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Abstract

The spherical-harmonics method is used to solve a class of multigroup criticality (k-eigen-
value) problems in multislab geometry. The model includes scattering anisotropy of arbitrary
order and allows reflective or vacuum outer boundaries. Numerical results of benchmark
quality are reported for three sample problems that have been defined and used by other
authors to study various transport methods for criticality calculations. A comparison with our
results indicates that some of the earlier results are in error. © 2001 Elsevier Science Ltd. All
rights reserved.

1. Introduction

In a recent work (Caldeira and Garcia, 2001), we have used the spherical-harmo-
nics (Py) method to solve, in a spatially continuous way, the problem of an infinite
array of plate-type fuel cells. Because the test case that was defined and used in that
work involves a relatively large number of groups (64) and three material regions, a
tabulation of the corresponding group constants would be too lengthy to report.
Although we can provide these group constants by electronic means to anyone
interested in solving our 64-group problem, we believe it useful, as an aid to
researchers involved in code benchmarking, to report accurate numerical results for
some criticality (k-eigenvalue) problems with fewer groups that have been defined in
the literature. Since two of these problems involve vacuum outer boundaries, and
our previous solution (Caldeira and Garcia, 2001) was developed for the specific
case of reflective boundaries, we also report in this work the (slight) modifications
needed in our approach to accommodate the case of a vacuum outer boundary.
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With regard to the above-mentioned 64-group cell problem, we should add that
Parsons (2000) has communicated discrete-ordinates results that confirm our Pgs
result (Caldeira and Garcia, 2001) for the effective multiplication factor k.g. His best
result (keg=1.2618) was obtained using a Gauss—Legendre quadrature of order 128
and 20 mesh cells per region in the ONEDANT code (Alcouffe et al., 1997) and
compares very well with our Pg; result (koqp=1.2617).

2. Statement of the problem

We consider a system of R slabs (see Fig. 1) with a reflective boundary at zo=0
and either a reflective or a vacuum boundary at zy.

As in our previous work (Caldeira and Garcia, 2001), we can adapt the notation
of Siewert (1993) to formulate our problem as the problem of solving, for
r=1,2,..., R, the transport equation

a 1 L ! !/ I I
B e )+ S W) =3 Y P | PG ) 1)
Z 2 =0 —1
where
\I/r,l (Z’ M)
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Y.(z, n) = : 2
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is a G-vector with the group angular fluxes in region r as components, z € (z,_1, z,) is
the space variable measured in cm, and u € [—1, 1] is the cosine of the polar angle
that specifies the direction of neutron travel. In addition, S, is a GxG diagonal
matrix with the group total cross sections s, 1, S,2, - . ., S, ¢ i the diagonal and T, ; is
a GxG matrix with elements that are the ¢th Legendre moments of the neutron
transfer cross sections, namely

() = o] ;(0) + (1/k)x; (vay):8e0, 1<ij<G. 3)
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Fig. 1. Multislab geometry.
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We note that in this expression oy ;(¢) denotes the £th Legendre moment of the
transfer cross section by scattering from group j to group i, k is a multiplication
factor to be determined so that a physically meaningful solution of Eq. (1) exists in
all regions, (vaf); is the group j average of the number of neutrons emitted per fis-
sion times the fission cross section and yx} is the fraction of fission neutrons that
appear in group i. Here, we formulate our problem so that only the leftmost region
(r=1) contains fissionable material. Thus, the second term on the right-hand side of
Eq. (3) vanishes for r=2,3, ... ,R. Moreover, the Kronecker delta in Eq. (3) indicates
that we are considering the usual case of isotropic fission.
Now, to complete the formulation of our problem, we need to specify the bound-
ary and interface conditions to which the group angular fluxes are subject. The
reflective boundary condition at z=z,=0 can be written, for ©>=0, as

‘P](O, l’l’) = \P](O, _l’l’)a (4'(1)
while at the interfaces z,, r=1,2,..., R—1, we consider the continuity conditions, for
u>0,

‘Pr(zra :|:/L) = \PH—I(ZN :l:,u), (4b)

and the condition at the outer boundary of the system (z=zg) can be written, for
u>0, as

Y r(zr, 1) = p¥Rr(zZR, 1), (4c)

where p = 1 for a reflective boundary or p = 0 for a vacuum boundary.

To close this section, we note that, instead of dealing directly with Eqs. (1) and (4),
it is more convenient to deal with a version of these equations where the space
variable is measured in terms of mean free paths (Siewert, 1993). For any region r,
denoting as Smin, the minimum of the group total cross sections in the region and
introducing the dimensionless optical variable t©(z) = t,—; + (z—Zz,—1)Smin.r» Where

r—1
T = Z(Zi — Zi_1)Smin, is ®)
e

we find that Eq. (1) can be rewritten, for t € (t,_1, 1), as

1

8 1 L 1A ! ’
Wz =3 mecr,ej PG (©)
=0 -
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where X, =S, /Smin, and C,; = T, ¢/Smin. Similarly, we find that Egs. (4) can be
rewritten in terms of t as
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Y10, ) =¥1(0, =), =0, (7a)
Y. (v, £p) = ¥Yra (v, £01), 1 >0, (7b)
forr=1,2,...,R—1, and

lPR(‘L’R5 _/J') = p\PR(TRﬂ ,lL), m > 0. (7C)

3. The Py method for the case of a reflective outer boundary

As our application of the Py method for the case p = 1 has been discussed in a
recent work (Caldeira and Garcia, 2001), we only summarize here the main aspects
of our solution for this case.

Beginning with the fuel region, we write the Py solution that satisfies the first
N+ 1 moments of Eq. (6) for r=1 and the reflective condition expressed by Eq. (7a)
as

| &
Wi(r. ) =5 ) 20+ DOL(DPu(R). ®)
n=0
where
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+ Al,j+l I:e—/i],/(r1+r)/(51./§1./)wfr’n (‘L’, r’;:l,j) _ (_l)ne—il.,(n—r)/(ﬂ,gl.,)Win(.[’ 51/):“ )

To express @ ,,(7), the nth Legendre moment of the angular flux vector in the fuel,
as we did in Eq. (9), we have assumed that the Py eigenvalues (Siewert and Thomas,
1987; Siewert, 1993; Caldeira and Garcia, 2001) in H*, the region of the complex
plane defined by 9z>0 and the positive half of the y-axis, are ordered so that
&,;=1im, j=1,2,...,J;, are pure imaginary numbers, & ;, j=J;+1,J;+2,...,
Js, are real, and the pairs (§; ;, §1J), Jj=Js+ 1, Js+3,...,J—1, with & ; = 4 j+
in j, are complex conjugate. We note that the total number of Py eigenvalues in H*
is J=G(N + 1)/2 and that the restriction Aj = 2 attached to the third summation
symbol on the right-hand side of Eq. (9) means that j is to be incremented by two in
that summation. Still with regard to the third summation on the right-hand side of
Eq. (9), we note that Garcia and Siewert (1986) were the first to point out the pos-
sibility of complex conjugate pairs of Py eigenvalues that split off the continuum
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[—1, 1] in Py solutions to vector transport problems. In addition, we have used in
Eq. (9) the general definitions

Z;,(x. 9 = cos| e/ (&) | G(&)} £ sin[ 7/ (68) [ 3{G.a(®)] (10)

and

WE,(v.6) = sin|r/ (68) |G, ()} £ cos| ne/ (£) [3{G...(®). (an

where G, ,(§) is a G-vector that satisfies, for region r, the recurrence relation

&h, (G o(§) = (L + 1)Gre41(8) + £Gre-1(8), €20, (12)
with
e+ Hx, -Gy, £<L,
e = {(2@ + DX, > L, (13)
and the truncation condition G, y+1(§)=0, when § =&, ;, j=1,2,...,J. Moreover,

the (real) coefficients 4, ;, j=1,2,...,J, in Eq. (9) are yet to be determined.
Continuing, we write the Py solution that satisfies the first N+ 1 moments of Eq.
(6) for any intermediate region 2<r<R—1) as

1 N
Wit ) =5 ) 2+ D@ (D) Pa(1). (14)
n=0
where
Jr
(0= 3 e e (217 B, e G, ()
J=1
J-1 _
+ Z [I:A"-J'Zrin(r — 1. & I) + A/‘q.i+1W:tr1(7" —T-1 é}_r,j)]67)""»"(171"’1)/(E"“’E"' )
J=Jr+1
Aj=2

+ (_l)n [Bh,jzr_’n(tr -1, %_hj) + Br,j+lw,_fn (Tr - T, é:-',,,j)]e—/l,._,-(1:,.—1:)/(5,;,‘5_:',/)}. (15)

Again, we have assumed that the Py eigenvalues are ordered so that &
j=1,2,...,Jg, are real and (&, é,.h,-),j: Jr+1,Jr+3,...,J—1, with & ;= 1,
+in,,j, are complex conjugate pairs. The (real) coeflicients 4, ; and B, ;, j=1,2,...,J,
that appear in Eq. (15) are yet to be determined.

Finally, considering the outermost region (r= R), we write the Py solution that
satisfies the first N+ 1 moments of Eq. (6) for r=R and the reflective condition
expressed by Eq. (7c) with p =1 as
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1 N
Wr(r. 1) =5 ) 20+ D®R(DPu(1). (16)
where
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=
J—1 . z
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As before, we have assumed that the Py eigenvalues are ordered so that &g j,
j=1,2,. r. are real and (§z;,&r;), j=Jr+1,Jr+3,....J—1, with
Erj= AR + ingj, are complex conjugate pairs. The (real) coefficients Ag ;,
j=1,2,...,J, that appear in Eq. (17) are yet to be determined.

Itis clear from the above presentation that we have a total of 2J(R—1) unknown
coefficients in Egs. (9), (15) and (17). We can generate the same number of equations
by considering Mark versions of the interface conditions defined by Eq. (7b), i.e.

‘Pr(fr, :l:,um) = ‘I’r—&-l (fr, + /’Lm)a (18)
forr=1,2,...,R—landm=1,2,...,(N+ 1)/2, where u,, denotes the mth element
in the set of (N + 1)/2 positive zeros of the Legendre polynomial Py, (). We thus

obtain the homogeneous system of linear algebraic equations (Caldeira and Garcia,
2001)

MX =0, (19)

where the matrix M is of the form

c -U, -V, 0 0 0 0 0
D R, -S; 0 0 0 0 0
0 V., U, -Us; —-V;3 0 0 0
0 Sz —R2 —R3 S3 0 0 0
M= : : : (20)
0 0 0 Vro  Ugps —Ugpy —Vio 0
0 0 0 Sr—2 —Rr_2 —Rp Sr-1 0
0 0 0 0 0 Vre1 Ury —E
0 0 0 0 0 Sr.1 —Rr; —-F
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and the vector X is defined as

A
A,
B,
Az
X=]|: ) (21)
Br_>
Ar_1
Br_i
AR

As explicit expressions for the JxJ submatrices C, D, E, F, and U,, V,, R, and S,,

r=2,3,..., R—1, that are used to define M in Eq. (20) have been given in Appendix
A of Caldeira and Garcia (2001), we do not repeat their definitions here. The sub-
vectors A, r=1,2,...,R,and B, r =2,3,..., R— 1, that appear on the right-hand
side of Eq. (21) are all of dimension J and have as their jth components the
unknown coefficients 4, ;, r=1,2,..., R, and B, ;, r =2,3,..., R — 1, respectively.

Now, since a homogeneous linear system has a nontrivial solution only if the
determinant of the corresponding matrix of coefficients vanishes, det M =0 turns out
to be the critical condition that allows us to find kg, the (largest) value of k in Eq.
(3) that gives rise to a physically meaningful solution of Eq. (1) in all regions. In
addition, a vector X # 0 in the null space of the critical matrix M yields a set of
subvectors A,, r=1, 2,..., R, and B,, r=2, 3,..., R—1, that solve the homogeneous
system defined by Eq. (19). Once these vectors are available, all of the coefficients in
the Py solutions become known, up to a normalization factor that can be freely
chosen.

To close this section, we note that the first (=0) and second (n=1) Legendre
moments expressed by Egs. (9), (15) and (17) are our Py approximations to the
scalar flux and current vectors in the fuel, intermediate and outermost regions,
respectively.

4. Modifications for the case of a vacuum outer boundary

The modifications that are needed to handle the case p=0 in Eq. (7c) are very
simple. First we note that the Py solutions for the fuel and the intermediate regions
have exactly the same form as those given for the case p=1 in Section 3. To treat the
outermost region properly, we now take the Py solution expressed by Egs. (14) and
(15) for the intermediate regions r=2, 3,..., R—1 to be valid also for r= R when
p=0. Clearly, due to the presence of the coefficients Bg ;, j=1, 2,..., J, in the Py
solution for the outermost region, the number of unknowns is now 2J(R—1/2),
which represents an increase of J unknowns when compared to the case p=1. The
extra number of equations required to match the number of equations to the num-
ber of unknowns comes from a Mark version of Eq. (7¢) for p=0, namely
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W r(TR,—1tm) = 0 (22)
for m=1, 2,..., (N+1)/2. It turns out that the homogeneous system of linear

algebraic equations that gives rise to the critical condition has, in this case, size
2J(R — 1/2) and can be expressed as

NY =0, (23)

where the critical matrix N is defined as

cC -U, -V, 0 0 0 0 0 0
D R, -S; 0 0 0 0 0 0
0 Vv, U, -U;s -V; 0 0 0 0
0 S, —R; —Rj S; 0 0 0 0
N = : T, . . T, . . :
0 0 0 \ = Ugro —Ug1 —Vg 0 0
0 0 0 Sr2 —Rzpo —Rp Sr-1 0 0
0 0 0 0 0 \' Ug1 —Ug —Vr
0 0 0 0 0 Sr-1 —Rg-1 —Rp Sk
0 0 0 0 0 0 0 Vz — Sk Ur + Rg

24)

and the vector of unknowns Y as

X
y— (BR>, (25)

with X being defined as in Eq. (21).

5. Computational implementation

As our computational implementation of the method has been discussed in detail in
a previous work (Caldeira and Garcia, 2001) only a brief discussion is given here.

In our FORTRAN program, the k-eigenvalue search is done by bisection, with
the lower and upper initial estimates of k. being obtained, for any N, by: (i) adding
and subtracting a suitable Ak to an estimate, say kg, of k.y that can be obtained
from a low order (e.g. P, or P3) sweep search performed between arbitrarily chosen
lower and upper limits of k, say kinr and kq,p; (ii) computing the determinant of M or
N, depending on the case, for k; =ko—Ak and k,=ky+ Ak; and (iii) repeating, if
necessary, the procedure with the value of Ak doubled as many times as required
until a sign change in the determinants is observed. The values of k; and k; so
obtained are the required lower and upper estimates of k.. The k-cigenvalue search
is terminated when the search interval has been halved sufficiently many times by the
bisection procedure so that the lower and upper extremes of the interval differ by
less than a prescribed relative difference (10~% was our choice in this work).
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For each bisection (or sweep) step, the determinant of M or N is computed with
the LINPACK subroutines DGECO and DGEDI (Dongarra et al., 1979). When the
matrix being factored happens to be numerically close to singular, which is precisely
the case here when the critical condition is satisfied, subroutine DGECO provides an
approximate null vector that determines (up to a normalization constant) the
unknown Py coefficients. These coefficients can then be used to compute Py
approximations to the group scalar fluxes and currents.

Finally, as discussed in our previous work (Caldeira and Garcia, 2001) some spe-
cial techniques were also required in this work for robustness of the algorithm. At
each bisection (or sweep) step, after the Py eigenvalues in the fuel region were
computed they were ordered by increasing absolute values. In addition, the corre-
sponding eigenvectors, which provide the required {G, ,(&, ;)} in the fuel, were nor-
malized to a Euclidean norm of unity and the sign of the component with largest
absolute value in the first calculational step was preserved. In the absence of these
normalization practices, we have observed that our computational procedure may
fail because the pattern of signs displayed by the computed values of det M (or det
N) as k is varied monotonically in a given interval may show a random behavior.

6. Numerical results

In this section, we apply our Py solution reported in Sections 3 and 4 to three
criticality problems that have been used as test cases by other authors.

6.1. Three-region, two-group problem with isotropic scattering

This problem was proposed by Higgblom et al. (1975) and was subsequently
considered by Ackroyd et al. (1980) and Lee et al. (1985). It consists of two cases:
control plate inserted and control plate withdrawn. In the case of control plate
inserted, region 1 corresponds to the fuel, region 2 to the moderator (water) and
region 3 to the control plate, and the coordinates that define the system boundaries
and interfaces (see Fig. 1) are: zg=0, z; =10 cm, z,=11 c¢cm, and z3=11.5 cm. Both
boundaries are reflective in this problem. For the case with control plate withdrawn,
there are only two regions (fuel and water), and the water region extends from
z;=10 cm to z;=11.5 cm. The macroscopic cross-section set for this problem is
given in Table 1, where we use the notation of Section 2. In passing, we note that the
column labeled as X, in Table 1 of Lee et al. (1985) should have been labeled as ;.

In Table 2, we compare our Py results for the effective multiplication factor with
those of Lee et al. (1985) who also used the Py method for solving this problem. It
can be seen that the results are in excellent agreement for N up to 11, but not for
N=15. Looking at the way our results converge as N is increased further and having
used the ANISN code (Engle, 1973) with a Gauss—Legendre quadrature of order 16
and 160 mesh points per region to obtain k.g=0.32819 and 0.56636, respectively for
the cases with and without control plate, we have concluded that the P;5 results of
Lee et al. (1985) are in error.
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On investigating the reason why the case with the control plate withdrawn
requires a higher order of approximation to converge than the case with the control
plate inserted, we have discovered an unusual feature of this transport problem. As
shown in Table 3 for various orders of the approximation, the Py eigenvalue in

H*={z|Nz>0}U{z|Rz=0vIz >0} that approaches the discrete eigenvalue (Siewert
and Thomas, 1987) in the fuel region as N — oo is imaginary for the case with the
Table 1
Group cross sections (cm~!) and fission spectrum for the three-region, two-group problem
Group constant Fuel Water Control material
(r=1 (r=2) (r=3)
Sr1 0.3 0.401 0.8
Sr2 1.0 1.3 2.0
a;11(0) 0.27 0.32 0.6
a;1,(0) 0.0 0.0 0.0
a;51(0) 0.01 0.08 0.0
0;2,(0) 0.9 1.29 0.1
(voy),| 0.0 0.0 0.0
(voy), 0.12 0.0 0.0
X 1.0 - -
x5 0.0 - -
Table 2
Py results for the effective multiplication factor ke
Control plate inserted Control plate withdrawn
N This work Lee et al. (1985) This work Lee et al. (1985)
1 0.320073 0.320073 0.578013 0.578013
3 0.327334 0.327334 0.569479 0.569480
5 0.328048 0.328048 0.567452 0.567452
7 0.328166 0.328166 0.566833 0.566833
9 0.328186 0.328186 0.566586 0.566586
11 0.328188 0.328188 0.566462 0.566462
15 0.328184 0.328244 0.566342 0.566106
99 0.328181 - 0.566193 -
199 0.328181 - 0.566190 -
299 0.328181 - 0.566189 -
399 0.328181 — 0.566189 -

Table 3

P approximations to the discrete eigenvalue in the fuel region

Case N=9 N=19 N=29 N=199 N=299
Control plate inserted i4.07867 i4.07850 i4.07847 i4.07847 i4.07847

Control plate withdrawn 3.51185 3.51409 3.51450 3.51481 3.51482
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control plate inserted and real for the case with the control plate withdrawn, due to
the difference in k.;. These results are in agreement with the prescription for the
number and nature of the discrete eigenvalues in two-group transport theory (Sie-
wert and Shieh, 1967). The unusual feature here is the existence of a source-free
transport problem (the case with the control plate withdrawn) which admits a stable
solution asymptotically described by (real) exponential eigenmodes. We are not
aware of a previous mention of this possibility in the literature.

A more physical explanation of this result can be formulated by comparing the
results of infinite multiplication factor (k) calculations for the fuel region and for
the homogenized mixture of three (two, for the case with the control plate with-
drawn) material regions. We note that methods for computing k., for any number of
groups are reported in Appendix B of Caldeira and Garcia (2001) and in Appendix
A.V of Sood et al. (1999). The reason why it is important to pay attention to the k.,
values is that the condition k =k, of the fuel determines the transition point from
imaginary (plus possibly other real) discrete eigenvalues to real discrete eigenvalues
only. More explicitly, when a system has k.g smaller than the &, for the fuel region,
at least one discrete eigenvalue in the fuel must be imaginary, while for k. greater
than the k., for the fuel region, all discrete eigenvalues in the fuel must be real.

In this problem, we have k., =0.4 for the fuel region, which indicates that this
region is in fact composed of a mixture of fuel and absorbing material. Moreover,
for the homogenized mixture of fuel, water and control material we have
koo =0.229115 and for the homogenized mixture of fuel and water k,,=0.617078.
Clearly, since for the case of control plate inserted kg is smaller than the k., of the
fuel, at least one discrete eigenvalue in the fuel must be imaginary in this case. On
the other hand, ks is greater than the k., of the fuel for the case of control plate
withdrawn, and consequently no discrete eigenvalue in the fuel can be imaginary in
this case. The question of how can such a system maintain a chain reaction can be
answered by noting that kg is smaller than the k., of the homogeneous mixture of
fuel and water. Thus, it is the coupling between the source of fission neutrons pro-
duced in the fuel region and the source of thermalized neutrons sent back to the fuel
by the water region that maintains the chain reaction in this case. This is clear from
the behavior of the scalar fluxes depicted in Figs. 2 and 3 for the cases of control
plate withdrawn and inserted, respectively. As shown in these figures, the group-2
(thermal) flux is strongly depressed near the outer boundary when the control plate
is inserted, thus reducing the source of thermal neutrons that migrates to the fuel
region and causes the peak of group-1 (fission) neutrons near the interface fuel/water
that can be observed in Fig. 2.

In addition, a tabulation of the scalar fluxes and currents that can be used for
benchmarking purposes is provided in Tables 4 and 5. The numerical results in these
tables are thought to be accurate to within +1 in the last figure shown and were
obtained, respectively, with N=599 for Table 4 and N=499 for Table 5. We note
that all results for scalar fluxes and currents in this paper are normalised to a group-
1 scalar flux of unity at z=0.

Another interesting aspect of this problem is the conspicuosness of multiple values
of the multiplication factor (k) associated with higher transport modes that satisfy
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Fig. 2. The group scalar fluxes for the case of the control plate withdrawn.
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Fig. 3. The group scalar fluxes for the case of the control plate inserted.

the critical condition det M = 0. While most of these ks are clustered near zero and
are very difficult to isolate, the first few can be easily computed with our code, using
a sweep search in low order followed by specific bisection searches. In Table 6, we
show, as a function of N, the largest four values of k <k.s that satisfy the critical
condition for the case with the control plate withdrawn.
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Table 4

The scalar fluxes and currents for the case with control plate inserted

Quantity Group z=0 z=5cm z=10 cm z=11 cm z=11.5cm

Scalar flux 1 1.00000(+0)  9.31582(—1) 6.46649(—1)  5.15035(—1) 4.77909(—1)
2 9.87405(—=2)  9.52501(-2) 1.42118(—=1)  7.56614(-2) 2.34271(-2)

Current 1 0.00000(+0)  3.14339(-2) 9.50130(—=2)  4.89735(—=2)  0.00000( +0)
2 0.00000( + 0) 1.76579(—4)  —9.78293(=3)  3.43376(—2)  0.00000( +0)

Table 5

The scalar fluxes and currents for the case with control plate withdrawn

Quantity Group z=0 z=5cm z=10 cm z=11cm z=11.5cm

Scalar flux 1 1.00000( + 0) 1.09151(+0) 1.08602( +0) 9.03593(—1)  8.87882(—1)
2 1.07505(—1) 1.46743(—1) 6.80263(—1) 9.61243(—1)  9.91392(—1)

Current 1 0.00000(+0) —2.87877(—2) 1.14449(—1) 3.61696(—2)  0.00000( +0)
2 0.00000(+0) —7.83109(=3) —9.95971(=2) —3.08162(—=2)  0.00000( +0)

Table 6
Py approximations to the largest four values of k <k.q for the case of control plate withdrawn
N kl kz k3 k4
1 0.117343 0.0163965 0.00397183 0.00134503
3 0.127461 0.0237129 0.00721445 0.00288313
5 0.126927 0.0247128 0.00821962 0.00357324
7 0.126674 0.0248169 0.00849979 0.00385818
9 0.126569 0.0248174 0.00857458 0.00397002
19 0.126436 0.0247904 0.00859649 0.00403746
99 0.126393 0.0247783 0.00859149 0.00403551
199 0.126392 0.0247779 0.00859129 0.00403539
299 0.126391 0.0247778 0.00859125 0.00403537
399 0.126391 0.0247778 0.00859124 0.00403536

As expected from theoretical grounds (Davison, 1957; Bell and Glasstone, 1970;
Duderstadt and Martin, 1979), we have confirmed numerically that none of these ks
is associated with a neutron flux which is positive everywhere in the system, and so
the only value of k relevant for this problem, physically speaking, is in fact ko= kg,
as reported in Table 2.

6.2. Two-region, 10-group problem with isotropic scattering

This 10-group problem has been recently proposed by Batistela et al. (1999) in an
application of a Laplace-transformed version of the discrete-ordinates method to
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criticality calculations in plane geometry. The problem can be formulated as a two-
region slab composed of fissionable material from z=0 to z=7.5 cm and nonfis-
sionable material from z=7.5 cm to z=27.5 cm, where the inner boundary (z=0) is
reflective and the outer one (z=27.5 cm) is a vacuum boundary.

The 10-group macroscopic cross sections and fission spectrum for this problem are
defined in the work of Batistela et al. (1999) and are reproduced here in Tables 7-9. We
note that we have detected an inconsistency in this data set, namely that the group-1
scattering cross section for region 2, obtained by summing up the scattering transfer
cross sections given in the first row of Table 9, exceeds the corresponding total cross
section (52,1 =0.691908 cm™!; see Table 7) by an amount of 0.007322 cm~".

In Table 10, we compare, in low order (N< 9), our kg results for this problem
with the LTSy results reported by Batistela et al. (1999) and the Sy results
of Parsons (2000), who used the ONEDANT code (Alcouffe et al., 1997) with
5500 mesh cells and Gauss—Legendre quadrature. Due to the well-known equiva-
lence (see, for example, the recent work by Barichello and Siewert, 1998) between
the spherical-harmonics (Py) method with Mark boundary conditions used in this

Table 7
The group constants s, ; and (vo/-); (in cm™!) and the fission spectrum x! for the 10-group problem
i S1i §2,i (VU/'): X
1 0.2245876 0.691908 0.0009735 0.07
2 0.5529316 1.163784 0.001153 0.12
3 0.835548 1.146798 0.01756 0.202
4 1.4625101 1.281052 0.238 0.603
5 0.12507 0.35936 0.00081 0.0017
6 0.26377 0.2932 0.0035 0.001
7 0.644427 0.52023 0.0123 0.0006
8 0.8241506 0.71652 0.024 0.0004
9 0.28768 0.43845 0.005 0.0013
10 0.197631 0.07911 0.0009 0.0
Table 8
The scattering transfer cross sections oy ;; (0) (in cm™!) for region r=1 of the 10-group problem
j i=j—1 i=j i=j+1 i=j+2 i=j+3 i=j+4
1 0.0 0.16094 0.05824 0.003059 0.00123 0.00042
2 0.0325 0.45088 0.066442 0.00235 0.0 0.0
3 0.1234 0.63597 0.057518 0.0021 0.001 0.0
4 0.0006101 1.2839 0.0021 0.0003 0.0 0.0
5 0.001 0.07421 0.02176 0.0045 0.0021 0.0
6 0.0198 0.2019 0.02857 0.0104 0.0 0.0
7 0.1743 0.3689 0.046377 0.0444 0.01 0.0
8 0.0004426 0.30826 0.007038 0.5011 0.0 0.0
9 0.0938 0.1271 0.04561 0.0 0.0 0.0
10 0.000201 0.19296 0.0 0.0 0.0 0.0
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Table 9

The scattering transfer cross sections oy ;(0) (in cm~!) for region r=2 of the 10-group problem

j i=j—1 i=j i=j+1 i=j+2 i=j+3 i=j+4
1 0.0 0.24413 0.1741 0.051 0.2 0.03
2 0.174 0.62077 0.224 0.105 0.04 0.0
3 0.043 0.83158 0.152 0.09 0.03 0.0
4 0.074 1.1125 0.09 0.001 0.0 0.0
5 0.084 0.19286 0.0484 0.01 0.0 0.0
6 0.075 0.11588 0.0751 0.02 0.0 0.0
7 0.024 0.3571 0.123 0.007 0.0 0.0
8 0.077 0.4542 0.179 0.005 0.0 0.0
9 0.065 0.2742 0.0987 0.0 0.0 0.0

10 0.0004 0.07421 0.0 0.0 0.0 0.0

Table 10

Low-order results for the effective multiplication factor for the 10-group problem

N Py (this work) LTSy ; (Batistela et al., 1999) Swy+1 (Parsons, 2000)

1 1.09206 1.09206 1.09206

3 1.09615 1.09615 1.09615

5 1.09637 1.09637 1.09637

7 1.09643 1.09651 1.09643

9 1.09646 - 1.09646

work and the discrete-ordinates method with Gauss—Legendre points used by
Batistela et al. (1999), perfect agreement between these numerical results was
expected. However, as can be seen in Table 10, the Py and LTSy results are in
complete agreement only for N up to 5. On the other hand, since an extremely fine
grid was used in the ONEDANT calculations, the effects of spatial discretization on
the results of this code were virtually eliminated and the agreement with the Py
results is perfect for all orders of the approximation. This led us to conclude that the
LTSg result of Batistela et al. (1999) is not correct.

To provide even more accurate results for this problem, we report in Table 11
additional k. results that were obtained using our P, code in high-order, along
with the corresponding ONEDANT results of Parsons (2000), which are based on
22,000 mesh cells and either Gauss—Legendre (Sy+1) or double Gauss—Legendre
(DSy+1) quadratures. It can be seen that the double-Gauss results are the best of all,
with the DS», result being already correct in all figures shown. This is due to the
much improved representation that can be achieved with the double Gauss—
Legendre quadrature of the angular flux discontinuities that occur at interfaces and
boundaries as u—0 from above and from below. In addition, P499 results for the
scalar fluxes and currents, thought to be accurate to at least 5 significant figures, are
given in Table 12.
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Table 11
High-order results for the effective multiplication factor for the 10-group problem
N Py (this work) Sy +1 (Parsons, 2000) DSy +1 (Parsons, 2000)
19 1.0964924 1.0964924 1.0965042
39 1.0965012 1.0965012 1.0965042
99 1.0965037 1.0965037 1.0965042
199 1.0965040 1.0965040 1.0965042
299 1.0965041 1.0965041 1.0965042
499 1.0965041 1.0965041 1.0965042
Table 12
The scalar fluxes and currents for the 10-group problem
Scalar fluxes Currents
Group z=0 z=7.5cm z=27.5cm z=7.5cm z=27.5cm
1 1.00000( +0) 4.86623(—1) 3.50420(—5) 1.54279(—1) 2.09469(-5)
2 1.95428(+0) 7.23729(—1) 6.51246(—5) 2.20915(-1) 3.75497(-5)
3 9.90102(—1) 6.18599(—1) 7.09073(—4) 2.29819(—2) 4.09466(—4)
4 1.50456(+0) 1.21355(+0) 2.74287(-3) 2.08560(—3) 1.55963(—3)
5 4.05535(—1) 5.93068(—1) 7.86290(—3) —8.84109(—2) 4.83488(—3)
6 2.80317(=1) 2.79649(—1) 4.81444(-3) 1.72825(=2) 2.99945(-3)
7 3.75173(-2) 1.05173(—1) 4.07103(—3) —2.28986(—2) 2.36991(—3)
8 1.49238(—2) 5.61623(-2) 2.88601(—3) —1.40445(-2) 1.65083(—3)
9 2.07038(—2) 5.56808(—2) 4.88800(—3) —1.37163(-2) 2.87505(—3)
10 8.86504(—1) 8.11701(-1) 2.17840(—1) 6.28266(—2) 1.24471(-1)

6.3. Single-region, two-group problem with linearly anisotropic scattering

Originally, this two-group problem was formulated as a search of the critical half-
thickness for a bare homogenous slab with linearly anisotropic scattering (Bosler,
1972; Bosler and Metcalf, 1972). In this work, we use a k-eigenvalue search to find
the critical half-thickness z; that corresponds to k.s=1. Two cases are considered:
Case 1 corresponds to a mixture of 93% enriched uranium fuel and H,O moderator
and Case 2 to a mixture of uranium fuel and D,O moderator. The corresponding
macroscopic cross sections are given in a recent work (Sood et al., 1999) that
includes a compilation of 75 problems intended for criticality code verification and
are also given here in Table 13.

A slight variation of the second case, where (vaf)2=0.007043 cm~!, was con-
sidered by Ishiguro (1973) and is referred to as Case 3 in this work. In addition, we
note that, contrary to the convention used to define the group structure for the first
problem, the group numbers for this problem increase with increasing energies. We
also note that the critical condition expressed by Eqs. (23)—(25) cannot be applied to
a single-region problem, and, therefore, we have worked out a special formula for
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this case. Using the notation introduced in Section 3, we find that the critical con-
dition for a single-region problem can be written as

[C +D]A; =0, (26)

where C and D are the JxJ matrices defined in Appendix A of Caldeira and Garcia
(2001).

In Table 14, we report our converged P results for the critical half-thicknesses for
all three cases, thought to be accurate to within +1 in the last figure shown and
obtained using N=299 for Case 1 and N=19 for Cases 2 and 3. In the same table,
we show the numerical results of Bosler (1972) (see also Sood et al., 1999) and those
of Ishiguro (1973). Both of these authors have used Case’s method to solve this
problem. On observing that our converged result for Case 1 agrees with that of
Ishiguro, we conclude that only the first three figures of Bosler’s result are correct
for this case. We can also see that our result for Case 2 shows much better agree-
ment with the corresponding result of Bosler and that our result for Case 3 agrees
with Ishiguro’s result. In addition, we note that our converged Py results for Cases 1
and 2 have been independently confirmed by Parsons (2000), using the ONEDANT
code.

Table 13

Group cross sections (cm~') and fission spectrum for the single-region, two-group problem

Group constant Case 1 Case 2

S1 2.52025 0.54628
K 0.65696 0.33588
05,11(0) 2.44383 0.42410
05.12(0) 0.029227 0.004555
03)21(0) 00 00
05,22(0) 0.62568 0.31980
os11(1) 2.49954 0.16317
os.12(1) 0.0227211 —0.0011916
oy21(1) 0.0 0.0
05,22(1) 0.82377 0.20082
(VO'f)l 0.12658 0.24250
(vn/-)z 0.002621 0.0070425
X1 0.0 0.0

X2 1.0 1.0

Table 14

Critical half-thickness (cm) for the single-region, two-group problem

Case Material This work Bosler (1972) Ishiguro (1973)
1 U+H,0 9.49590 9.491600 9.4959

2 U+D,0 1000.54 1000.506133

3 U+D,0 929.453 - 929.45
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Table 15

The scalar fluxes and currents for Case 1

Quantity Group z/z1=0 z/z1=0.2 z/z1=0.5 z/z1=0.8 z/z1=1.0

Scalar flux 1 1.00000( +0) 9.63273(—1) 7.75037(—1) 4.33839(—1) 7.67013(-2)
2 2.76014(+0) 2.66033(+0) 2.15621(+0) 1.30377(+0) 5.22735(-1)

Current 1 0.00000( + 0) 8.00148(—3) 1.92703(-2) 3.08691(—2) 4.38133(-2)
2 0.00000( +0) 8.90345(-2) 2.07755(—1) 2.87253(—1) 3.01388(—1)

Table 16

The scalar fluxes and currents for Case 2

Quantity Group  z/z;=0 z/z;=0.2 z/z;=0.5 z/z1=0.8 z/z;=1.0

Scalar flux 1 1.00000( +0) 9.51306(—1) 7.08534(—1) 3.12090(—1) 2.35203(—3)
2 2.68236(+ 1) 2.55175(+1) 1.90055(+ 1) 8.37140(+0) 8.90130(—2)

Current 1 0.00000( +0) 3.14139(—4) 7.19162(—4) 9.68208(—4) 1.32537(-3)
2 0.00000( +0) 1.60474(—2) 3.67375(-2) 4.94597(-2) 5.14516(-2)

Closing this section, Tables 15 and 16 display our Py results for the scalar fluxes
and currents, obtained with N=699 for Case 1 and N=_899 for Case 2. Since these
numbers have not changed as we kept increasing the order of the approximation up
to N=1499 for both cases, we believe they are accurate in all figures shown.

7. Concluding remarks

In this work, we have used the P, method to report especially accurate numerical
results for three criticality problems in multislab geometry that have been used by
other authors in previous studies. As discussed in detail in Section 6, existing tabu-
lations in some works that intended to solve these problems accurately display
errors, precluding the use of the numerical results in these tables as computational
benchmarks.

Moreover, two of these problems revealed some features that we believe to be
noteworthy. First, we mention the unusual case of a criticality problem that displays
no imaginary discrete eigenvalue in the fuel region (viz. the case with control plate
withdrawn studied in Subsection 6.1) and, second, the extreme sensitivity of the cri-
tical half-thickness for Case 2 of Subsection 6.3 to small changes in cross sections.
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