Variação sazonal da concentração ²¹⁰Pb medido em amostras de solo da cidade de São Paulo

Gustavo R. de Freitas¹, Thiago O. Santos² and Sandra R. Damatto

¹ Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP gustavo.rfreitas09@gmail.com

² Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP <u>thi.oli.0107@gmail.com</u>

³ Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP <u>damatto@ipen.br</u>

RESUMO

Os radionuclídeos naturais são encontrados em todo o meio ambiente terrestre, sendo os principais os pertencentes às séries radioativas naturais do ²³⁸U e do ²³²Th. O ²²⁶Ra ($T_{1/2}$ =1600a), da série do ²³⁸U, pode ser encontrado em amostras de solo e sedimento e decai para o ²²²Rn ($T_{1/2}$ = 3,8 d), gás nobre e inerte que emana da superfície da terra decaindo para ²¹⁰Pb ($T_{1/2}$ = 22,3a), na atmosfera. O ²¹⁰Pb retorna à terra como *fallout* seco ou pode ser lavado da atmosfera pela chuva. Embora existam na literatura muitos trabalhos referentes à caracterização química do solo da cidade de São Paulo, poucos trabalhos são encontrados quanto à quantificação do radionuclídeo ²¹⁰Pb. O objetivo deste trabalho foi determinar a concentração de atividade do ²¹⁰Pb em amostras de solo coletadas no campus do IPEN de agosto de 2014 a abril de 2015 e verificar a variação sazonal deste radionuclídeo. A concentração do radionuclídeo ²¹⁰Pb foi determinada pela medida bet total em um detector proporcional de fluxo gasoso de baixo background, após separação radioquímica. Para auxiliar a interpretação dos resultados foram determinados pH, densidade real e aparente, porosidade e a composição granulométrica. As concentrações obtidas de ²¹⁰Pb variaram de 67 ± 1 Bq/kg a 144 ± 13 Bq/kg e apresentaram uma correlação direta, porém inversamente proporcional, com os índices pluviométricos medidos no mesmo período de estudo. As maiores concentrações foram obtidas no período do inverno e as menores na primavera, quando inicia o período chuvoso.

1. INTRODUÇÃO

Os radionuclídeos naturais são encontrados na crosta da Terra em todo o meio ambiente, como solo, água e atmosfera, sendo os principais radionuclídeos àqueles que pertencem às séries radioativas naturais do ²³⁸U e do ²³²Th. Suas concentrações variam com a localização geográfica, origem geológica dos solos e história climática, hidrológica e agrícola [1,2].

Alguns destes radionuclídeos, como o ²³⁴Th, ²³⁰Th, ²²⁶Ra, ²¹⁰Pb, ²²²Rn, ²¹⁹Rn, podem ser utilizados como traçadores em estudos atmosféricos, oceanográficos e limnológicos, onde através de suas medidas pode-se seguir o traçado de processos naturais e artificiais e realizar uma avaliação do impacto antrópico de contaminantes sob o meio ambiente [3-5].

O radionuclídeo ²²⁶Ra ($T_{1/2} = 1620$ anos), emissor alfa e, o radionuclídeo ²¹⁰Pb ($T_{1/2} = 22,3$ anos), emissor beta, ambos radionuclídeos da série natural do ²³⁸U, são importantes sob o ponto de vista de proteção radiológica, pois contribuem com uma dose significante devido à irradiação interna [2]. O ²²⁶Ra é encontrado mais frequentemente em amostras de solo e sedimento, proveniente do intemperismo de rochas, e decai para o ²²²Rn ($T_{1/2} = 3,8$ dias), gás nobre e inerte. Este último emana da superfície da terra decaindo para ²¹⁰Pb na atmosfera. O ²¹⁰Pb retorna à terra como *fallout* seco ou pode ser lavado da atmosfera pela chuva.

Calculando-se as concentrações de atividade do ²¹⁰Pb em amostras de precipitação pluviométrica é possível estimar o fluxo anual do mesmo, cujos resultados são utilizados no entendimento da cronologia de sedimentos de ambientes marinhos e lacustres [1, 6-11]. O conhecimento quantitativo e qualitativo das deposições atmosféricas é relevante para o entendimento dos ciclos biogeoquímicos de elementos e da influência das atividades antrópicas nestes processos.

O objetivo deste trabalho foi determinar a concentração de atividade do ²¹⁰Pb em amostras de solo coletadas no campus do IPEN, de agosto de 2014 a abril de 2015 e verificar a variação sazonal deste radionuclideo. Para auxiliar a interpretação dos resultados foram determinados o pH, as densidades reais e aparentes, a porosidade e a composição granulométrica

2. METODOLOGIA

2.1. Área de estudo

As amostras de solo foram coletadas no Instituto de Pesquisas Energéticas e Nucleares - IPEN, o qual está localizado aproximadamente 10 km a oeste do centro da cidade de São Paulo. A cidade de São Paulo está situada em um plateau na região sudeste do Brasil, nas coordenadas 23°32'S e 46°37'O, e altitude média de 760 m acima do nível do mar. O clima na cidade é temperado tropical com período de seca no inverno e chuvoso no verão. A temperatura média anual é de 19.1°C, com mínima e máxima de 15,3°C e 24,9°C, respectivamente. O índice pluviométrico médio annual na cidade variou de 1590 mm a 2081 m, no período estudado e a direção preferencial dos ventos no campus do IPEN é predominantemente no sentido sul-sudeste.

2.2. Coleta e pré-tratamento das amostras e determinação de parâmetros físico-químicos.

As amostras de solo foram coletadas quinzenalmente em uma área de 30 X 30 cm e profundidade de até 5 cm em um ponto localizado no campus do IPEN, coordenadas 23°33'59''S e 46°44'15'O. No laboratório as amostras foram secas a temperatura ambiente e após secagem moídas em almofariz de porcelana com pistilo, peneiradas em mesh 115 e homogeneizadas.

2.2.1. Composição Granulométrica

A composição granulométrica do solo possibilita a quantificação dos seus componentes, baseado no tamanho das partículas que o constituem e são expressos em percentagem de cada fração granulométrica em relação à fração total de solo seco. As diferentes partículas do solo

são classificadas pelo seu tamanho, de acordo com a classificação apresentada na Tabela 1 [12].

Classificação	Phi (q)	mm
Areia muito grossa	-1 a 0	2 a 1
Areia Grossa	0 a 1	1 a 0,5
Areia Média	1 a 2	0,5 a 0,25
Areia Fina	2 a 3	0,25 a 0,125
Areia muito fina	3 a 4	0,125 a 0,062
Silte	4 a 8	0,062 a 0,00394
Argila	8 a 12	0,00394 a 0,0002

Tabela 1: Classificação granulométrica dos sedimentos [12]

A determinação da granulometria foi realizada a úmido passando-se 5g da amostra por um conjunto de peneiras capazes de separar as frações em areia, silte e argila utilizando-se água superpura [13].

2.2.2. pH das amostras

A medida do potencial de hidrogênio, pH, fornece o índice de acidez de uma solução em equilíbrio com o solo; geralmente é medido em uma solução solo-solução aquosa. No presente trabalho o pH das amostras de solo coletadas foi medido em H₂O superpura, $CaCl_2 0,01 mol.L^{-1} e KCl 1,0 mol.L^{-1} na proporção 1:25 [14,15].$

2.2.3. Densidade real, densidade aparente e porosidade

A densidade real depende da constituição do solo e varia pouco de um solo para outro, a determinação foi realizada segundo EMBRAPA [16]. Os solos foram secos a temperatura ambiente e pesados 20,0g em balão volumétrico de 50mL e o volume foi completado com álcool etílico com o auxílio da bureta. O cálculo da densidade real foi determinado a partir da expressão (1).

$$\mathbf{D}_{\mathbf{p}} = \mathbf{M}/(\mathbf{V}_{\mathbf{b}} - \mathbf{V}_{\mathbf{a}}) \quad (\mathbf{g}/\mathbf{m}\mathbf{L}) \tag{1}$$

Onde:

 D_p = Densidade real (g/mL) M = Massa da amostra (g) V_b = Volume o balão (mL) V_a = volume de álcool etílico gasto (mL)

A densidade aparente mede o grau de compactação do solo e foi determinada segundo EMBRAPA [16]. Foram pesados 35 mL da amostra de solo seco em uma proveta de 100mL,

a qual foi batida dez vezes sobre lençol de borracha de 5mm com uma altura de aproximadamente 10cm. Repetiu-se por mais duas vezes este procedimento até o nível da amostra atingir o traço de aferimento da proveta. O cálculo foi determinado segundo a expressão (2).

$$\mathbf{D}_{a} = \mathbf{M}_{a} / \mathbf{V}_{p} \ (\mathbf{g} / \mathbf{mL}) \tag{2}$$

Onde:

 D_a = Densidade aparente (g /mL) M_a = Massa do solo seco (g) V_p = Volume da proveta(mL)

A porosidade de uma amostra de solo expressa a medida do espaço poroso entre os grãos que formam o solo e foi determinada segundo EMBRAPA [16]. O cálculo da porosidade depende das densidades reais e a aparentes; esse cálculo foi determinado segundo a expressão (3).

$$P_{t}=100 (a - b) / a (\%)$$
(3)

Onde:

a = densidade real b = densidade aparente

2.3. Procedimento radioquímico para determinação de ²¹⁰Pb

O radionuclídeo ²¹⁰Pb foi determinado segundo Damatto [17]. Uma alíquota de 1,00g de cada amostra, em duplicata, foi dissolvida com ácidos minerais e H_2O_2 em digestor de micro-ondas e submetida ao procedimento radioquímico para determinação de ²¹⁰Pb.

As amostras dissolvidas foram avolumadas para 1 L em béquer de 2 L onde foram adicionados, carregadores de Pb^{2+} e Ba^{2+} , ácido cítrico 2 mol.L⁻¹ e indicador vermelho de metila. A solução foi agitada com agitador magnético e adicionou-se NH₄OH 25% até a viragem para o meio básico e levada a chapa aquecedora para aquecimento onde adicionou-se sob agitação H₂SO₄ 3 mol.L⁻¹.

O sobrenadante foi descartado e ao precipitado adicionou-se ácido nitrilo tri-acético (NTA) para dissolução do mesmo em meio NaOH 6 mol.L⁻¹. Após a dissolução adicionou-se (NH4)₂SO₄ (25 mg/mL) e ácido acético glacial para a precipitação e o Pb permanece em solução complexado com o NTA. O sobrenadante com o Pb complexado foi separado por centrifugação e adicionou-se a quente Na₂S 1 mol.L⁻¹, para precipitar o chumbo como sulfeto. O precipitado foi dissolvido a quente com ácido nítrico 50% e o pH da solução foi ajustado entre 4,5 e 5 com uma solução de acetato de amônio 40% . A solução foi aquecida e adicionou-se cromato de sódio, Na₂CrO₄ 30% para precipitação do chumbo como cromato. A solução foi filtrada à vácuo com papel de filtro e o rendimento químico foi determinado gravimetricamente.

A medida foi realizada em detector proporcional de fluxo gasoso de baixo background, marca Berthold, por 200 minutos após 10 dias da precipitação de ²¹⁰Pb como cromato. A concentração de ²¹⁰Pb foi determinada segundo a expressão (4).

$$A = \frac{R_a - R_0}{R_q \cdot E \cdot M \cdot (1 - e^{-\lambda t})} \quad (mBq \ g^{-1}) \tag{4}$$

Onde:

A = concentração de atividade da amostra em mBq g^{-1}

 $R_a = taxa$ de contagem total da amostra em cps

 $R_0 = taxa$ de contagem da radiação de fundo em cps

 $R_q = rendimento químico$

 $E = eficiência de contagem em cps dps^{-1}$

M = massa da amostra em g

t = tempo transcorrido entre a precipitação do PbCrO₄ e a contagem em dias

 λ = constante de desintegração do ²¹⁰Bi (0,183d⁻¹)

A radiação de fundo do equipamento de medida foi realizada fazendo uma medida com tempo de contagem igual da amostra, 200 minutos. O valor obtido para cada detector foi utilizado no cálculo da concentração de atividade do ²¹⁰Pb.

3. RESULTADOS E DISCUSSÃO

Na Tabela 2 são apresentados as datas das coletas, os índices pluviométricos (IP), mm, valores de pH, densidade real (Dr) e aparente (Da) g.mL⁻¹, porosidade %, composição granulométrica % e concentração de ²¹⁰Pb em mBq.g⁻¹.

	IP mm	рН			-						210
Data de coleta		KCl	CaCl ₂	H ₂ O	Dr g mI ⁻¹	Da g mL ⁻¹	Porosidade %	Areia %	Silte %	Argila %	²¹⁰ Pb mBa g ⁻¹
		1 mol.L ⁻¹	0,01 mol.L ⁻¹		5.IIII.	5.mL	,,,	, 0	, 0	70	mpd.8
04/08/14	35	6,86	6,58	7,20	2,38	1,11	53,2	64,2	8,9	26,6	138 ± 2
29/08/14		6,57	6,43	7,07	2,81	1,30	53,6	73,6	6,4	19,7	105 ± 1
12/09/14	70	7,05	6,54	6,69	2,41	1,21	49,6	70,6	4,4	20,3	144 ± 13
26/09/14	12	6,03	6,29	6,99	2,25	1,18	47,4	69,4	4,7	25,2	95 ± 9
10/10/14	22	5,14	6,09	6,24	2,47	1,21	51,1	75,1	4,2	18,6	94 ± 7
24/10/14	22	6,07	5,87	6,53	2,36	1,14	51,7	76,0	4,9	16,3	71 ± 1
07/11/14	264	5,98	5,95	6,97	2,47	1,12	54,7	69,4	11,2	19,2	74 ± 7
24/11/14	204	6,78	6,76	7,34	2,44	1,24	49,3	70,2	6,8	20,0	80 ± 9
08/12/14	202	5,90	5,94	6,89	2,22	1,18	47,0	74,0	8,6	13,4	86 ± 5
22/12/14	302	7,80	7,66	8,27	2,36	1,18	50,3	72,6	10,2	15,4	101 ± 11
09/01/15	207	5,87	6,17	6,61	2,41	1,13	53,2	74,8	8,6	16,2	79 ± 7
23/01/15	207	7,85	7,74	8,30	2,35	1,25	46,9	66,6	10,6	19,6	101 ± 11
06/02/15	225	6,01	6,44	6,26	2,33	1,32	43,3	67,6	10,0	18,0	64 ± 1
20/02/15	233	5,60	5,81	6,36	2,44	1,18	51,6	83,4	5,8	10,0	82 ± 6
08/03/15	206	5,79	5,80	6,53	2,37	1,21	48,9	79,2	7,0	12,4	74 ± 3
24/03/15		6,04	6,18	6,61	2,22	1,16	47,9	77,8	7,2	14,80	113 ± 13
13/04/15	5 40	5,77	5,81	6,66	2,45	1,24	49,2	71,0	8,2	17,00	67 ± 5
30/04/15	47	5,57	5,75	6,60	2,41	1,21	49,8	73,4	8,4	14,40	94 ± 3

Tabela 2: Data de coleta, índices pluviométricos (mm), pH em KCl 1,0 mol.L ⁻¹ , CaCl ₂ 0,01 mol.L ⁻¹ e H ₂ O superpura, densidade rea	l e
aparente, porosidade, composição granulométrica (% areia, % silte e % argila) e concentração de ²¹⁰ Pb (mBq.g ⁻¹)	

Na Fig. 1 são apresentados a composição granulométrica das amostras de solos coletada. Nestas amostras a porcentagem de areia variou de 64,2 a 83,4%, de silte variou de 4,2 a 11,2% e de argila variou de 10,0 a 26,6%. Segundo de Lepsch [15] os solos do presente trabalho podem ser classificados como franco-arenosos, em sua maioria maior porcentagem de areia.

Figura 1: Composição granulométrica das amostras de solo coletadas

Na Fig. 2 são apresentados os índices pluviométricos, IP, em mm, do período de estudo obtidos do Programa de Monitoração Radiológica Ambiental, PMRA, do IPEN [18].

Figura 2: Índices pluviométricos em mm do local onde foram coletados os solos.

Os meses que apresentaram maior IP foram os meses de novembro de 2014 e de janeiro a março de 2015, meses correspondentes ao fim da primavera e verão, caracterizando o clima temperado tropical da cidade de São Paulo.

Na Fig.3 é apresentada a correlação entre os valores de pH e os dos IP mensais do período estudado. Pode-se observar com os resultados obtidos um leve aumento do pH nos meses onde o IP foi maior, indicando uma provável lavagem da atmosfera pela chuva e assim

consequentemente um aumento na concentração de íons nas amostras de solo ocasionando o maior valor de pH. Os meses que apresentaram menores IP, também apresentaram menores valores de pH e praticamente constantes.

Figura 3: Índices pluviométricos e pH

Na Fig.4 é apresentada a correlação entre as concentrações de ²¹⁰Pb, mBq.g⁻¹, e os IP. Pode-se observar uma correlação inversa entre as concentrações e os IP, pois os maiores valores de concentração de ²¹⁰Pb foram obtidos nos meses de menores IP e os menores valores nos meses de maior IP.

Figura 4: Concentração de ²¹⁰Pb em mBq.g⁻¹ e índices pluviométricos

Nas Fig.5, Fig.6, Fig.7 e Fig.8 são apresentadas as correlações da concentração de ²¹⁰Pb com a porcentagem de silte + argila, densidade real, densidade aparente e pororsidade, respectivamente. As maiores concentrações de ²¹⁰Pb foram obtidas nas amostras que apresentaram maiores porcentagens de fração fina, na maioria das amostras, confirmando a afinidade de elementos metálicos pela fração fina do solo e nos meses do inverno, onde ocorreram os menores índices pluviométricos. Verificou-se também que as maiores concentrações de ²¹⁰Pb foram obtidas na maioria das amostras que apresentaram maiores de ²¹⁰Pb foram obtidas na maioria das amostras y la presentaram maiores concentrações de ²¹⁰Pb foram obtidas na maioria das amostras que apresentaram maiores valores de densidade real, aparente e porosidade.

Figura 5: Concentrações de ²¹⁰Pb e % Silte + Argila.

Figura 6: Concentrações de ²¹⁰Pb e densidade real

Figura 7: Concentração de ²¹⁰Pb e densidade aparente

Figura 8: Concentrações de ²¹⁰Pb em comparação com a porosidade

4. CONCLUSÕES

Neste trabalho foram apresentados resultados preliminares de concentração de ²¹⁰Pb medidos em amostras de solo coletadas quinzenalmente no campus do IPEN, de agosto de 2014 a abril de 2015.

As concentrações obtidas de ²¹⁰Pb variaram de 67 \pm 1 Bq/kg a 144 \pm 13 Bq/kg e apresentaram uma correlação direta, porém inversamente proporcional, com os índices pluviométricos medidos no mesmo período de estudo. As maiores concentrações foram obtidas no período do inverno e as menores na primavera, quando inicia o período chuvoso.

Verificou-se também que as maiores concentrações de ²¹⁰Pb foram obtidas nas amostras que apresentaram maiores porcentagens de fração fina, devido a afinidade de elementos metálicos pela fração fina do solo.

AGRADECIMENTOS

Bolsa de Iniciação Científica PROBIC - CNPq/CNEN nº 05/2014.

REFERÊNCIAS

- 1. R. Winkler, & G Rosner, "Seasonal and long-term variation of ²¹⁰Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany", *Sci. Total Environ.* **263**, pp 57-68 (2000).
- 2. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR *Sources and effects of ionizing radiation*, **1**, (2000).

3. J. M Smoak, W.S Moore, R.C. Thunell, T. J Shaw, "Comparison of ²³⁴Th, ²²⁸Th, and ²¹⁰Pb fluxes of major sediment components in the Guaymas Basin, Gulf of California". *Marine Chemistry*. **65**: pp 177-194. (1999).

4. G. Kim, L. Y Alleman, T.M. Church, "Atmospheric depositional fluxes of trace elements, ²¹⁰Pb, and ⁷Be to the Sargasso Sea". *Global Biogeochem. Cycles.* **13** (**4**): 1183-1192. (1999)

- 5. J. K Cochran, H Feng, D Amiel, A. Becck, "Natural radionuclides as tracers of coastal biogeochemical process". *J. Geoch. Exploration.* **88**: pp376-379 (2006).
- 6. G. A. Peck, & J. D. Smith, "Determination of ²¹⁰Po and ²¹⁰Pb in rainwater using measurements of ²¹⁰Po and ²¹⁰Bi", *Anal. Chim. Acta.* **422**: pp113-120 (2000).
- S. Caillet, P Arpagaus, F Monna; J.Dominik, "Factors controlling ⁷Be and ²¹⁰Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland". *J. Environ. Radioactivity.* 53: pp 241-256 (2001).
- 8. M. Baskaran, 2011. "Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb 210 fallout: a Review". *J. Environ. Radioactivity*. **102**: pp 500-513 (2011).
- R Fujiyoshi, T Yamaguchi, N. Takekoshi, K. Okamoto, T. Sumiyoshi, I. Kobal, J. Vaupotic, "Tracing depositional consequences of environmental radionuclides (¹³⁷Cs and ²¹⁰Pb) in Slovenian forest soils." *Cent. Eur. J. Geosci.* 3(3): pp 291-301, (2011).
- L Gaspar, A. Navas, J. Machin, D. E. Walling, "Using ²¹⁰Pbex measurements to quantify soil redistribution along two complex toposequences in Mediterranean agroecosystems, northen Spain". *Soil & Tillage Research*, **130**: pp81-90, (2013).
- S. R.Damatto, J. J Messias, B. P Mazzilli, "Seasonal variation of ²¹⁰Pb concentration measured in rainfall in São Paulo – Brazil". *International Topical Conference on Po and Radioactive Pb isotopes* - Sevilla – España – 26 to 28 October, (2009)
- 12. Resolução nº 344 de 25 de março de 2004 Publicada no DOU nº 087, de 07/05/2004, págs. 56-57.
- 13. S. R. Damatto, Radionuclídeos naturais das séries do ²³⁸U e ²³²Th, elementos traço e maiores determinados em perfis de sedimento da Baixada Santista para avaliação de áreas impactadas. Tese (Doutorado). Instituto de Pesquisas Energéticas e Nucleares, São Paulo (2010).
- 14. K Reichardt, & L. C Timm, Solo, Planta e Atmosfera. Conceitos, Processos e Aplicações – Manole, 2004. São Paulo, Brasil

- 15.I. F Lepsch. 19 lições de Pedologia. Oficina de Textos, 2011, São Paulo Brasil.
- 16. EMBRAPA. Manual de métodos de análise de solo. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Ministério da Agricultura e Abastecimento. 2ª ed. rev. atual. Ed. Embrapa, Rio de Janeiro, 1997.
- 17. S. R. Damatto, B. Mazzilli, A. Y. Sakamoto, D. I. T. Fávaro, "Recent sedimentation rates and trace elements determined in cores from Pantanal, Mato Grosso do Sul, Brasil" *In: 3rd International Nuclear Chemistry Congress*, Palermo - Itália (2011).
- Relatório PMRA Relatório de Avaliação do Programa de Monitoração Radiológica Ambiental do IPEN 2012. Relatórios do SGI. Sistema de Gestão Integrada do IPEN. São Paulo, 21/07/2013.