## Tecnologia laser aplicada em chapa de aço inoxidável

Uma central de processamento de materiais a laser construída no Instituto de Pesquisas Energéticas e Nucleares permitiu o desenvolvimento de um sistema de microfuração a laser para os métodos de pulso único, percussão e trepanação. Foram utilizadas chapas planas de aço inoxidável, com espessuras de 0,1 a 2 mm, com os intervalos de diâmetros mais convenientes. As variáveis de controle para cada espessura foram a largura temporal t<sub>p</sub> do pulso laser, a sua energia e intensidade. Os resultados foram os parâmetros relacionados com a capacidade de extração de material, diâmetro dos furos, conicidade, rugosidade interna e quantidade de respingos na borda de entrada. Foram obtidos furos abaixo de 20 µm de diâmetro e com razão de aspecto maior que 10.

W. Rossi, R. Brito, J. R. Berretta, I. A. Almeida e N. D. Vieira Jr.

uando um pulso muito curto de luz laser é focalizado em um ponto muito pequeno, qualquer material é vaporizado e/ou fundido quase que instantaneamente. As pressões resultantes dos gases e vapores formados expulsam o material vaporizado e fundido, produzindo um furo no material. As densidades de potência usadas são da ordem de 107 a 108 W/cm<sup>2</sup> e o tempo de operação de 10-3 a 10-5 s. O diâmetro do furo é controlado pela variação da potência do laser e pelo grau de focalização da lente. O máximo diâmetro é limitado pela energia por pulso, enquanto o comprimento de onda, a óptica de focalização, a qualidade do feixe e o material em si determinam o diâmetro mínimo.

Normalmente, a furação a *laser* envolve um mecanismo no qual o material é removido tanto na forma de líquido quanto na forma de vapor, sendo que a razão entre eles depende do nível da densidade de potência. Quanto maior for a intensidade, maior será a quantidade de material no estado de vapor. No caso extremo, quando *laser* chaveado (pulsos de nanossegundos) é usado, a razão líquido-vapor é muito pequena e uma transformação direta sólido-vapor acontece em quase todo o volume afetado. No

entanto, a maioria dos processos a *laser* utiliza pulsos de duração mais longa, onde a razão líquido-vapor é bastante alta.

Este método de furação é mais eficiente e a elevação de temperatura quase instantânea, somada à pequena quantidade de material que chega à temperatura de vaporização, causa uma expulsão quase completa do material líquido do furo. Isto é provocado porque a alta pressão gerada quando da expansão do vapor na parte central da área afetada é muito maior que as forças de adesão entre a fase líquida e a parede sólida. O material líquido que não é expelido é removido por vaporização direta ou permanece como uma fina e tênue película (menos de 50 µm) aderida à parede lateral do furo e é normalmente chamada de material refundido.

A natureza explosiva da expulsão do material fundido causa uma certa conicidade na entrada do furo com uma incontrolável, mas reprodutiva, variação no diâmetro de furo a furo de ± 10%. O melhor procedimento para o controle da qualidade de um furo é a indução da sublimação direta do material base, por meio do uso de intensidades muito altas (10<sup>8</sup> W/cm<sup>2</sup>). Isto leva a um processo de ablação com quantidade reduzida de mate-

Wagner de Rossi, Roberto de Brito, José Roberto Berretta, Ivan Alves de Almeida e Nilson Dias Vieira Jr. são do Departamento de Materiais Optoeletrônicos do Instituto de Pesquisas Energéticas e Nucleares (Ipen/CNEN/SP). Este artigo foi originalmente apresentado como palestra no 1º Congresso Brasileiro de Engenharia de Fabricação (Cobef), realizado entre os dias 2 e 4 de abril de 2001, em Curitiba (PR). Publicação autorizada pelos autores.

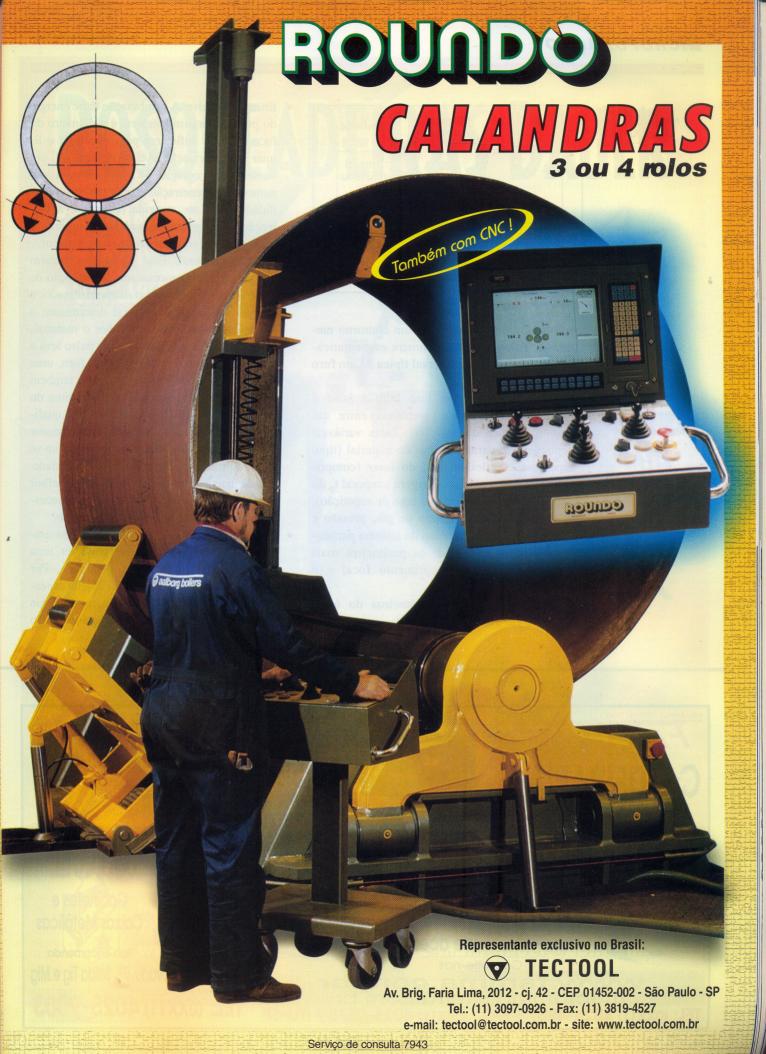
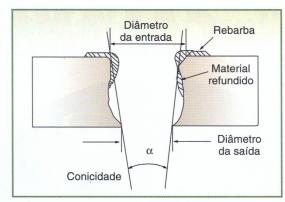




Fig. 1 – Seção transversal típica de um furo feito a laser



rial fundido, resultando em um contorno melhor do furo. A figura 1 mostra esquematicamente uma seção transversal típica de um furo feito a *laser*.

A qualidade de um furo feito a *laser* é função de interações complexas entre um grande número de variáveis. Estas variáveis dependem de características do material (tipo, espessura e refletividade), do *laser* (comprimento de onda, energia e largura temporal t<sub>p</sub> do pulso, estrutura do modo e taxa de repetição), do gás de assistência (tipo de gás, pressão e desenho do bico) e também do sistema particular de focalização, onde os parâmetros mais importantes são o comprimento focal e a posição do foco.

As influências dos parâmetros do *laser* sobre a qualidade do furo são<sup>[1]</sup>:

- Energia do pulso. A combinação entre energia do pulso, a largura temporal e o diâmetro do foco deve ser suficiente para se atingir o limiar de vaporização. Acima deste nível, um aumento da energia do pulso leva a um aumento da penetração e uma maior profundidade pode ser atingida. Contudo, a formação de irregularidades na borda superior é mais evidente com pulsos de energia maior.
- Largura temporal. Este parâmetro também está conectado ao mecanismo de remoção de material. Uma vez com o diâmetro fixado, a energia e a largura temporal determinam a intensidade do feixe laser sobre o material. Como um aumento na energia do pulso leva a uma degradação da qualidade do furo, uma diminuição na sua largura temporal também leva a um aumento da intensidade acima do limiar de vaporização, melhorando a qualidade do furo. Assim, a escolha entre maior energia ou menor largura temporal torna-se um compromisso entre eficiência e qualidade. Pulsos mais curtos produzem furos de melhor qualidade, mas com menor eficiência, necessitando-se de mais pulsos para a furação.
- Número de pulsos. O número de pulsos usados para furar um material pode ter uma influência decisiva na sua qualidade. Por exemplo, para furos com razão alta de aspecto, o melhor resultado é obtido com energia de pulso reduzida e com um acréscimo do



# ROSQUEADEIRAS DAUER

- · AUTOMÁTICAS
- MANUAIS
- COM CABEÇOTES MÚLTIPLOS



















MÁQUINAS DAUER IND. E COM. LIDA. Tel.: (11) 5611-1964 - Fax: (11) 5611-4335 www.maquinasdauer.com.br - E-mail: dauer@uol.com.br

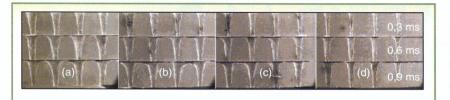



Fig. 2 – Furos feitos por percussão, com intensidade do feixe laser diminuindo de d para a e largura temporal de 0,3, 0,6 e 0,9 ms de cima para baixo, respectivamente

- número de pulsos necessários para furar o material. Por outro lado, furos com baixa razão de aspecto, feitos com apenas um pulso, geralmente exibem uma menor conicidade.
- Comprimento focal da lente. Quanto mais curto for o comprimento focal da lente, menor será o diâmetro do furo. Como a profundidade do foco é diretamente proporcional ao comprimento focal, a espessura do material processado fica limitada por este comprimento focal da lente. Para aumentar a profundidade de penetração com a mesma lente, é necessário aumentar a qualidade do feixe, ou seja, diminuir o valor do fator de qualidade M2. Um feixe com M2 menor pode ser focalizado em um diâmetro menor ao longo de uma profundidade maior.

A furação a *laser* pode ser feita de três maneiras diferentes<sup>[3]</sup>:

Pulso único. Um único pulso laser é utilizado para a furação do material. O intervalo de diâmetros obtidos varia entre 20 e 250 μm e a razão de aspecto varia entre 2:1 e 6:1. A qualidade do furo e a eficiência do processo depende quase que exclusivamente das características do feixe e, portanto, freqüentemente um laser com modo fundamental é utilizado para este tipo de furação.

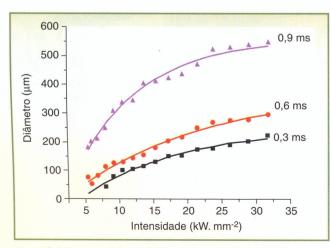



Fig. 3 - Diâmetro do furo obtido em função da intensidade do feixe laser

- Percussão. Este modo de furação utiliza uma série de pulsos laser incidindo em uma mesma área. O diâmetro e a profundidade obtidos dependem da energia e do número de pulsos. Furação por multipulsos resulta em furos com qualidade melhorada, quando comparada ao modo de pulso único, além de fornecer a possibilidade de obtenção de furos mais profundos com maior razão de aspecto.
- Trepanação. Aqui, o furo é produzido de acordo com um contorno pré-programado e o feixe laser movimenta-se em relação à peça, seguindo o contorno de uma circunferência. O processo é o mesmo de um corte a laser, necessitando de uma alta taxa de repetição, um bom controle do modo espacial do feixe laser e um jato de gás de assistência para a remoção do material fundido. Este método oferece três importantes vantagens sobre o modo de percussão<sup>[2]</sup>: maior precisão e repetibilidade no diâmetro, maior linearidade das paredes e camada mais fina de material refundido sobre as paredes laterais.

#### **Objetivos**

Os objetivos principais deste trabalho foram determinar os intervalos ótimos de intensidade do feixe *laser* para furação por percussão e por trepanação, bem como de se estabelecer os intervalos de diâmetros possíveis com estes processos, relacionando-se os parâmetros do feixe *laser* com os aspectos cosméticos dos furos obtidos.

#### Descrição do sistema *laser*

O trabalho foi realizado utilizando uma central de processamento de materiais a *laser*, chamada de CPML, constituída por uma fresadora CNC com um *laser* acoplado em seu eixoárvore. Neste sistema, o feixe *laser* é direcionado verticalmente para baixo e focalizado sobre uma superfície plana, que se movimenta no plano horizontal (X, Y). Portanto, o movi-

### Discovery 1250



## Potência, versatilidade e espaço para trabalhos simples e complexos.

O novo Centro de Usinagem Vertical Discovery 1250 tem características de precisão e alta produtividade aliados a um curso de trabalho de 1270 mm e uma motorização de alta potência (20 CV).



**ROMI** 

Comercialização: (11) 3873 3388

RAI - Romi Assistência Integral: (19) 455 9333

Site: www.romi.com.br

E-mail: maqfer@romi.com.br

Indústrias Romi S.A. Sede Social Fábrica Santa Bárbara d'Oeste SP Av Pérola Byington,56 CEP 13453 900 Fone (19) 455-9000 Fax (19) 455-2499 Comercialização São Paulo SP Rua Coriolano, 710 CEP 05047 900 Fone (11) 3873-3338 Fax; (11) 3865-9510 Escritórios Regionais ABCD (11) 6915-7537 Araçatuba (16) 9761-0263 Araçaquara (16) 9761-0263 Belo Horizonte (31) 3361-2526 Campinas (19) 9781-3440 Campo Grande (67) 9983-2560 Caxias do Sul (54) 9979-9271 Curitiba (41) 333-6941 Fortacaba (19) 9781-4845 Porto Alegre (51) 3342-5066 Recife (81) 3423-2244 Ribeirão Preto (16) 627-0999 Rio de Janeiro (21) 2270-1454 Salvador (71) 341-6060 Sta. Bárbara d'Oeste (19) 455-9735 Sorocaba (15) 9771-5450 Sorocaba (11) 9976-2105 Taubaté (12) 9781-3033 Vila Velha (27) 3340-1450

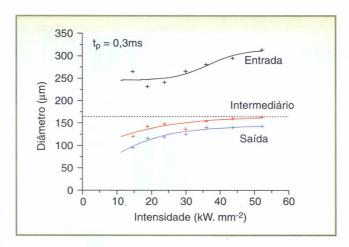



Fig. 4 – Variação da conicidade do furo em função da intensidade do feixe laser

mento vertical (Z) é utilizado somente para ajuste de altura da peça e do ponto de focalização do feixe *laser*. Um sistema CAD-CAM possibilita a execução de qualquer movimento no plano X, Y e o controle dos parâmetros de processo, como velocidade, atuação do gás de processo e parâmetros do *laser*. Atuando em conjunto com o feixe *laser*, um jato de gás colinear ao feixe é incidido sobre o ponto focal a uma pressão controlada de até 20 bar. Esse gás

serve para a retirada do material fundido da zona de atuação do feixe e para a proteção da lente de focalização. Gases inertes de proteção como  $N_2$  ou Ar, ou reativos como o  $O_2$ , podem ser utilizados.

Para a visualização da região afetada, uma câmara em circuito interno (CCD) foi acoplada colinearmente ao feixe *laser*, com um sistema óptico de aumento de aproximadamente 60 vezes. Isto permitiu a inspeção tanto do aspecto cosmético do corte quanto de medidas dimensionais, sem a retirada da peça.

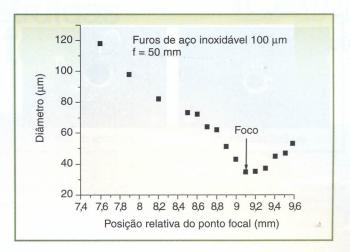

As lentes de focalização disponíveis são dubletos de alta qualidade óptica, com aberrações controladas e minimizadas, de comprimentos focais de 50 e 100 mm. A primeira fornece um diâmetro do ponto focal de aproximadamente 70 µm, enquanto a segunda fornece um diâmetro de aproximadamente 150 µm. Como a profundidade do campo focal é inversamente proporcional à distância focal da lente, um comprimento focal f de 50 mm é utilizado somente para espessuras menores do que 0,5 mm.





Fig. 5 – Variação do diâmetro de furo obtido em função da posição focal

O laser utilizado foi desenvolvido pelo grupo de lasers do Ipen e é de estado sólido de Nd:YAG (itrium aluminum garnete), com comprimento de onda de 1,06 µm. É do tipo pulsado, com taxa de repetição controlada, desde pulso único até 500 Hz; energia por pulso de até aproximadamente 10 J e largura temporal variável desde 0,2 ms até 20 ms. A potência média máxima é de 100 W, o que restringe o número de combinações entre taxa de repetição e energia por pulso. A potência pico máxima de saída é limitada a 3 kW, o que também restringe o intervalo de energia em função da largura temporal. O feixe próximo ao espelho de saída apresenta um diâmetro de aproximadamente 6 mm, com perfil multimodo de distribuição de intensidade. A inserção de íris intracavidade reduz o número de modos oscilantes e uma íris de 1,2 mm de diâmetro pode levar à oscilação do modo fundamental com perfil gaussiano de distribuição de intensidade.



#### Resultados experimentais

Neste trabalho, uma série de ensaios de furação foram executados tanto pelo método de percussão quanto pelo de trepanação.

#### Furação por percussão

Uma característica marcante desse processo de furação é a presença de uma certa conicidade.



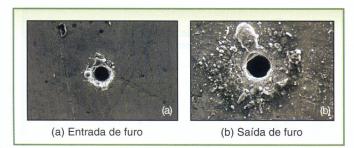



Fig. 6 – Entrada e saída de furo feito com feixe laser no modo fundamental (em escalas diferentes)

A adequação dos parâmetros do laser pode diminuir esta conicidade, mas ela sempre estará presente no processo de percussão. Isto acontece devido à natureza explosiva do início do processo, na qual uma grande quantidade de material é ejetado para fora da região de atuação do laser. O fenômeno provoca o aparecimento de uma cratera na parte de entrada do furo, que tem um diâmetro consideravelmente maior do que o diâmetro do feixe laser. Como é impossível eliminar este fenômeno, o que se faz é minimizar o seu efeito, tornando esta cratera de entrada menor e o menos profunda possível. Assim, um furo por percussão pode apresentar uma alta conicidade até cerca de 20% da profundidade total do furo, mas torna-se razoavelmente paralelo para o restante do material. Além disso, como a extração acontece principalmente com material fundido, há um acúmulo de respingos e/ou material refundido na borda de entrada. A figura 2 (pág. 172) mostra uma série de furos feitos por percussão, em chapas de aço inox AISI 304 de 2 mm de espessura.

Os resultados mostrados na figura 2 foram obtidos com lente de comprimento focal f = 100 mm, com a posição do foco coincidente com a superfície da amostra. Três séries foram executadas, com largura temporal do pulso de 0,3 ms, 0,6 ms e 0,9 ms. Para cada largura temporal, foram executados furos com intensidade variável, onde somente a energia do feixe foi modificada. Os resultados mostram uma certa conicidade e um diâmetro crescente com o aumento da intensidade do feixe *laser*. O gráfi-

Fig. 7 – Corte transversal de duas lâminas de aço inoxidável de 1 mm, mostrando furos feitos por trepanação e o aspecto da borda de entrada

de um destes furos



co da figura 3 (pág. 172) mostra claramente estes efeitos.

O fato de o diâmetro do furo sempre aumentar com a intensidade do feixe deve-se, em parte, ao aumento do diâmetro e da divergência do feixe com o aumento da potência pico de bombeamento. Isto acontece porque quanto maior for o bombeamento no elemento *laser*, maior será o número de modos oscilantes na cavidade ressonante. Assim, para restringir este aumento do número de modos, foi inserida dentro da cavidade *laser* uma íris de 4 mm de diâmetro, que diminuiu a eficiência do sistema, mas levou a um melhor resultado de furação.

O gráfico da figura 4 (pág. 174) mostra os resultados obtidos desta maneira. Vê-se claramente que, excetuando-se a entrada do furo (que tem baixa profundidade), a conicidade tende a ser muito pequena e o diâmetro do furo tende a um valor constante para intensidades acima de 45 Kw.mm<sup>-2</sup>.

O diâmetro do feixe foi posteriormente restringido pela inserção de uma íris de 1,4 mm de diâmetro dentro do ressonador laser. Desta maneira, observou-se a emissão laser do modo fundamental somado um modo não-determinado. A energia, neste caso, é demasiadamente reduzida e a capacidade de extração de material não possibilita a furação de material espesso. Assim, utilizando uma lâmina de aço inoxidável 304 de 0,1 mm de espessura e uma lente de comprimento focal f = 50 mm, foi obtida uma série de furos com diâmetros que variavam de acordo com a posição do foco do feixe laser em relação à superfície da amostra. O gráfico da figura 5 (pág. 175) mostra os resultados, onde se vê que foi obtido um diâmetro de 34 µm para a posição do foco sobre a amostra.

A diminuição do diâmetro da íris para 1,2 mm possibilitou a oscilação do modo fundamental do *laser* e, com este feixe, foi obtido um furo de 18  $\mu$ m em uma lâmina de aço 1020 de 0,5 mm de espessura. A figura 6 mostra a entrada e a saída do furo, onde a entrada apresenta um diâmetro de 32  $\mu$ m, porém com baixa profundidade.

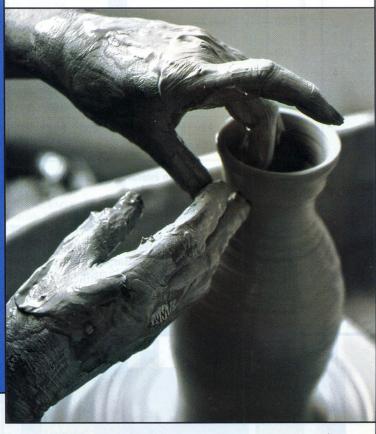
#### Furação por trepanação

Para diminuir a conicidade do furo e o material refundido na sua borda de entrada, uma série de experimentos foi realizada com o método de trepanação. Neste caso, o *piercing* (furo que

## Ferramentas construídas pelo tempo



Talento, precisão, técnica.


Em alguns momentos criar um produto é como conceber uma obra de arte.

Mais do que conhecer o método é preciso usar a ferramenta certa.

Os módulos de usinagem do *CATIA V5* em plataforma Windows® são versáteis, poderosos e flexíveis, no escritório ou chão de fábrica, adaptando-se ao desenvolvimento de qualquer produto.

Seja ele qual for.

CATIA. Tecnologia aplicada à vida.



Conheça também ENOVIA - Solução para Gestão de Engenharia



Os módulos de usinagem do *CATIA V5* são utilizados por todos os segmentos da indústria, no projeto e execução de ferramentas, moldes, estampos, protótipos e produtos.

Ligue para 0800 155012 e peça gratuitamente o CD de demonstração do **CATIA V5** 

**TECMES** 

debis

engework

**NV SISTEMAS** 

Business Partner

www.ibm.com/solutions/plm

Serviço de consulta 7950

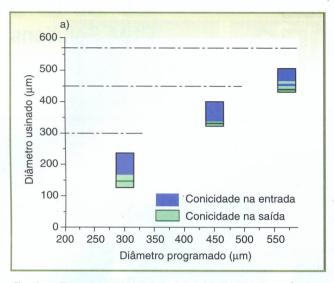



Fig. 8a - Furos trepanados com intensidade 12 kW.mm<sup>-2</sup>

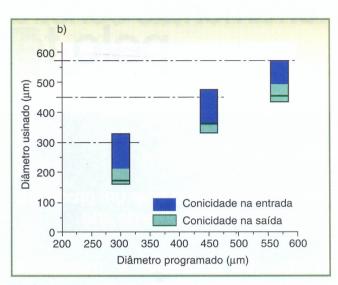



Fig. 8b – Furos trepanados com intensidade 50 kW.mm<sup>-2</sup>

inicia o processo) foi obtido por percussão para, em seguida, o feixe desenvolver uma excursão circular, como no caso de um corte. Uma série de experimentos foi feito para se verificar a influência do *piercing* na borda do

furo e os resultados mostraram que não houve influência apreciável neste sentido. Obviamente, para que o diâmetro do feixe ficasse menor do que o diâmetro do furo desejado, foi necessária a introdução de íris intracavidade. A



Serviço de consulta 7951



Serviço de consulta 7952

figura 7 (pág. 176) mostra um corte transversal de duas lâminas de aço inoxidável de 1 mm de espessura e a borda de entrada de um destes furos. É notável aqui a diminuição da conicidade e a ausência de respingos e de material refundido na borda de entrada.

Para executar o processo de excursão circular, foram construídos programas numéricos para circunferências de diâmetros de 300 μm, 450 μm e 570 μm. A figura 8 (a e b) mostra os gráficos das medições feitas em duas séries de furos com estes diâmetros, nos quais pode-se visualizar a conicidade intrínseca.

As amostras medidas na figura 8a (pág. 178) foram construídas com intensidade de 12 kW.mm<sup>-2</sup>, largura temporal de pulso de 0,4 ms e feixe com diâmetro de 190 µm. Fica evidente que por conta da baixa potência do feixe, o diâmetro esperado não foi conseguido, uma vez que a extração ficou comprometida. Para evidenciar esta proposta, construiu-se outra série de furos nas mesmas condições, modificando-se apenas a intensidade do feixe, como mostra o gráfico da figu-

ra 8b (pág. 178). Com o aumento significativo da intensidade do feixe, mantendo as demais condições, observa-se que o diâmetro usinado foi o mesmo que o programado. A conicidade dada pela diferença entre os diâmetros de entrada e de saída tem ângulo de, no máximo, 4° na parede interna.

#### Conclusões

Os métodos de percussão e trepanação foram estudados e caracterizados para a CPML do Ipen. Foi possível a obtenção de furos com boa qualidade cosmética, baixa conicidade, razão de aspecto de até 1:27 e com dimensões controladas de até 18 µm.

#### **Bibliografia**

- Bolin, S. R.: Nd: YAG laser applications survey. In laser Materials Processing. M. Bass ed. North-Holland Publishing Company, p. 409-437, 1983.
- 2] Morato, S. P.; de Rossi, W.; Wetter, N. U.: High level publication on industrial applications of lasers, ed. Unido, Trieste, Italy, 1999.
- 3] Tiffany W. B.: Drilling, marking and other applications for industrial Nd:YAG lasers. Applications of High Power lasers, SPIE v. 527, p. 28-36, 1985.

### FACAS INDUSTRIAIS



Star Hagane Facas Industriais Ltda.

Rua João Dias da Motta, 147 CEP 08290-400 São Paulo - SP site: www.starhagane.com.br e-mail: comercial@starhagane.com.br

Fone/Fax (11) 6524-3887