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ABSTRACT 

 
Computational Intelligence Systems have been widely applied in Monitoring and Fault Detection Systems in 

several processes and in different kinds of applications. These systems use interdependent components ordered in 

modules. It is a typical behavior of such systems to ensure early detection and diagnosis of faults. Monitoring and 

Fault Detection Techniques can be divided into two categories: estimative and pattern recognition methods. The 

estimative methods use a mathematical model, which describes the process behavior. The pattern recognition 

methods use a database to describe the process. In this work, an operator support system using Computational 

Intelligence Techniques was developed. This system will show the information obtained by different CI techniques 

in order to help operators to take decision in real time and guide them in the fault diagnosis before the normal 

alarm limits are reached. 
 

1. INTRODUCTION  

Computational Intelligent Techniques have been widely used in Monitoring and Fault 

Detection Systems in a great variety of industrial process. These systems consist in independent 

module components, which is a typical behavior to guarantee early fault anomaly detection, 

increasing demand on quality, reliability and safety in production processes. This interesting is 

justified due to complexity of some industrial processes, as chemical industries, power plants, 

and so on. In these processes, the interruption of the production due to some unexpected change 

can bring risk to the operator's security besides resulting in economic losses and increasing the 

costs to repair some damaged equipment [1] [2][3][4][5]. 

 

Nuclear power plants are complex systems due to the large number of variables to be 

continuously monitored. In addition, it is necessary to guarantee performance, reliability and 

safety. During a fault, operators receive a large volume of information from data acquisition 

systems in a very short period of time. Because of this, operators are required to make some 

decisions in stressful conditions, raising difficulties to obtain the fault diagnosis. In order to 

help nuclear power plant operators many techniques Computational Intelligence Techniques 

have been used, including Fuzzy Logic [6], Artificial Neural Networks (ANN) [7] [8] [9], 

GMDH (Group Method of Data Handling) [10] and Genetic Algorithms (GA's) [11] [12]. The 

use of these methods is justified because they allow process modeling without the use of 
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algebraic equations that mathematically describe the phenomenon [13] [14] [15]. This 

modeling is performed using a database containing the time history of plant operation.  

 

The main objective of this work is to develop an Operator Support System using a 

Computational Intelligence Technique (CI): Artificial Neural Networks (ANN). The major 

expected benefit is associated with providing the information obtained by the CI technique to 

the operator in real time. The fault detection is performed by calculating the residual value, 

which is the difference between the measured value and that obtained by the developed ANN 

model. The residuals patterns obtained are used for identifying the anomaly. The System was 

developed using IEA-R1 Ipen experimental reactor operational data. 

 

 

2. IPEN RESEARCH REACTOR IEA-R1 THEORETICAL MODEL 

 

The IPEN nuclear research reactor IEA-R1 is a pool type reactor using water for the cooling 

and moderation functions and graphite and beryllium as reflector. Its first criticality was in 

September 16th, 1957. Since then, its nominal operation power is 2 MW. In 1997, a 

modernization process was performed to increase the power to 5 MW, in a full cycle operation 

time of 120 hours, in order to improve its radioisotope production capacity. Figure 1 shows a 

flowchart diagram of the IPEN nuclear research reactor IEA-R1. 

 

 

 
Figure 1: Flowchart diagram of the Ipen nuclear research reactor IEA-R1. 
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3. IEA-R1 DATA ACQUISITION SYSTEM (DAS) 

 

The Ipen reactor Data Acquisition System monitors 58 operational variables, including 

temperature, flow, level, pressure, nuclear radiation, nuclear power and rod position (Table 1). 

The DAS performs the storage the temporal history of all process variables monitored and does 

not interfere with the reactor control [16] [17]. 

 

Table 1. IEA-R1 DAS variables. 

 

Z1 Control rod position [0 a 1000 mm] 

Z2-Z4 Safety rod position 1, 2 and 3[0 a 999 mm] 

N2-N4 % power (safety channel 1, 2 and 3) [%] 

N5 Logarithm Power (log channel) [%] 

N6-N8 % power [%] 

F1M3 Primary loop flowrate [gpm] 

F2M3 Secondary loop flowrate [gpm] 

C1-C2 Pool water conductivity [μmho] 

L1 Pool water level [%] 

R1M3-R14M3 Nuclear dose rate [mR/h] 

T1-T3 Pool water temperature [º C] 

T4 and T6 Decay tank inlet and outlet temperature     [º C] 

T5 (T4-T3) [º C] 

T7 Primary loop outlet temperature (heat exchanger A) [º C] 

T8-T9 Secondary loop inlet and outlet temperature (heat exchanger A) [º 

C] 

T10 Primary loop outlet temperature (heat exchanger B) [º C] 

T11-T12 Secondary loop inlet and outlet temperature (heat exchanger B) [º 

C] 

T13-T14 Housing pump B101-A and B102-A temperature [º C] 

T15-T16 Cooling tower A and B temperature [º C] 

T17 Housing turbo compressor temperature [º C] 

T18-T19 NO-BREAK temperature –220V and 440V [º C] 

T20-T24 Room temperature [º C] 

 

 

4. ARTIFICIAL NEURAL NETWORKS 

 

An ANN is a massively parallel-distributed processor made up of simple processing units, 

which has a natural propensity for storing experiential knowledge and making it available for 

use. The networks from its environment through a learning process, which is responsible to 

adapt the synaptic weights to the stimulus received, by the environment acquire the knowledge. 

The fundamental element of a neural network is a neuron, which has multiple inputs and a 

single output, as we can see in Figure 2. It is possible to identify three basic elements in a 

neuron: a set of synapses, where a signal xj at the input of sinapse j connected to the neuron k, 

is multiplied by the synaptic weight wkj, an adder for summing the input signals, weighted by 

the respective synapses of the neuron; and an activation function for limiting the amplitude of 

the output of a neuron. The neuron also includes an externally applied bias, denoted by bk, 
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which has the effect of increasing or lowering the net input of the activation function, 

depending on whether it is positive or negative, respectively [18]. 

 

 
 

Figure 2. Neuron Model 

 

In this work, it was used the MLP (Multilayer Perceptron Neural Network). In this kind of 

architecture, all neural signals propagate in the forward direction through each network layer 

from the input to the output layer. Every neuron in a layer receives its inputs from the neurons 

in its precedent layer and sends its output to the neurons in its subsequent layer. The training 

is performed using an error backpropagation algorithm, which involves a set of connecting 

weights, which are modified on the basis of a Gradient Descent Method to minimize the 

difference between the desired output values and the output signals produced by the network, 

as show the equation (1):  

 

 

  𝐸 =
1

2
 ∑ (𝑦𝑑𝑗(𝑛) −  𝑦𝑗(𝑛))

2𝑚
𝑚=1         (1) 

 

  

 Where:  

  

 E: mean squared error 

 m: number of neurons in the output layer 

 ydj: target output 

 yj: actual output 

 n: number of interactions 

 

 

5. OPERATOR SUPPORT SYSTEM USING COMPUTATIONAL INTELLIGENCE 

TECHNIQUES 

 

An Operator Support System using Computational Intelligence Techniques was developed 

using ANNs methodology.  
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The methodology was developed and tested using a model, which contains 38 variables 

including: temperature, flow rate, nuclear radiation and control rod position (see Table 1 –DAS 

IEA-R1 variables). In this work, it will be shown the results obtained monitoring the following 

variables: N1 and N2 (nuclear power – [%]), Z1 (control rod position [mm]), Z2-Z4 (safety rod 

position [mm]) and T1, T2, T3, T4, T7, T8 and T9 (temperature [ºC]).  

 

In future works, it will be used all the DAS IEA-R1 variables. Another Computational 

Intelligence Techniques will be applied and compared. Figure 3 shows the steps for the 

Operator Support System methodology development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Operator Support System using Artificial Neural Networks. 

 

 

To prevent overfitting during ANNs training, the method of Early Stopping was used, which 

suggests a database division in three subsets: training (60%), validation (20%) and testing 

(20%). The training set is used to compare different models. It was used a Multilayer 

Perceptron Network with three layers: one input layer, one hidden layer and on output layer, 

because this kind of network has shown the best results. The input layer is composed by thirty-

eight neurons and its activation function is linear; the hidden layer is composed by ten neurons 

and its activation function is the hyperbolic tangents. The output layer is composed by a neuron 

that represents the output of the network. 

 

DAS database 

Artificial Neural Networks 

ANN Monitoring Model 
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It was calculated the residuals obtained to study the sensors behavior in monitoring, as shown 

the equation (2): 

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
|𝑦𝑑𝑗(𝑛)−𝑦𝑗(𝑛)|

|𝑦𝑑𝑗(𝑛)|
∗ 100    (2) 

 

 

Table 2 shows the results obtained during sensors monitoring using DAS IEA-R1 data from 4 

different operation cycles.  

 

 

Table 2: Sensors Monitoring using different DAS IEA-R1 data 

 

 MEAN RESIDUAL (%) 

 ANN training 1st  2nd  3rd  4th  

Z1 2,1809 0,0331 0,0086 0,0072 0,0049 

Z2 7,0133 0,0046 0,0083 0,0049 8,7894e-5 

Z3 4,6215 0,0055 0,0014 0,0100 1,7833e-4 

Z4 3,8799 0,0127 0,0131 0,0060 0,0035 

N1 2,1983 0,0020 0,0089 0,0084 0,0042 

N2 2,2630 0,0094 4,8280e-4 0,0054 0,0012 

T1 1,5053 0,9730 0,0021 0,0219 3,3565E-4 

T2 3,2072 0,0165 0,0312 0,0224 0,0448 

T3 1,5897 0,2791 0,0149 0,0159 0,0200 

T4 2,8940 0,0019 0,0057 0,0042 0,0075 

T7 2,1110 0,0015 0,0051 0,0152 0,0497 

T8 0,7667 0,0611 0,0017 0,0284 3,1515e-4 

T9 4,2433 0,0041 0,0034 0,2076 0,0050 

 

The main thing that can be observed in Table 2 is that the mean residual values are below 7%.  

 

6. Conclusion and Future Work 

 

 

It was presented a study using the ANN methodology to sensors monitoring using different 

data given of IEA-R1 research reactor.  The following variables were monitored using the 

developed methodology: Z1, Z2, Z3, Z4, N1, N2, T1, T2, T3, T4, T7, T8 and T9. The 

preliminary results showed that the mean residuals obtained are below 7% stimulating the 

development of an Operator Support System using another Computational Intelligence 

Techniques and different databases to study the model sensibility and robustness. 
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