Y₂O₂SO₄:Eu³⁺ Nanomaterials Synthesis by a Benzenecarboxylate Method

Ivan G.N. Silva^{1,*}, Danilo Mustafa², Rodrigo V. Rodrigues¹, Leonnam G. Merizio¹, Maria C.F.C. Felinto³, Hermi F. Brito¹

¹Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil. ²Instituto de Física, Universidade de São Paulo, São Paulo-SP, Brazil. ³Centro de Química e Meio Ambiente, IPEN, São Paulo-SP, Brazil

*e-mail: ignsilva@iq.usp.br

Luminescent nanomaterials have been mainly investigated in recent years because of significant differences in structure and performance from the bulk [1,2]. Most preparation methods of nanosized luminophores need high temperatures or complicated experimental procedures. Rare earth (RE) 5-Sulfoisophthalic acid complexes (RE(STMA)·4H₂O) decompose to rare earth sulfates RE₂O₂SO₄:Eu³⁺ in one step at low temperature, the compounds were annealed at 500, 600, 700, 800, 900 and 1000 °C [3]. This work reports a new low temperature preparation method of the Y₂O₂SO₄:Eu³⁺ nanomaterials based on benzenecarboxylate method precursors.

TGA analyses (Fig. 1) show on event from 35 to 175 °C corresponding to the loss of 4 water molecules and only one decomposition event, from 490 to 670 °C (loss of organic moiety). The XRD confirms the obtainment of $Y_2O_2SO_4$:Eu³⁺ materials without the presence of other phases up to 900 °C, after this temperature Rietveld refinement show formation of Y_2O_3 .

The excitation spectra (Fig. 2) exhibit the LMCT $O \rightarrow Eu$ band centered at 275 nm and the intraconfigurational 4f transitions of Eu^{3+} . The excitation spectra show similar features independently of the annealing temperature, with the presence of an extra low intensity broad band in the compounds annealed at 500 and 600 °C, owing to oxycarbonated. The emission spectra (Fig. 3) exhibit only the intraconfigurational 4f transitions of the Eu^{3+} ion, with the presence of transitions arising from the ⁵D_J (J: 0, 1 and 2).

Fig. 1. Thermogravimetric analysis of Y(STMA): Eu^{3+} . **Fig. 2.** Excitation spectra of the Y₂O₂SO₄: $Eu^{3+}(1.0\%)$ materials, with emission monitored at 617 nm. **Fig. 3.** Emission spectra of the Y₂O₂SO₄: $Eu^{3+}(1.0\%)$ materials, with excitation at 275 nm.

- [1] S.H. Shin, J.H. Kang, D.Y. Jeon and D.S. Zang, J. Lumin., 2005, 114, 275.
- [2] M.K. Devaraju, S. Yin and T. Sato, J. Cryst.. Growth, 2009, 311, 580.
- [3] E.R. Souza, I.G.N. Silva, E.E.S. Teotônio, M.C.F.C. Felinto and H.F. Brito, J. Lumin., 2010, 130, 283.

Oral Presentation – TR2016