,-J1128690E-<,.lM62272E-2, 

1 -.55530403E-4,.28279101E-4/ 
Ll DRTR ftl2/A21/1.2B04€,4.70739/ 

DATR B32,B33,834/5.2133E-2,-3 J9324E-2,-3.17917E-t/ 
DATR PS0TI,PS0TF/PSDNF,PSD0R/1.4.,75.A.S8144E-2/ 
DATA UP,URS,PSDSS/10941.(,.685828(,7Sy 
CDRPLEXIO DaTAllA12A13/L21,L22A23,L31A32A33 
CORPLEXXO H1$,N3S 

C- P3=l 
n IF(IFIRST.Et.0)60 TO 100 
! est- X-INOEPENDENT CALCDLATION -ttt 
^ All=P<l»HP«ALPttW»LP(2) 

A22=P(2)>URSSALP<3)-»ALP(4) 
n A23=P<2»URS«LP(5) 

A32=P(2}SUflSlALP(S) 
A33:P(2)I0HSIALP(7)-HU.P(8) 
D11=-P(1»HP«ALP<1) 
8112=811X811 
B25=P(1)XHPXALP(9) B2K=B2Si825 
8322=832X832 
8332=B3SKi33 
8342=834X834 
B35=P(l)xtfPxAL?(10) 

U 8352=835(835 
B2SB35=B25XB3S 
L13=€NPLX(A12XA23,0.> 
L132=REALaiS(C0NISai3)) 
L31=aiPLX(A21xA32,0.) 
L312:REALa3lXC0NJ6a31)> 

Cf»- X-DEPENBENT CALCULATIONS -Bit 
n 100 X1=XX6.2831853 

BELT=CHPLX(-A11,X1)XCNPLX(-A22/Xl>aCRPLX(-A33,X1> 
L-l 1 -A23XA32XCNPLX(-A11,X1)-A12XA21XCRPLX(-A33,X1) 

BELT2=RERL(BaTXC0NJS(0ELT)) 
Lll=(CRPLX(-A22,Xl)XCRPLX(-A33,Xl)-K:RPLX(-A23Xft32/0.)) 
L112=REALailXC0NJSail)> 
L21=CRPLX(A21,0.)XCRPLX(-A33,X1) 
L212=REALa2lXC0NJ8(L21)) 
L12=CHPLX(A12,0 .)«RPLX(-A33,X1) 
L122=REALai2xC0NJ6(L12)> 
L22=CRPLX(-flll,Xl>XCflPLX(-A33/Xl) 
L222=RERLa22XC0NJ6(L22)) 
L32=CRPLX(A32,0.)XCRPLX(-A11,X1) 
L322=REALa32XC0NJ6(L32)) 
L23=CNPLX(A23,0.)XCRPLX(-A11,X1) 

U L232=REAL(L23XC0NJ6(L23» 
L33=<CRPLX(-All,Xl)xCRPLX(-A22,Xl)-»CRPLX(-fll2XA21/0.)) 
L332=REflLa3SK:0N;fi(L33)) 

n C RL1213=REAL<L12XC0NJ6ai3)) 
I C RL3233=RERLa32XC0NJ6(L33)) 
^ H15=CflPLX«25,0.)XL12-»CRPLX<B35,0.)XL13 

H1S2=REAL (N15XC0NJS(N15» 
n H35=CnPLX(B2S,0.)XL32-»CflPLXa35,0.)XL33 

H352=REAL (H35lC8NJ6(N3S)) 

J Fia}=(L112XB112XPSDTI<132X(8322XPSB1F-»B332xp$0ttF«e342XPSDUSXP(3))« 
1 H152XPS0UH}/D£LT2 

^ C FI(2)=<B112xL312xPSOTI*L332x<B322XPSDTF*8332fiPS3UF*fl342xPS0MSXP(3))* 
n C 1 H352XPSDUR5/BELT2 

RETURN END 

n 

n 

u 
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n 

noHuK tmti S0LPIS2 : STATUS ft S860AL 

Pereion XOl.00 Last edit: 04-JUL-03 18:09 
Status: Oeyelopuent/OeiMigging 

Revision history: 

Persion XOl.00 03-JaL-03 15:04 - 04-JOL-83 10:10 
Created by: EU..flac!Mdo 

C3I»-
SUBROUTINE STATUSQIEP,RDP,X/V,tt/P/SSD,RSS&,RFE,RO,IFL) 

ia=0 CALCULATE EPERVTHINS 
=1 CALCULATE SSD ONLV 
=2 CALCULATE SSO AND FEATURES 

L J 

U PRRANETER NDDIN=2 ! 8 OF D E P . PARIARLES 
PRRARETER NF00P=4 ! INTOIFDIH /HOOI f l ) 

_ OIRENSION FI(NOOin),CAL(NFOOP) 
n OIRENSION X ( N E P ) , V ( H E P , N 0 P ) , U ( N E P , N D P ) , P ( N E P ) , R S 5 0 ( N 0 P ) , R 0 ( N F E ) 

I F ( I F L . S T . O ) « TD 200 
C 
C PARARETER INDEPENDENT CALCULATIONS n c 

XBAR=0.0 
J 00 100 I = 1 J I E P 

100 XBARrXBAR«X( I ) 
^ XBAR=XBAR/FLOAT(NEP) 
n I I : ( N F E - 1 ) / N D P 

I F ( I I . E 8 . 0 > G 0 TO 120 
DO 1 1 0 I = 1 , N E P 

DO lOS J = 1 , I I 
IF(I.Et.l)CALa):0. 

s CALa)=CALa)-KX(I>-X8AR>»(js2) U 105 CDNnNOE 
110 CONHNUE 
120 CONTINUE 

Li C PARARETER DEPENDENT CALCULATIONS 

200 SSOrO.O 
I F I R S T z l 
DO 280 J = 1 , N F E 

280 ROa)=0 
00 290 ; = 1 / N D P 

290 RSSO(J>=0 
DO 400 I = 1 , N E P 
I F < I . E 8 . N E P ) I F I R S T = - 1 
CALL F U N C I ( X ( I ) , P , F M F I R S T ) 
I F I R S T : 0 

00 390 J : 1 , N 0 P 
C8 t - EPALUATE SSO -8t 

D E P J = V ( I , J ) - F I ( J ) 
S a i s S O R T O K I / J ) ) 

n R S S D ( J > = R S S D ( J } « D E P J S D E P J « I ( I , J ) 
I F d F L .Ea.l)60 TD 390 

CIt- EPALUATE FEATURES - 8 t 
111=0 

DO 350 I I = J , N F E , N O P 
R O d I ) = R O d I ) ^ J S S U ; « ( X d ) - X D f l R ) H l I I 

350 I I I = I I M 
390 CORnXUE 
400 CONTINUE 

SSB=0 
00 410 J=1 ,HDP 

410 SS0=SSD4RSSDa) 
185 



J DO 420 kUm 
420 RSSOa>:fL0ftT(NDM)SRSSD(J)/SSD 

I F d F L . E D . D R C T D R H 
n C t t - CALIORRTE FEATURES - 0 » 

OO 500 I I = 1 , N F E ^ 
^ fcCII-lVRDU 

J s I I - R R D P 
h I F d . E D . O ) R 0 d I ) = R O ( I I ) / S O R T ( F L O R T ( H E P ) ) 

I F d .GE . D R O d K r R O d l V S O R K C R L d ) ) 
J 500 CONTIKUE 

RETURN 
in ™ 

n 
u 

n 

U 
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1 0,IPRI,NFOIII, 
i CONFIO,RO,RSSO,nHSSO,SS,SS0,RSSD,SSOO,IIIER) 

' C SEARCH RINIfflRI SSO ttSIHG AL0N6 "D" 
"* C PARAHETER KFDIR=6 ! FEAIURES OIHEHSION P(KDin),PRIN«Oin),PnAX(KOIN),PNa(Din)/D(XDIfl)#RO(HFOin) OIHEHSION RSSO(HOP) OINENSION 0(3),$<3> DIHENSION ROSAPE(KFDIH) 
n «SSOsO DELTR=AHIT lOniNsl 00 100 J=1,NFDIN n IW ROSAPE(J)=ROa) S(1)=0 UDsSSDD DO 110 J=1/K0IN 

PNJ=pa>DaT»so(j) 
IF(PNJ 1E.PBAXU))S0 10 105 IF(P(J) JE .PnAX(}))DELTA=-l .»PRExOELWABS(DELTA) IF<Pa)J.T.PBAXa))DELTR=(PHAXa)-Pa)VOa) IFCIPRI JE.l)URI1E((finO)NSSD,J 1900 FORNRTC HSSOzMS,' PARANETER M2#' REACHED OPPER LIRIT') 60 TD HO IOS IFCPNJ JE.PNINa))60 TB HO IF(P(J) IE .PniN(J))OELTAr-l .IXPRExOELTA/ABSCDELTA) T IFCPa) JT.PHIH<J))BELTR=<PHIN<J)-P<J))/Da) IFdPRI JE .1)URITE(64950)NSSD J 

IJ 1950 FORNATC NSSD=',I3/' PARARETER '»12,' REACHED LOHER LIHIT') 110 CONTINUE S(2)=DELTA n DO 210 J=1/XDIR V PHa)=Pa)*S(2)«Dd) 
^ iF<PHa).LT.pfliHa))PNa)=PNiNa) 

210 IF(PNd)JT.PflAX(J))PNU)=PnAXCJ) ^ CAU STATUS(N,HDN,X,V/N,PN,SS0,RSSD/NF0IN,R0,2) IFdPRI JE .2)1« nE(6,1000)$(2)/PRE/SSD/SS00/SS0 J 1000 FORRRTC S:'*F10.1,' SSB:'/F12.3/' RAnO:',F12.5) 
Nssa=i 
ft(2)=SSD IF(SSD.6T.0dQflIN))60 TO 250 ISHIN=2 ^ DO 220 I=1,NFDIR 220 ROSAPEU)=RaU) 1 C , C THIRD POINT STRATEGV Ü C 2S0 CONTINUE , IF(C0NFID.LT.3)60 TO 260 IF(B(2)J.T.Rd))Sa)=lJ3sDaTA IFC0(2) JE .ad))S(3)= .15X0ELTA 60 TO 290 260 IF (CONFIO .LT .2)50 TO 210 ] IF(a(2)J.T.ad))S(3)=lJ«DELTA IF(8l(2) JE .&d))S(3)= .66XDELTA ^ 60 TO 290 210 IF(C0NFID.LT.1)60 TO 280 

T IF(a(2)a.T.ad))S(3)=2JiDELTA IF(a(2)JE.ad))S(3)=.5iDELTR j 60 TO 290 280 IF(a(2)J.T.ad))SG)s2.0X0ELTA IF(a(2) JE .ad))Sa)=-l .OSDUTA n 290 CONTIHUE U DO 320 Jsl/KDIB PHJ=Pa)*S(3)«Da) 
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n 

n 

IF(PÍIJ.LE.PniWa»GO TO 310 
s<3)=<piiixa)-pa»/o<j) 
IFdPRI JE.1)URITE((4900)NSS0,J 
60 TO 320 

310 IF(PRJ.6E.Pnn(J)}60 TB 320 
S<3)=<PRIRa)-Pa))/B(J) 
IFdPRI J E .l)IIRITE(6/l»0>H$SDfJ 

320 COKTINUE 
IF(S(3)JB.Sd) .OR. S(3).Ea.S(2)>60 TD 670 
00 350 ;=i,K0in 
PNa>=pa)45Q>sDa} 
IF<P«a).LT.PBIRd))PRd)=PniR<J) 

350 IF<PRa).6T.PBRR«))P«a)=PflAXa) 
CrnX $TinB$(N,R0il/Xpy/U,PH,$SD#R$S0,HFDin,R0,2) 
IFCIPRI J E .2»RITE(6,100O>Sa)/PRE#SSD,SSDO/SS0 
NSSB=2 
ftC3)=SSD 
IFCSSD JT.O(iailIR))60 TO <IO0 
IBHINrB 
00 360 J=1,NFBIR 

380 R0SAyEC;)zR0a) 
INRER LOOP 

u 

400 CQRTIRUE 
00 420 11=1/2 
»»=11 
00 410 I I I : I M / 3 

410 iF(S(nn).6T.s(iii))n»=iii 
IFCiniXJt. 11)60 TD 420 
SSsSCII) 
OflsOdl) 
SCIDzSCMIN) 
&cii)=ac»») 
SC»H)=SS 
8C»»)=8A 

420 CONTIKUE 
I8RflX=l 
IQHIN=1 
00 430 11=2/3 
IFC8CI0RAX).LT.8CII))IBRftX=II 
IFCRCIONIN) .6T.8CII))I0niN=II 

CRLCULRTE FORTH PO»T 

430 
C 
C 
C 

U 

DELTfl=SC3)-Sd) 
01=C8(2)-a(l))/CSC2)-Sd)) 
D2=(a(3>-a(2)VCSC3)-$(2)) 
IFC02.LEJI1)60 TO 500 
Sl=CSCl)*SC2))/2. 
S2=CSC2)*SC3))/2. 
SS=(D2XS1-D1IS2)/CB2-01) 
IFCSC1)-SS .6T.3 .OsDELTa)SS=SCl )-3 .OSOaTR 
IF(SS-SO) .6T.3.0«ELTR)SS=SC3).3.0«0aTR 
60 TO 505 

500 IFdPRI JE.2)HRITEC6/2200) 
2200 FORRATC NE6ATIVE SECOND DERIPATIUE') 

IFCaCS) JE .8d))SS=S(l)-8d)SCSC3)-Sd))/(8C3)-6Cl)) 
IFC0(3)Ja.ad) .AND. 8C3).Et.8C2))SS=SCiaHIN) 
IFC8(3)J8.8d) .AND. 
1 8C3)JE.aC2) .AND. D1.6TJBSCB2))SS=$d)-adVDl 
iFcac3)ja.ad) .and. 
1 a(3)JE.aC2) .and. B1.LE JBSC82))SS=S(3)-aC3)/B2 
IFCSd)-SS .6T.2.0«ELTA)SS=Sd)-2 .OsOaTA 
IFCSS-SO) .6T.2.03«£LTA)SS:SC3)+2 .OiOaTA 

505 CONTINUE 
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DO 520 J=1/KDIR 
p i w = f a w $ » o a ) 
IF(PIIJ.LE.PRftXU))60 TO 510 
s s = < p n * x a ) - p a))/Da) 
IFdPRI JE.l)flRITE((/1900)iiSSD,J 
60 TO 520 

510 IF(PNJ.6E.PRINd))60 TQ 520 
SS:(PRIHa)-P(J»/Da) 
IFdPRI J E .l)liRITE(6,1950)RSSOW 

520 CORTIRUE 
C 
C CHECK IF HimiN C0NPER6ENCE DISTMICE 
C 

IF(RB$(S(iaHn».6T.PRE .ARD. RBS(SS)1T.PRE>60 TD 600 
PRECK=.S(PRE 
IF(C0HFID.E8.0. .RHD. 
1 RBS(SdQflIH)).6T.5.SPRE)PRECK=.23Ui8S(SdaRIN))-0.SlPRE 
IF(C0HFID.E0.1. . A N D . 
1 AB$($d0flIN)).6T.5.SPRE)PRECX:.llABS(S(nniN)) 
IF(C0NFID.6T.l. .ARD. 
1 AB$(S(I0Hn».6T.5.xPRE)PRECK2.05>A8S(Sd0flIN)H.25>PRE 

C 
IFdPRI J E .2 .AHD. 
1 AB$(SS-$dOHIN» . I T J>RECX>HRITE(6/2000)SS/PRE 

2000 FORRATC S S s S F O . l , ' TOO C L O S E ' ) 
IF(ABS(SS-Sd0flIH))J.TJ>RECK)60 TQ 670 

C 
C HOT C0HPER6ED 
C 
600 COHTIHUE 

DO 610 J=1/KDIR 
PHa)=PU)-»^S>Od) 
iF(PHa).LT.p«iMa))PHa)=PRiHa) 

610 IF(PRa).6T.PRAXa))PNU)=PRAXd) 
CAU STATU$(R/HDP,X»V/U/PR,SSD,RSSD/HFDIR/R0t2) 
IFdPRI J E .2)HRITE(6,1000)SS/PREfSSD#SSD0/SS0 
RSS0:NSSD«1 
ORsSSD 
IF(SS0.6T.adQflIH})60 TD 620 
00 615 J=1#NFDIR 

615 ROSAPEd)=fiOa) 
620 IFdPRI JE.9)URITE(6fl«0)(S(JJ)/PREWJ:l,3)/SS/PRE/CadJ),JJ=l/3),0ft 
1450 FORRATC SI S2 S3 S S ' / / , 

1 4dX413.7,lX),/,4dX,613.?/lX)) 
C 
C CHECK RAXIRUR HURBER OF SSO CALCULATIOS 
C 

IFOISSO JE.RiiSS0)6D TQ 660 
C 
C KEEP POIHTS AROUHO BEST AHD TRY A6AIH 
C 

60 TO (631,640,651)#iaRIH 
631 $(3)=SS 

a(3)=oa 
60 TQ 400 

640 IF(8ft.LE.a(I0RIH))60 TQ 645 
iF(aa.6E.a(ianAX))60 to 644 
SdaflAX)rSS 
adQflAX)=aa 
60 TO 400 

644 IF(SS JT.S(2))60 TD 631 
60 TB 651 

645 IF(SS.LT.S(2))6B TO 631 651 Sd)=SS 
ad)=fla 
60 TQ 400 

U c 
C C0»ER6ED 

u 
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6(0 IF(ra.LT.a(I8»IN))S0 TO (80 
( 1 0 ss=s(ian») 

SSD=a(I0i!Ii l) (80 00 (90 ;=i/K0in 
PNU):PU)-»SSl8a) iF(PNa).LT.pniiia))Pii(j}zPiiiii(j) (90 iF<piia).5T.p«fl«a»p«a)=p««ia) 00 100 Jsl/NFDin 

100 ROa)=ROSAPE(J) RETURN END 

n 

lU 
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APPENDIX F 

STEAM GENERATOR NOISE MODEL 

The noise model for the U-tube steam generator used in this work 

' was derived using basic conservation equations in a way similar to 

n that used by All (31) for his Model A. In the noise model, the heat 
i 

transfer coefficient between the tube metal and the secondary side was 

LJ considered stochastic and treated as one of the noise sources, 

n The model considers the steam generator devided into three Ivimps, 

as shown in Figure F-1. Lump 1 is the primary side water inside the 

tubes, considered as an well stirred tank. Lump 2 is the tube metal, 

which conducts heat from the primary water to the secondary water and 

-J steam. Lump 3 is the secondary side water and steam assumed to be at 

n the saturation temperature. 
U 

The energy balance for Lump 1 can be written as 

d_(MpCplTpo)=« WpCpl(Tpi-Tpo) - UpmSpm(Tpo-Tm) , F-1 
dt 

where Mp is the mass of primary water inside the tubes, 

Cpl is specific heat of the primary water, 

Tpo is the temperature of the primary water, 
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FIGURE F-1. Diagram of the lump parameter steam generator model. 
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Wp is the primary water mass flow rate, 

Tpi is the primary water inlet temperature, 

Upm is the primary water to tube metal overall heat transfer 

coefficient, 

Spm is the internal surface area of the tubes, and 

Tm is the temperature of the metal tubes. 

Considering Mp and Cpl constant during transients and writing Equation 

F-1 in terms of deviations from equilibrium yields 

dfiTpo Wp UpmSpm UpmSpm Wp 
= — + 6Tpo + STm + —fiTpi , F-2 

n dt Mp MpCpl WpCpl Mp 

where the " 6" indicates the deviation from equilibrium. 

The energy balance for Lump 2 can be written as 

u 
Mmd (CmTm) = UpmSpm(Tpo-Tm) - UmsSms(Tm-Ts) , F-3 

U dt 

where Mm is the mass of the metal tubes. 

Cm is the specific heat of the tube metal, 

Ums is the overall heat transfer coefficient between the metal 

tubes and the secondary side, and 

Ts is the secondary side temperature (saturation temperature). 

Considering Cm constant during transients, writing Equation F-3 in 

terms of the deviation from equilibrium, and disregarding second order 

terms, yields U 
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dSTm UpmSpm (UpmSpm + UmsoSms) UmsoSms dTs 
= STpo - 6Ums + 6P + 

dt MmCm MmCm MmCm dP 

Sms(Tso-Tm) 
+ 5Ums , F-4 

MmCm 

where Ums was considered stochastic and was separated into a steady 

state part, Umso, and a fluctuating part, 6Ums; and the following 

linear approximation was used for the deviation from equilibrium of 

the saturation temperature as a function of the deviation from 

equilibrium of the secondary pressure, 5P, 

dTs 
Sis = 6P . F-5 

dP 

For the secondary side. Lump 3, three basic concervation equations 

^ were used: 
c 

n (a) Mass balance -
I 
I 

n 
d (Mw + Ms) = Wf - Ws , F-6 
dt 

where Mw is the mass of secondary water, 

Ms is the mass of secondary steam, 

Wf is the feedwater mass flow rate, and 

Ws is the steam mass flow rate. 
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(b) Volume balance -

MwVf + MsVg = V , F-7 

where Vf is the specific volume of the secondary water, 

Vg is the specific volume of the secondary steam, and 

V is the total internal volume of the secondary side of the 

steam generator. 

(c) Energy balance -

d (MwHf+MsHg) = UmsSms(Tm-Ts) + WfHfi - WsHg , F-8 
dt 

where Hf is the enthalpy of the secondary water, 

Hg is the enthalpy of the secondary steam, and 

Hfi is the enthalpy of the feedwater. 

After some algebraic manipulations of Equations F-6 through F-8, 

and also using the expressions 

dVf dVf dP 
, and F-9 

dt dP dt 

dVg dVg dP 
= ; F-10 

dt dP dt 195 



one obtains the following equations: 

UmsSms 1 f VgHfg dP 
dt K -(Tm-Ts) + - Hfl-Hg+ Vfg J 

Wf - Z i ^ W s 
KVfg 

and F-11 

r 

L 

r 

dMw 
dt~ UmsSms(Tm-Ts) + 

pVgHfg Vg" 
+ 

_-(Hfl-Hg+ 
VgHfg Vg 

•) + 

LKVfg Vf&J 
Ws 

VfgJ 
Wf 

F-12 

n u 
with J = 

1 
Vg 

"V-MwVf dVg dVf~I 

L Vg dP + Mw dP 
, and F-13 

U 

r 
L 

U 

K = 
dHg Hfg dVg" V--MwVf 

Vfg dP_ Vg 

dHf Hg dVF 

jJP Vfg dP_ 
Mw F-14 

Writing Equations F-il and F-12 in terms of the deviations from 

equilibrium, disregarding the second order terms and considering 

that at the equilibrium the steady state feedwater and steam mass 
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flow rate are equal (I.e Wfo=Wso), one obtains 

d£P UmsSms 
firm -

TJmsSms dTsat Wfi dHg 
+ 

dt _ K dp K dP _ 

Sms 
6P + (Tm-Ts) 6Ums 

K 

u Wfi 1 
+ fflf 1 + -

K K 
Hfi - Hg + 

VgHfg 

VfgJ 

VgHfg 
fiWfi (SWso , and 

KVfg 
F-15 

n 
LJ 

n 

r 

n 

dMw JUmsSms J F dTsat 

dt K 
STm 

K 

dHg' 
UmsSms ( ) + Wfi( ) 

dP dP J 

JSms(Tm-Ts) 
5P + 6Ums 

dHg dHf 
Ms( ) + Mw( ) 

JWfi nj(Hfi-Hg) Vg dP dP — ̂  — ^ Vfg K 
awfi 

1 

1 

dHg dHf 
Ms( ) + Mw( ) 

"Vg dP dP 

IVfg K 
aws 

J 
F-16 

where all the parameters are calculated at the equilibrium value. 

Equations F-2 , F-4 , F-15 and F-16 are the steam generator noise 

model equations. 
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