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a b s t r a c t

A two-tank multivariate loop was designed and built to support research related to instrumentation and
control, equipment and sensor monitoring. This test bed provides the framework necessary to investigate
and test control strategies and fault detection methods applicable to sensors, equipment, and actuators,
and was used to experimentally develop and demonstrate a fault-tolerant control strategy using six
correlated variables in a single-tank configuration. This work shows the feasibility of using data-based
empirical models to perform fault detection and substitute faulty measurements with predictions and to
perform control reconfiguration in the presence of actuator failure in a real system. These experiments
were particularly important because they offered the opportunity to prove that a system, such as the
multivariate control loop, could survive degraded conditions, provided the empirical models used were
accurate and representative of the process dynamics.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Several techniques for on-line monitoring of equipment and
systems in nuclear power plants are well established. Since the
early 1970s, numerous efforts have been made to detect and
identify anomalies and to provide alternative ways to measure
critical and non-critical operating parameters in power plants,
particularly reactor noise analysis which uses existing sensor
signals to detect incipient faults, measure sensor response time,
identify blockages in sensor lines, vibration of reactor internals,
imbalance in rotating machinery, etc. In 1992 an MIT report [1]
described the theoretical development and the evaluation via both
experiment and simulation of digital methods for the closed-loop
control. Signal validation and instrument fault detection was also
used in this work by means of a numerical technique called “parity
space approach” [2–5], which is based on simple algebraic projec-
tions and geometry. This method computes a residual vector that
is zero when no fault is present and non-zero otherwise. The
residual will also be different for different faults. In addition to
validating sensor readings, this methodology performs instrument
fault checks in which the weighting factor for each sensor is
adjusted in proportion to the frequency with which its read-
ings are judged to be valid. Thus, reliance on a failing sensor is

gradually reduced, thereby assuring a “bumpless” transition when
complete failure actually occurs. Examples of different techniques
in the literature range from using Principal Components Analysis
(PCA) [6–12] to Fuzzy Logic, Genetic Algorithm (GA) and Artificial
Neural Networks (ANN) [6], to data clustering [8] and other
residual generation approaches [13]. In many cases more than
one approach were used, sometimes combining several of such
approaches as tools to obtain residuals and/or control algorithms.
In some works, techniques such as ANN and Group Method
Data Handling (GMDH) were merged to form GMDH-Type Neural
Network Algorithms [14–17] to help predict values based on
historical data.

Such techniques evolved into on-line monitoring to track the
vibration of reactor internals, measure reactor stability, verify
overall plant thermal performance, leak detection, estimation of
remaining useful life of equipment, and others. Early detection of
the onset of equipment and instrument channel degradation and
failure can improve plant safety, prevent loss of operational
capability, reduce radiation exposure of plant personnel, enhance
plant control, and minimize repair time [18].

The development of an on-line approach for monitoring and
control with application to an experimental flow loop is described
in this work, corroborating results available in the literature
suggesting the applicability of such approach to operating plants
with appropriate data acquisition and analytical redundancy. The
approach uses empirical, data-based methods for characterizing
the relationship among a set of measurements as data sets often
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contain much more information than can be learned from just
looking at plots of those data. Models based on observed input/
output data can help us abstract and gain new information and
understanding from these data sets. They can also serve as
substitutes for more process-based models in applications where
computational speed is critical or where the underlying relation-
ships are poorly understood.

2. Description of the experimental flow control loop

The two-tank flow facility was constructed on a wheeled table-
like steel frame structure seven-foot long, four-foot wide and six-
foot high. This structure holds all sensors, piping, pump, sump tank,
aircraft aluminum table top, cables, control valves, manual valves,
connection boxes, power strips, and two tanks all of which can be
repositioned. Since about 80% of the piping used to build the loop is
made of Chlorinated Polyvinyl Chloride (CPVC) or PVC, union
connections were strategically distributed so any maintenance or

minor setup modification can easily be carried out. In Fig. 1 the final
layout with both acrylic tanks is shown.

Level control experiments utilize two similar acrylic tanks,
referred to as Tank 1 and Tank 2, respectively, and their dimen-
sions are 146 mm in diameter and 1 m long. A 102-l stainless steel
tank is installed underneath the table top to provide the necessary
water for the circuit.

Several sensors for process measurement are installed in the
loop: differential pressure transmitters, thermocouples, turbine
flow meters, orifice meters and signal conditioners.

In order to manipulate the water flowing in the loop, five
control valves are used: one at each tank inlet, one at each tank
exit, and one connecting the piping between the tanks. These
control valves have two components: an electric actuator and a
12.7 mm (½″) ball valve. Although not all five motor-operated
valves (MOV) are actually used for control purposes, these actua-
tors are manipulated via software and are responsible for opening
and closing the ball valves to regulate the flow according to the
experiment being carried out. The actuators are 120 VAC powered,
with input and output of 2–10 VDC and can be locally or remotely
operated, with a typical stroke time of 15 s (stroke time is the time
needed to move the valve from the fully closed to fully open
position, and conversely).

3. Description of the control loop devices and instrumentation

The two-tank loop was built primarily to provide the necessary
framework to develop research related to instrumentation and
control strategies, equipment and sensor monitoring, model-
predictive control, and the demonstration of fault detection and
fault-tolerant control strategy and reconfigurable control. With
such objectives in mind, a set of sensors and actuators were placed
in key positions throughout the loop to monitor and manipulate
the water flow circulating in the loop. Fig. 2 depicts a schematic of
this loop with low-pressure water circulation that is facilitated by
a fractional horsepower motor-driven pump.Fig. 1. Final layout of the control loop.
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Fig. 2. Schematic of the two-tank experimental control loop.
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The sensors are identified as follows:

LT-XX:Level transmitter
LC-XX:Level control
CV-XX: Control valve
FT-XX: Flow rate meter
V-XX: Manual valve
P-101: Centrifugal pump

The loop has a centrifugal pump, one stainless steel water
reservoir, two acrylic tanks, four flow meters, two level transmit-
ters, five motor-operated control valves (MOV), and three manual
valves. The piping is made of either CPVC schedule 80 or PVC, with
diameters varying from 38 mm to 12.7 mm (1–1/2″ to ½″) and
provides flexibility to accommodate minor design changes. A data
acquisition and control system developed especially for this loop is
used to monitor and control the loop by varying the position of
two control valves until a stationary flow throughout the system
as well as a pre-set water level in either one or both acrylic tanks is
attained. An MOV in between tanks provides the capability to
work with both acrylic tanks (connected or not) at the same time.

A bypass valve is provided to divert the excess water back to
the water reservoir and lower the pressure in the loop. The
maximum rated water flow is estimated to be around 2 l/s (32
GPM), provided the necessary pump pressure head is met. Though
water temperature is monitored, temperature control is not
performed but changes can be implemented for this purpose.
The 1.2 mwide, 2.1 m long and 1.8 m high steel frame supports the
equipment, up to a maximum load of approximately 360 kg.

4. Data acquisition system

In order to perform the various experiments using the loop, a
few human–machine software interfaces, called Virtual Instru-
ments (VIs), were developed using the National Instruments Lab-
VIEWs-based package and data acquisition (DAQ) hardware.
These VIs are capable of controlling the loop in both manual and
automatic modes while performing data acquisition, monitoring,
and logging the data in computer files for later use. Both software
and hardware used in the two-tank loop are discussed next.

Two different data acquisition (DAQ) cards are installed in the
personal computer used to run the loop, and are used for data
acquisition/control purposes, and both are manufactured by
National Instruments.

The first card is a 16-bit PCIe-6259 with 32 analog inputs and
four analog outputs channels. This is a fast card capable of
acquiring data at a speed of 1 MS/s (mega-samples per second)
for multi-channels (1.25 MS/s for one channel), and output update
speed of 2.86 MS/s. The second card is a 12-bit PCI-MIO-16E-4
(discontinued) now known as PCI-6040E with 16 analog inputs
and two analog outputs, capable of acquiring data at 500 kS/s (for
one channel) or 250 kS/s for multiple channels, and output update
speed of 1 MS/s.

Three NI SCB-68 patch panels are used to connect the data
acquisition cards to the various sensors and actuators installed in
the loop. The NI SCB-68 is a shielded I/O connector block for
interfacing I/O signals to plug-in data acquisition (DAQ) devices
with 68-pin connectors. Combined with the shielded cables, the
SCB-68 provides rugged, very low-noise signal termination, and it
has an onboard cold-junction compensation sensor for low-cost

Fig. 3. Control VI front panel showing the manual control option.

S.R.P. Perillo et al. / ISA Transactions 53 (2014) 568–577570



thermocouple measurements. The analog outputs from these
panels are used to control the MOVs through a hand-made
CPVC box.

Due to the higher sampling rate speed of the PCIe-6259 card
and the greater number of input channels available, it was selected
to be used as the hardware interface controller with the loop,
whereas the second card, the PCI-MIO-16E-4 is basically used for
data acquisition monitoring and data logging, though it is also
used to open or close the two control valves installed at the exit of
the tanks.

The first VI runs on the fastest DAQ and it holds all the control
logic, control options (manual or automatic) for either Tank 1, Tank
2, both tanks operating together, tanks connected or disconnected,
set point control options (manual or pre-set profile), controlled
fault insertion (bias or drift), set point rate control, proportional-
integral (PI) control gains for each tank separately and/or con-
nected and gain optimization options using the auto-tune feature
provided by LabVIEW, and many other functions. It also contains
the MATLAB m-file code that provides the expected values used in
the fault detection feature when running in Tank 1-only mode. The
front panel automatically changes its appearance based on the
configuration of the experiment being performed. Two different
front panels are shown in Figs. 3 and 4, respectively. The first panel
in Fig. 4 shows the typical configuration when the loop is running
in manual control using both tanks, either disconnected or not. A
push button located right underneath the MOV manual control
input boxes opens or closes the MOV connecting both tanks. A
second panel is shown in Fig. 4 with the typical configuration
when the loop is running in automatic control using PI and Tank 2.
Note that all controls related to Tank 1 are no longer present.

The VIs developed to monitor, control and store data acquired
from the loop are based on National Instruments LabVIEW, which
is a graphical programming environment used to develop sophis-
ticated measurement, test, and control systems using intuitive
graphical icons and wires that resemble a flowchart. Two main VIs
were developed for the purpose of monitoring the dynamic
condition by showing the current engineering values of all
significant variables in SI (International System of Units), storing
the data and controlling the two-tank loop and are described next.

The second VI runs on the second, slower DAQ, and serves a
dual purpose: it is used for monitoring the loop dynamic condition
by showing the current engineering values of all significant
variables and comparing some of these variables to the expected
values (for one single tank) generated in the first VI, and is used to
acquire and store the data files on the computer for later use. The
current file format used for saving the files is ASCII, which can be
imported from and read by a plethora of different software
packages. All flow rate equations from turbine and orifice flow
meters and unit conversions are located in this VI. All main loop
values are monitored and are shown in the main VI panel depicted
in Fig. 5.

5. Analytical tools for developing the empirical models

5.1. Principal component analysis

Principal Component Analysis (PCA) is a multivariate method
used to capture the relationships in the data while reducing the
dimensionality of an input space without losing a significant

Fig. 4. Control VI front panel showing the automatic control for Tank 2.
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amount of information (variability). The method also makes the
transformed vectors orthogonal and uncorrelated and is particu-
larly useful for analysis of ill-conditioned data; hence such
transformed vectors can be used by regression techniques without
having the problems of co-linearity. A lower dimensional input
space will also usually reduce the time necessary to train a data-
based model and the reduced noise will improve the mapping. The
objective of PCA is to reduce the dimensionality and preserve as
much of the relevant information as possible. PCA can also be
thought of as a method of preprocessing data to extract uncorre-
lated features from the data. Further details can be found in
[18,19].

5.2. Auto-associative kernel regression (AAKR)

AAKR is a non-parametric, empirical modeling technique that
uses historical, fault-free observations and can be used to correct
any errors present in current observations. Further details can be
found in [20].

5.3. Sequential probability ratio test (SPRT)

The method chosen to detect faults in sensors and actuators in
this work was the SPRT, and is based on the assumption that the
residuals of a model are normally distributed and uncorrelated.
This method, which was originally developed by Wald [21] and
applied by many investigators [20,22], detects changes in signal
properties, such as mean and standard deviation of a signal, and is
used to identify drifts and changes in noise levels, while minimiz-
ing the probability of false alarms.

When performing a hypothesis test between two point hypoth-
eses, the likelihood-ratio test is the most powerful test of size α for
a threshold η. So, when

H0 : θ¼ θ0, and H0 : θ¼ θ1 the likelihood ratio test rejects the
null hypothesis H0 when,

ΛðxÞ ¼ Lðθ0 jxÞ
Lðθ1 jxÞ

rη where PðΛðxÞrηjH0Þ ¼ α ð1Þ

Given the likelihood equation P with residuals sk at time k and
mean mi and variance si for hypothesis I, the likelihood ratio is

λk ¼
P1ðsk;m1;s1Þ
P0ðsk;m0;s0Þ

ð2Þ

The log likelihood ratio becomes

λk ¼ lnðλkÞ ¼ ln
P1ðsk;m1;s1Þ
P0ðsk;m0;s0Þ

� �
¼ ∑

k

i ¼ 1
ln

P1ðsi;m1;s1Þ
P0ðsi;m0;s0Þ

� �
ð3Þ

This can be written in the recurrent form as

λk ¼ λk�1þ ln
P1ðsi;m1;s1Þ
P0ðsi;m0;s0Þ

� �
ð4Þ

Assuming Gaussian distribution of the residual sequence {sk},
Eq. (4) is written as

λk ¼ λk�1þ ln

1ffiffiffiffiffiffiffiffi
2πs2

1

p exp �ðsk �m1Þ2
2s2

1

h i

1ffiffiffiffiffiffiffiffi
2πs2

0

p exp �ðsk �m0Þ2
2s2

0

h i
2
64

3
75 ð5Þ

Fig. 5. Data acquisition main panel.
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This facilitates expressing Eq. (5) in the following algebraic
form:

λk ¼ λk�1þ ln
s1

s0

� �
þðsk�m0Þ2

2s2
0

�ðsk�m1Þ2
2s2

1

ð6Þ

The residual distributions can be assumed to be normally
distributed with zero mean and same variance, so Eq. (6) becomes

λk ¼ λk�1þ
m1

s2 sk�
m1

2

� �
ð7Þ

Using Wald0s two-sided test A and B are defined as

A¼ ln
β

1�α

� �
and B¼ ln

1�β

α

� �
ð8Þ

where:
α is the probability of false alarm, and should be kept small to

avoid a Type I error, or false positive.
β is the probability of missing an alarm for a Type II error, or

false negative.
The status of the equipment being monitored is determined by

a comparison of A and B with the log likelihood ratio, i.e.:
For λmoA the sensor can be considered in good condition.
For λm4B the sensor can be considered degraded.
As depicted in Fig. 6, rather than computing a new mean and

variance at every new sample acquired, the SPRT monitors the
equipment0s performance by processing the residuals in a sequen-
tial fashion. The residual signals, which are the differences
between the sensor measurements and the estimates from the
model, are used to generate a likelihood ratio (ratio of joint
probability density of residuals) based on the statistical properties
of the incoming data compared with the statistics in the model. In
other words, based on the statistics of the new data coming from

the equipment being monitored, the method is capable of detect-
ing differences in such statistical properties and inform if the new
data comes from a similar statistical distribution or not. This
process of comparing the model predictions with values coming
from the equipment is depicted in Fig. 7, where the likelihood
ratio is evaluated by the SPRT threshold for the specified compo-
nent to make a logical decision concerning its status.

5.4. Process and equipment monitoring (PEM) toolbox

On-line monitoring commonly uses an auto-associative empiri-
cal modeling architecture to assess equipment performance. An
auto-associative architecture predicts a group of correct sensor
values when supplied a group of sensor values that is usually
corrupted with process and instrument noise, and could also
contain faults such as sensor drift or complete failure. The PEM
Toolbox [23,24], which was developed at The University of
Tennessee, is a set of MATLAB based tools, which have been
developed to support the design of process and equipment
condition monitoring systems. Its purpose is to provide the
necessary tools so that different empirical modeling and uncer-
tainty estimation methods may be easily investigated and com-
pared. In this research several PEM toolbox functions were used to
obtain the empirical models necessary to perform fault detection
using the sensors and actuators measurements installed in the
loop, and as such, some stand-alone, low-level PEM-based func-
tions are currently implemented in the data acquisition VI to
monitor and compare measurements and predictions.

6. Data generation and model development

A 2.5 h long dataset with level set points varying from 300mmH2O
to 600 mmH2O, containing 10 variables for a single-tank configuration
was acquired and used to obtain the empirical models, based on the
PCA findings. Each model used variables that are correlated with each
other based on their loadings, but making sure at least one not-so-
much correlated variable was included in the model to provide the
necessary robustness to the fault detection routine currently incorpo-
rated in the data acquisition VIs, although risking an increase in model
bias. This trade-off is particularly important in obtaining models that
will be used for fault detection. For instance, the outlet flow rate is
highly correlated with the water level in the tank, and this variable
alone would be enough in the model to predict water level. But if the
water level is to be inferred using faulty outlet flow rate sensor
readings the predictions would be incorrect, but by including the inlet
flow rate readings such one-on-one variable dependency can be
diminished, hence adding some robustness to the model.

Three different models were investigated for each of the six
variables: linear regression, kernel regression and AAKR, and the
final models implemented in the routine responsible for the fault
detection were chosen based upon their Mean Absolute PercentFig. 6. The SPRT is based on comparing statistical differences.

Fig. 7. Diagram showing the implementation of SPRT.
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Error (MAPE), defined as

MAPE¼ 1
n

∑
n

i ¼ 1

ActualðiÞ�PredictedðiÞ
ActualðiÞ

				
				 ð9Þ

where n is the number of fitted points and i corresponds to the
i-th value

Fig. 8 shows MAPE values for all three different modeling
methods investigated: linear and kernel regressions, and AAKR.
In three of the cases, inlet flow rate control and control valve
feedback signals, the regression models performed just as well as
the AAKR models, while linear regression worked well for four
variables, outperforming both AAKR and linear. In the case of the
inlet flow rate the AAKR model outperformed the other two
models, in great part due to non-linearity caused by the control
valve hysteresis. All bypass models presented the lowest MAPE of
all, with less than 0.5%. In this case the linear model was chosen
for being the least complex model of all three. In conclusion, five
linear regression and one AAKR models were chosen to be used to
perform the predictions and fault detection.

After the empirical models were obtained they were imple-
mented in the data acquisition VI and a different dataset was
acquired using the same set points as the original dataset used to
obtain the models. The new measurements were used as queries
to the models, and the results comparing the predicted values
with the new query are shown in Figs. 9–12. Noteworthy are the
level predictions in Fig. 10 with an average absolute deviation from
measured values of about 30 mmH2O, and maximum of
40 mmH2O, and the tank outlet flow rate with an average devia-
tion of about 3�10�3 l/s. Bypass predictions deviations were also
very low around 2% of maximum flow rate (0.92 l/s). The inlet flow
rate showed a high absolute difference of about 26% or 0.04 l/s
with maximum flow rate of around 0.152 l/s, greatly due to the
control valve non-linearity.

7. Fault detection and measurement substitution

The water level in the tank is measured by a pressure sensor
installed at the bottom of the tank and is regulated by varying the
volume of water entering and exiting the tank at any given time.
By default and under normal operation, the tank exit control
valve is left open so that the inlet flow rate control valve is
fully responsible for controlling the water level in the tank and
any undue changes in the level measurement affect the PI
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Fig. 8. MAPE for linear regression, kernel regression, and AAKR models.
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Fig. 9. Measured water level versus predicted values.
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Fig. 10. Measured outlet flow rate versus predicted values.
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Fig. 11. Measured bypass flow rate versus predicted values.
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(Proportional-Integral) controller output signal sent to the control
valve. Hence a 2 in 1 experiment was performed to test the fault
detection capability and faulty measurement substitution by first
adding a positive drift of 50 mm-H2O over 3 min to the water level
measurement sensor and changing the level set point thereafter.

With empirical models and SPRT continuously running and
monitoring each acquired level measurement, and comparing its
value to predicted values it was possible to identify each measure-
ment as belonging to either a faulty or a non-faulty condition.
When the residuals between prediction and measurement
exceeded a pre-determined threshold, based on the statistical
properties of the dataset used to obtain each of the empirical
models, the SPRT flagged that measurement, indicating a faulty
condition. Once the faulty condition was detected, the faulty
measurements used as inputs to both controller and empirical
models were automatically substituted with predicted values
generated by the level model alone. However, shortly after the
faulty measurements were substituted with predictions, the
empirical models misidentified the new situation as being non-
faulty and switched back to the faulty measurements coming from
the sensor. This situation caused the system to keep switching
back and forth, oscillating between faulty and non-faulty modes.
To avoid such a problem, a “latch-on” control was added to the
fault detection routine, keeping the system from going back to
normal condition after identifying and replacing the faulty
measurements.

The results from the experiment are shown in Fig. 13. The
dotted line at the start of the experiment at steady state are
predictions being provided by the fault detection module, and
measurements substituted with predictions are shown in thick
solid line after a faulty condition was identified. In this experi-
ment, once the difference between measured and predicted values
reached around 18 mmH2O, the level SPRT triggered changing
from normal to faulty condition (Fig. 14), causing measured values
to be substituted with predicted values, therefore isolating the
faulty sensor from the loop. The outlet flow rate model was also
able to detect the fault a few seconds later, but not the inlet flow
rate until later in the experiment. The controller had difficulties
using the prediction values, in large part due to how both VIs were
set up and data were transferred between them; but once the PI
gains were tuned, the controller was able to successfully change
the water level from 600 to 300 mmH2O, although with
some performance degradation, showing the applicability of this

method for slow-changing processes. Fig. 15 shows the inlet flow
rate valve position (0 V closed and 7 V fully open).

It is important to acknowledge that, since the multivariate loop
is an open process, meaning the water inventory in the water
reservoir varies over time due to small leaks and evaporation, the
empirical models were obtained under well-controlled conditions,
and are valid only within the range of operation the data was
acquired. Any significant deviations from such conditions will
cause the predictions to diverge from measurements, causing the
fault detection routine developed to misidentify the measure-
ments as coming from a faulty condition.

This experiment involved detecting a fault in the water level
due to a fault in the flow rate control valve and automatically open
the valve connecting both tanks while switching the control action
to the second tank inlet control valve, therefore sending the error
difference signal between set point and measured water level to
the second tank inlet flow rate controller and have it control the
water level in the first tank by varying its own level.

Initiating the experiment, the single-tank configuration was run-
ning around steady state at 500 mmH2O, and at a certain point in
time the control output was overridden by a 4.5 V signal sent to the
control valve, causing the water level to deviate from the set point.
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Fig. 13. Faulty level measurement substitution.
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Fig. 12. Measured inlet flow rate versus predicted values.
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8. Application of reconfigurable control to the flow loop

With the control valve stuck at 4.5 V there was not an initial
increase in the water level as can be seen in Fig. 16. The sharp drop
in level is due to the connection between tanks being opened with
tank 2 empty. The water level measurements with the water level
in tank 1 showed a 10 mmH2O average overshoot with respect to
the set point, but still presenting the oscillating condition around
set point, with 140 s cycles, the same occurring with the tank
2 level measurements. Since the departure from normal condition
started at the same voltage needed to achieve 500 mmH2O in the
tank, the inlet flow rate model took 60 s longer and it flagged the
faulty condition when the difference between measured and
predicted values reached 22 mmH2O, compared to the 20 s needed
by the level, bypass and outlet flow rate to detect the same fault.

About 10 s after the fault was introduced (logic 10 out of 10),
the SPRT flagged the control output as being faulty and immedi-
ately opened the control valve that connects both tanks, while at
the same time opened both inlet and outlet flow rate control
valves to the second tank and transferred the control from the first
to the second tank.

9. Concluding remarks

The objective of this work and development was to show the
feasibility of using fault detection using data-based empirical
models, fault identification, and automated sensor replacement
to substitute faulty measurements with predictions and perform
control reconfiguration in the presence of actuator failure in a real
system. For this purpose a multivariate loop was used in single-
tank configuration where six empirical models were developed.
Level measurements were successfully substituted with predic-
tions and provided the system the necessary flexibility to continue
operation even under degraded conditions, thus offering surviva-
bility of the system and the time necessary to perform corrective
procedures, should that be the necessary. These experiments were
particularly important because they offered the opportunity to
prove that a system, such as the multivariate control loop can
survive degraded circumstances, provided the empirical models
used are accurate and representative of the system dynamics.

Simple variable measurement substitution, not involving con-
trol, proved to be a straightforward approach, but special attention
was needed to make sure the fault detection system latched on
and did not default to normal condition. However, in the second
scenario where the variable measurements were used in the
single-tank control logic configuration, the time it took for the
fault to be detected depended not only on variable correlation but
also on the severity of the fault. In addition, some operational
peculiarities, such as having dead-band implemented in the water
level error signal sent to the PI controller and high-speed rate
control loop (2.5 kHz) using model predictions generated at much
lower rate (1 Hz) prevented the controller output from adjusting
the inlet flow rate control valve faster. In this case the faulty level
measurement substitution caused some control instabilities,
which required controller re-tuning; but in the end the single-
tank was successfully controlled, as the results have shown, with
the water level closely following the set points changes. Though
this is a slow-transient, non-critical safety system, the important
point in this demonstration was to show that a system could have
some level of survivability under degraded conditions, provided
there is enough analytical and/or physical redundancy. It is
important to keep in mind that other safety critical control
systems present in airplanes, spacecraft, ships, robots, etc., do
have the necessary (hardware) control redundancy to provide
them with means to survive system faults.

An important fact to be aware of when using empirical models
in real systems, such as the single-tank experimental loop, is that
some of the solutions presented here are system/fault dependent
and appropriate fault detection techniques such as expert systems
need to be employed to properly identify fault scenarios in order
to select the appropriate solution.
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