Mechanisms of reduction in V₂O₅ and MoO₃ studied by PAC spectroscopy

A. Burimova¹, A. W. Carbonari¹, D. Richard², L. F. Dias Pereira¹, F. A. Genezini¹

 ¹ Centro de Reator de Pesquisas, Instituto de Pesquisas Energéticas e Nucleares, 2242 Professor Lineu Prestes ave., Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil
¹ Departamento de Física, Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata, Argentina

E-mail: anstburimova@gmail.com

Structural evolution of vanadium (V) and molybdenum (VI) oxides with temperature was studied by Time Differential Perturbed Angular Correlation (TDPAC) spectroscopy in different atmospheres with ¹¹¹Cd probe incorporated by wet impregnation. In case of V₂O₅ sealed in vacuum, the critical temperature for probe diffusion was found to be above 500°C, whereas for MoO₃ this barrier was 600°C. The diffusion was suppressed in low pressure oxygen atmosphere. The behavior of hyperfine parameters on heating to melting point of V and Mo oxides and subsequent cooling to room temperature was analyzed. TDPAC results were complemented by X-ray diffraction data. We discuss comproportionation, topotactic, competitive and consecutive mechanisms as the candidates to describe V₂O₅ \rightarrow VO₂ and MoO₃ \rightarrow MoO₂ reduction.