Passive Q-switching of the Erbium: glass Laser at 1.53 μm

Marly B. Camargo,^{a)} Robert D. Stultz,^{b)} and Milton Birnbaum Center for Laser Studies University of Southern California DRB 17, University Park Los Angeles, CA 90089-1112

We have demonstrated passive Q-switching for the Er: glass laser at 1.53 µm with $Er^{3+}:CaF_{2i}$ $Er^{3+}:Yb^{3+}:Ca_5(PO_4)_3$ (or Er:FAP), $U^{2+}:BaF_2$, $U^{2+}:SrF_2$, $U^{2+}:BaF_2$, $Co^{2+}:Y_3Al_5O_{12}$ (or Co:YAG), and $Co^{2+}:Y_5Sc_2Ga_3O_{12}$ (or Co:YSGG). The best results were obtained with the U:CaF_2 and Co:YSGG Q-switches. Pulses as short as 20 ns FWHM (full width at half maximum) and 2.8 mJ (U:CaF_2) and 4 mJ (Co:YSGG) were obtained.

I. Introduction

Er:glass lasers are interesting and useful for a large number of applications because they emit in the eye-safe spectral region around 1.54 μ m and coincide with the maximum transmission of the silica fibers, which is very important for communications. Other applications for thisa wavelength region include optical atmospheric measurements, traffic enforcement, helicopter wire avoidance, air defense, where human contact with the laser radiation is possible. The majority of the applications require short pulses with high peak power, which can be obtained by Q-switching the Er:glass laser.

We Q-switched the Er:glass laser at 1.53 μ m using slow and fast relaxing saturable absorber Q-switches.

II. Slow Relaxing Absorbers - Er³⁺ and U²⁺ crystals

1. Spectroscopic Measurements

We previously reported on passive Qswitching of the Er:glass laser using U^{4+} :SrF₂,¹ Er³⁺:FAP (AR coated at 1.53 µm) and Er³⁺:CaF₂.²

Fig. (1) shows the polarized spectra, at 300K, of a 4 mm thick (1%)Er:(2%)Yb:FAP (or Er:FAP) crystal, corresponding to the transition ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$, and the photoluminescence (${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$) of a Kigre QE-7 Er:glass laser rod.

Our identification of the U^{4+} ion as the responsible agent for the saturable absorption near 1.5 μ m was in accordance with several early publications on the spectroscopy of U-doped difluorides.³ According to Hargreaves,⁴ however this should be reported as U^{2+} :SrF₂, and we adopted his convention later on.

The broad absorption band of U^{2+} near 1.5 µm, in the di-fluoride crystals, peaks close to the Er:glass laser wavelength (see Fig. 2). The luminescence (${}^{5}I_{5} \rightarrow {}^{5}L_{4}$) of our U-doped crystals, when excited at 1.53 um using a free-running Er:glass laser, peaked at 2.5 - 2.6 µm.

The lifetime of the metastable states ${}^{5}I_{5}(U^{2^{*}})$ was determined by pumping the crystals at 1.543 µm using a Raman-shifted Nd:YAG laser with a 14 ns pulse. We pumped the Er crystals with the 1.53 µm laser beam of a Q-switched Er:glass with a 138 ns pulse. The fluorescence was measured using an InAs detector (U crystals) with a Ge crystal filter to block the pumping light, and a Ge diode (Er crystals) with a Si filter and an IR polarizer to block the pumping light and some of the Er emissions (< 1 μ m). Table I shows the measured room temperature lifetimes.

Figure 2. U-doped di-fluoride crystal absorption spectra near $1.5 \ \mu m$ (300 K).

The cross-sections were determined by bleaching the crystals using the same Raman-shifted Nd:YAG laser. Since the fluorescence lifetimes are long compared with the bleaching pulse duration, the Frantz-Nodvik equation,¹ was used to analyze the results. The cross-section σ was, for each crystal, determined from the saturation parameter ($F_{int} =$ hv/σ) which best fit the experimental transmittance data. The measured absorption cross-sections are given in Table I.

Table I: Spectroscopic parameters of U- and Erdoped Q-switch materials.

Material	α ₀ at 1533 nm (cm ⁻¹)	300 K lifetime (msec)	Cross- section $(x \ 10^{-20}, cm^2)$	
U:BaF ₂	0.58	0.043	5	
U:CaF2	1.26	0.005	7	
U:SrF2	1.05	0.025	7	
Er:CaF2	2.2	9.7	1.57	
Er:FAP	0.57	12.3	1.43	

Both U:SrF₂ and U:CaF₂ had damage thresolds greater than the maximum fluence used in the 1.543 um saturation measurements (i. e., > 4 J/cm²), however, the U:BaF₂ crystal damaged at only 1.5 - 2 J/cm². The poorer surface and internal qualities of the U:BaF₂ crystal used in these experiments may have contributed to its reduced resistance to optical damage.

2. Q-switched Laser Results - Er³⁺ and U²⁺ Crystals

All the Q-switch crystals, except by Er:FAP, were supplied by Optovac, Inc. The Er:FAP was grown by B. H. T. Chai, CREOL. These crystals were evaluated in an Er:glass laser resonator. A Kigre $3 \times 50 \text{ mm}$ (QE-7S) Er:glass laser rod was used for U:BaF₂ and U:SrF₂ Q-switches. The rod was flashlamp-pumped in a Kigre pump head. The U:CaF₂ Q-switch was used with a 4 x 76 mm (QE-7S) Kigre rod in an unoptimized pump cavity, which was designed for a much larger rod.

The laser resonators used consisted of two flat mirrors with physical lengths of 10 cm for the U:SrF₂ and U:BaF₂, and 15.5 cm for U:CaF₂. The output mirror reflectivity was 80% for the SrF₂ Qswitch, and 94% for BaF₂ and CaF₂

For the Er-doped Q-switches, the cavity length was 17.5 cm. The output mirror had a reflectivity of 94% at 1.533 μ m, and a 2.5 cm radius of curvature. A 1cm thick lens with a focal length of +5 cm, and anti-reflective (AR) coated at 1.54 μ m was used to focus the laser beam on the Er-doped saturable absorbers. The laser rod was centered between the lens and the 100% reflective flat mirror.

The Q-switching results are summarized in Table II.

L	able.	11:	Q-SI	witch	res	sults.	
-							-

Q-switch. material	Thickness (mm)	Internal transmit. (%)	Output energy (mJ)	Measured pulsewidt h (ns)	Threshold (J)
U:BaF ₂	1.0	94	1	306	16
U:CaF ₂	4.0	60	3	21	86
U:SrF2	1.0	90	11	45	15
Er:CaF2	1.0	80	11	69	46
Er:FAP	4.9	74 (π-pol)	27	46	43

A fast InGaAs detector (subnanosecond response time) with a Tektronix TDS-540 digital oscilloscope were used to record the pulses.

Only the Er:FAP Q-switch was AR coated. The other Q-switch crystals were used uncoated in the laser experiments. The saturable absorbers were aligned for normal incidence, but the $U:SrF_2$ Qswitch was placed at Brewster's angle. The measured wavelength of the Q-switched Er:glass laser was 1.53 µm, which is very close to the peak of the Er:glass luminescence.

The U:BaF₂ crystals were easily damaged, and damage was observed for U:SrF₂ Q-switches for pulses shorter than 40 ns FWHM. However, pulses as short as 20 ns were measured for U:CaF₂ (Fig. 3) without any kind of damage. At this point, is

uncertain whether or not the damage problems observed with U:BaF2 and U:SrF2 are intrinsic with these materials.

The shortest pulse obtained with the Er.FAP Q-switch without damage was 46 ns. When damage occurred, significant pulse shortening was observed with a very sharp cut-off at the trailing edge. A similar result was obtained for Er:CaF2 but the cutoff was not as fast.

The Q-switch operation was modeled using saturable absorber rate equations.1 Very good agreement with the experiment was obtained using the spectroscopic parameters from Table I.

Figure 3. Er:glass Q-switched pulse using a U:CaF, crystal.

III. Fast Relaxing Absorbers - Co2+

1. Spectroscopic Measurements

Co2+ has the electronic structure [Ar core]3d7. The broad absorption bands are a result of the strong interaction of the crystal field with the outermost 3d electron shell. Both crystals, Co2+: YAG and Co2+: YSGG (grown by M. Kokta, Union Carbide) possess a very broad absorption feature near 1.54 um (Fig. 4).5

An estimate of the absorption relaxation lifetime was made for Co:YSGG using a pumpprobe method. The crystal was pumped with a 10 ns laser pulse at 1.543 µm. The pumped region was simultaneously probed with a 0.633 um HeNe laser. This method indicated that the lifetime of the 4T, relaxation is fast compared to the duration of the bleaching pulse (<< 10 ns).

The 1.543 um absorption saturation was measured for both Co crystals using the same experimental set-up as with the U2+ crystals.1 The

1.543 μ m laser beam was aligned along the standard for For a fast relaxing absorber with 1.543 µm laser beam was anglied along the (11) direction. For a fast relaxing absorber without absorption, the saturation transmittance r direction. For a tast total ausorber with excited absorption, the saturation transmittance

 $\ln [T/T_{\circ}] = [I_{\circ}/I_{s}](1-T)$

where I_o is the incident 1.543 um laser intensity, listical intensity (= $hv/\sigma\tau$), τ is the relaxity where I_o is the measure $(=hv/\sigma\tau)$, τ is the relaxation the saturation intensity (= $hv/\sigma\tau$), τ is the relaxation T_o is the small-signal transmittance the saturation intensity is the small-signal transmittance The lifetime, and T_o is the small-signal transmittance. The lifetime, and T, is the string to string the solid curve in Fig. 5 was obtained by adjusting the solid curve in equation (1) for the best fit of solid curve in Fig. 5 was control of aujusting the l parameter in equation (1) for the best fit of the parameter data. Average values of 180 Mm. parameter in equation and 140 MW/cm. (CovVac) (Co:YSGG), and 140 MW/cm² (Co:YAG) Wete for Is (see Table III). With the Cover (Co:YSGG), and the Table III). With the Co:YAG measured for is use observed at about 180 only transmittance measured 180 sample, damage and transmittance measurements MW/cm², so only transmittance measurements domage threshold were consid-MW/cm⁻, so one threshold were considered in below the damage threshold were considered in the saturation intensity. No damage below the damage determining the saturation intensity. No damage was observed in the Co:YSGG crystal, even up to the maximum intensity tested (570 MW/cm⁻).

Figure 4. Co: YSGG and Co: YAG absorption spectra near 1.5 µm (300K).

Table III. Measured 1.543 µm saturation intensities for Co2+ O-switches.

Q-switch	Thick- ness (mm)	Small-signal internal transmittance at 1.543 µm	c, at 1.543 jim (cm ⁻¹)	1.543 µm saturation intensity (MW/cm ²)
Co:YSGG	8.92	0.054	3.27	180
Co:YAG	3.91	0.8	0.57	140

2. Q-switched Laser Results - Co2+ crystals

Q-switching of the Eriglass laser was obtained with both crystals, Co:YAG and Co:YSGG.

using intacavity focussing.6 The pulse (4mJ, 20ns) shown in Fig. 6 was achieved using a Co:YSGG saturable absorber, with a focussing parameter.

Figure 5. Transmittance saturation measurement for Co2+:YSGG.

A/A, of approximately 17. where A, and A, are the same parameters described above. The same Kigre Erglass pump head was used as with the U:CaF2 Qswitch. Threshold, with the Q-switch inserted in the resonator cavity, wa approximately 40 J, and the threshold for the free-running laser was 27 J.

100 ns/di v.

Figure 6. Q-switched pulse using Co:YSGG crystal

The energy of the Co Q-switched pulse was roughly 13% of the free-running output at the same flashlamp input energy. The Fresnel surface reflection losses were taken into account because the Q-switch was used uncoated (at normal incidence).

For Co:YSGG the single-pass reflectivity loss is about 20%. Assuming that none of this loss appears in the output of the laser, the outcoupling efficiency nc can be estimated using the equation."

$$\eta_c = T_m / (T_m + L) \tag{2}$$

where Tm is the transmittance of the output mirror and L is the round-trip resonator cavity loss. For our laser, $T_m = 6\%$ and L = 40%. (double pass losses), therefore $\eta_c = 13\%$. This means that a significant increase in efficiency can be achieved using an ARcoated sample.

Co:YAG was also tested as a Q-switch, but the shortest pulse that we could obtain without damaging the crystal was 88ns FWHM.

The Q-switch results for both Co-doped crystals are summarized in Table IV. Computer modeling using saturable absorber Q-switch rate equations in the fast-relaxing regime agreed reasonably well with the experiments.

Q-switch	thick- ness	Int. Trans. (%)	FWHM (ns)	Output energy (mJ)	Thresh. (J)
Co:YSGG	0.5	85	20	4	40
Co:YAG	8.1	58	88	~1	84

IV. Conclusions

Passive Q-switching of the Eriglass laser has been demonstrated with Er3+-, U2+-, and Co2+-doped crystals. The best and most encouraging results at this time are those for the U2+:CaF2 and Co2+:YSGG Q-switches, where 20 ns pulses have been obtained materials. without damaging the Further improvements in efficiency and performance are expected with AR-coated Q-switches.

- a) Present address: Instituto de Pesquisas Energéticas Nucleares - MMO. Travessa R, 400, CEP 05508-900. S. Paulo, SP, Brazil. Financial support: CNPo/RHAE.
- Present address: Hughes Electro-Optical Systems at El Segundo, CA 90245, USA.

V. References

- 1. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariousu, Appl. Phys. Lett. 64(8), 948 (1994).
- 2. M. B. Camargo, R. D. Stultz, M. Birnbaum, and K. Spariosu, CLEO Conference (May 8 -13, Anaheim, CA), Tech. Digest, Paper CTuK53, p. 115 (1994).
- A. Yariv, Phys. Rev. , 1588 (1962). 3.
- W. A. Hargreaves, Phys. Rev. B 44, 5293 (1991). 4.
- M. B. Camargo, R. D. Stultz, and M. Birnbaum, Opt Lett. 5. (accepted for publication).
- M. Hercher, Appl. Opt. 6(5), 947 (1967). 6.
- W. Koechner, Solid-State Laser Engineering, 3rd. ed., 7. (Springer-Verlag, NY, 1992), Ch. 3, p. 93.

Caracterização de Lasers a Diodo para Espectroscopia Atômica

F. Catalani, A. Scalabrin, D. Pereira Instituto de Física "Gleb Wataghin" - UNICAMP 13.083/970, Campinas, S.P., Brasil

Resumo

Neste trabalho apresentamos a caracterização parcial de um sistema a laser semicondutor, concebido para aplicações em espectroscopia atômica a alta resolução. Este sistema faz uso de uma cavidade, que permite a operação do laser numa faixa de temperatura entre 240 e 300 K a uma estabilidade da ordem de mK. Esta, corresponde a uma estabilidade em frequências da ordem de MHz. Para isso construímos uma fonte de corrente estabilizada e usamos elementos que desfrutam o efeito Peltier. Esta operação permite varreduras de frequências de dezenas de nm para lasers emitindo no infravermelho próximo.

Introdução

Nos últimos anos têm-se verificado uma grande utilização de lasers de semicondutores em experimentos de física atômica, em particular em espectroscopia a alta resolução [1-5]. Isto se deve principalmente a duas características fundamentais: boas características espectrais e de potência do feixe, e preço, uma vêz serem sistemas muito mais baratos que os lasers a corante orgânico ou de Titânio Safira utilizados alternativamente para as mesmas aplicações. No entanto, as características de sintonização de frequência e largura de linhas de lasers comerciais estão longe do ideal, o que limita consideravelmente sua utilização. De fato, para experimentos de interesse de nosso grupo de pesquisa, tais como resfriamento de átomos com lasers, espectroscopia de saturação, duplicação de frequências e metrologia, sintonizabilidade de dezenas de nanometros (nm) e larguras de linhas da ordem de 1 MHz são necessárias. Para se obter lasers com essas características espectroscópicas técnicas laboratoriais auxiliares devem ser utilizadas. Em particular as características de grande sintonizabilidade, largura de linha estreita e estabilidade de frequência (fundamentais para experimentos de metrologia) estão associadas à utilização de técnicas de realimentação óptica e preciso controle de temperatura do sistema.

Neste trabalho apresentamos a caracterização parcial de um sistema laser semicondutor concebido para aplicações em espectroscopia atômica de alta resolução. Ele faz uso de lasers comerciais operando na região do infravermelho próximo e de uma cavidade construída no laboratório, cujo desenho permite operar o laser numa faixa de temperatura entre 240 e 300 K. Essa variação de temperatura implica em sintonização de frequências de dezenas de nm. A estabilidade de temperatura é de mK, conseguida através de uma fonte de corrente (também construída no laboratório) e elementos Peltier. A utilização de realimentação óptica associada à variação de corrente do laser será utilizada para a sintonização fina da frequência do laser.

Aparato Experimental e Resultados

Como dissemos, na base das características espectroscópicas de alta sintonizabilidade e estabilidade de frequências, e larguras de linhas estreitas dos lasers semicondutores, estão técnicas de realimentação óptica e elementos para controle de temperatura do sistema. Nesse sentido foi construido um sistema usando uma cavidade que permite a operação do laser numa ampla faixa de temperatura, controlada por uma fonte de corrente estabilizada que alimenta elementos Peltier. Dessa maneira, a estabilidade em temperatura é da ordem de mK, correspondendo a estabilidades de frequências da ordem de MHz. Para a variação de corrente do laser, uma fonte comercial da Melles Griot (modêlo 06 DLD 201) é usada. Esta fonte pode ser monitorada externamente para operação estabilizada em potência ou corrente, ou para modulação em corrente ou potência. Para isso usamos um gerador de funções Tektronix (modêlo FG 501A).

A variação de temperatura é realizada através de módulos que desfrutam o efeito Peltier. Uma corrente flui através de junções p-n desses módulos, fazendo com que se estabeleça uma diferença de temperatura entre as placas dos módulos. Em nosso caso utilizamos módulos do tipo , que permitem diferenças de temperatura de dezenas de graus entre suas faces quando sob a ação de alguns ampéres de corrente. Uma fonte de corrente estabilizada foi construída para alimentar os módulos Peltier. O esquema de funcionamento dessa fonte está esquematizado na figura-1.

Figura-1- Esquema de funcionamento de um termostato para laser a diodo

Através do potenciômetro (P) fazemos um desbalanceamento da ponte de

Atraves do potential de presente o termistor (T) que lê a temperatura d_0 resistências (R) sobre a qual está também presente o termistor (D) a um diferencied construction de resistencias (R) sobre a qual contrata do um integrador (I), a um diferenciador (D) e a u_m diodo. O sinal é amplificado e enviado a um integrador (D) e a u_m proporcional (P) que regulam a corrente enviada ao Peltier, de modo a fazer variar o valor da resistência do termistor até que a ponte se balancie novamente. É importante salientar que para ter uma boa termostatação, é necessário componentes de alta qualidade com relação a estabilidade. Por exemplo, as resistências utilizadas tem uma estabilidade de 0.1%, enquanto a tensão de referência V utilizada é obtida de um integrado que a estabiliza em 0.0001%/K. Uma vêz alimentados os módulos Peltier, o laser a diodo é montado sobre um suporte metálico em contato com a parte fria dos mesmos. A parte quente do Peltier é colocada em contato com um suporte metálico cilíndrico, sobre o qual existem passantes elétricos usados para alimentação do laser e dos módulos Peltier. Através desse suporte, fazemos fluir água a temperatura constante cujas funções são garantir uma primeira termostatação e roubar calor da parte quente do Peltier. Dessa maneira temperaturas de funcionamento do laser tão baixas quanto -40ºC são conseguidas. Para se conseguir facilmente essa condição e se evitar condensação de água sobre o laser, toda essa parte do sistema é fechada por um segundo bloco metálico cilindrico que forma junto ao primeiro, uma câmara dentro da qual fazemos vácuo. O feixe laser, já colimado por uma lente adequadamente acoplada dentro da cavidade, é extraído através de uma janela óptica acoplada a essa câmara.

Levantamos a curva de temperatura de funcionamento do laser em função da corrente no peltier, assim como da estabilidade de temperatura do laser em função do tempo.

Dois laser semicondutores foram utilizados para a caracterização do sistema: Sharp LT 020 e Mitsubishi ML 67010. Foram determinadas a potência de saída em função da corrente, tomadas a várias temperaturas para ambos os lasers. Para a medida de potência usamos um detetor OPHYR PD2-A. Para a caracterização do comprimento de onda de saída dos lasers em função da corrente dos lasers e da temperatura, utilizamos um λ -Meter modêlo NIST LM10, apresentando uma precisão de partes em 10⁷. No momento, estamos iniciando os experimentos para caracterização da emissão dos lasers em termos de larguras de linhas e funcionamento mono-modo dos mesmos.

Conclusão

Apresentamos um trabalho de caracterização parcial de sistemas lasers semicondutores a serem utilizados em experimentos de espectroscopia atômica a alta resolução. Foi construída uma cavidade que permite a operação dos laser a temperaturas entre 240 e 330K, com uma estabilidade de mK, o que corresponde a estabilidade de frequências da ordem de MHz. Uma fonte de corrente estabilizada foi construída para isso, e elementos Peltier foram utilizados para o variação de temperatura. Dessa maneira temos lasers sintonizáveis numa faixa da ordem de dezenas de nm, combinando efeitos de temperatura e corrente do laser. A seguir estudaremos a melhor técnica a ser empregada para operação do laser em regime mono-modo, para sintonizações de intervalos contínuos de frequências com largura de linhas da ordem de MHz.

Referências

1- C.E. Wieman, L.Hollberg- Rev. Sci. Instrum. 62, 1 (1991)

2- D.Sesko, C.G.Fan, C.E.Wieman-JOSA-B 5, 1225 (1988)

3- D.Sesko, C.E.Wieman- Opt. Lett. 14, 269 (1989)T.Walker, D.Sesko, C.E.Wieman- Phys. Rev. Lett. 64, 408 (1990)

4- H.Katori, F.Shimizu- Jpn.J. Appl. Phys. 29, 11, 2124 (1991)

5- Y.Shevy, J.Iannelli, J.Kitching, A.Yariv- Opt. Lett. 17, 9, 663 (1992)

Suporte Financeiro: FAPESP, CNPq, FINEP.

Agradecimentos: Aos Srs. M.P.Arruda e A.J.Polaquini pelo excelente trabalho de suporte técnico.

Nexa mineto discutaçatos o mainementes efeitos de camero piónicas salaré as

printi, for de aborção do infratoriados (DO, de tocleorias later ativas to