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Abstract Yttrium-doped barium zirconate (BZY), one of

the protonic conductors considered to be used as solid

electrolyte in solid oxide fuel cells (SOFC) operating at

temperatures lower than the one found in conventional

oxide-ion SOFCs, still presents some challenges to reach

high density and high electrical conductivity: the difficulty

to sinter at temperatures well below its melting point and

the blocking of the conducting species at the grain

boundaries. We describe an experimental sequence to

prepare powders and to obtain highly dense BZY ceramic

pellets with enhanced electrical conductivity, using either

phosphor pentoxide (P2O5), boron oxide (B2O3) or zinc

oxide (ZnO) as sintering aid. The reactions leading to

sintering ceramic pellets with densities higher than 94% of

the theoretical density and improved electrical performance

are monitored by thermal analyses. BZY with the addition

of 5 mass% P2O5 or 2 mass% ZnO shows a tenfold

enhancement of the electrical conductivity.

Keywords Thermo-gravimetry � Thermo-dilatometry �
Barium zirconate � Liquid-phase sintering

Introduction

Ceramic proton conductors have been proposed as poten-

tial materials to be used in many diverse applications in

several industrial processes, mainly in hydrogen separation

membranes, hydrogen sensors for process control and

safety monitoring, and also as solid electrolytes in solid

oxide fuel–electrolysis cells (SOF-EC) for alternative

production of electrical energy from chemical energy

[1–7]. Actual technological devices use cubic yttrium-sta-

bilized zirconia (YSZ) as the best solid electrolyte for

application in SOFC devices [8] operating at relatively

high temperatures (900–1000 �C). Lowering that operation

temperature requires solid electrolytes with enhanced

electrical conductivity. Yttrium-doped barium zirconate

(BZY) ceramic protonic conductor has been proposed as

candidate for SOFCs operating at temperatures lower than

those used in SOFC devices with YSZ as solid electrolyte

[9–13]. Even though its proton conductivity is higher than

the oxide-ion conductivity of YSZ, high sintering temper-

ature to obtain high density and blocking of charge carriers

at the grain boundaries are the main problems to be solved.

Usually very high temperatures are required to produce

dense electrolytes [14–16]. A recent review points out to

the advantages of nanosized perovskites over their bulk

forms, leading to reduced grain boundary resistivity [17].

The importance of using clean environment to process

these nanosized perovskites was recently reported [18].

Besides those problems, after finding a way to produce

dense pellets with high proton conductivity, keeping the

required stoichiometry is a challenge because barium loss

upon heating should be avoided [19]. There are many

reports on low-temperature sintering of these compounds

either by the chemical synthesis of sinter-active powders

by the use of sintering aids or by applying special sintering

techniques [20–32]. We report here a series of experiments

on BZY compounds, synthesized by the low-cost mixture

of oxides technique, and sintered using phosphor pentox-

ide, a powerful dehydrating agent that melts at 340 �C and

sublimes at 360 �C, as sintering aid. The main idea for
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using P2O5 was to withdraw water molecules attached to

the barium zirconate ceramic particles before sintering,

which might be responsible for the formation of hard

particle agglomerates [18, 33], which impedes densifica-

tion. The increase in the shrinkage level promoted by

adding phosphor pentoxide was impressive. The enhance-

ment of the densification of pure barium zirconate upon

phosphor pentoxide addition has been reported [34]. Here

is reported the densification, the shrinkage behavior and the

electrical properties of BZY with the addition of P2O5. The

blocking of protons at the intergranular regions, ascribed to

space charge at the grain boundaries [35], is probably

inhibited by the hydrating reaction of phosphor pentoxide

with chemical species at the grain boundary region.

Looking for low-temperature sintering and improvement

on the protonic conductivity, additional results are here

reported on the use of B2O3, which might act in a liquid-

phase sintering mechanism (its melting point is only

450 �C) and ZnO, already reported as sintering aid to BZY

[36–39]. The main effect of 4 mol% ZnO addition was to

lower the sintering temperature from 1700 to 1300 �C,

probably by volatilization of the eutectic BaO.ZnO at that

temperature and to improve densification up to 98.5% of

the theoretical density. B2O3 has been used as sintering aid

in polycrystalline ionic conductors [40, 41] and was found

to destabilize (cubic to monoclinic) YSZ and 10Sc1CeSZ

(ZrO2:10 mol% Sc2O3–1 mol% CeO2) [42]. Thermo-

gravimetric and differential thermal analyses, along with

collecting mass spectrometry data, were performed in BCY

compounds without sintering aids looking for conversion

of barium cerate to barium carbonate and barium hydroxide

[43]. There is no report on the use of B2O3 as sintering aid

to BZY protonic conductors. The main purpose of this

report is to carry out detailed analyses by thermo-analytical

techniques of the use of three sintering aids envisaging the

production of BZY ceramic pellets dense and with

improved electrical properties.

Experimental

BaZr0.8Y0.2O3-d compounds were synthesized by solid-

state reaction of stoichiometric amounts of BaO, ZrO2 and

Y2O3 (all from Alfa Aesar, 99.9%) following the proce-

dure: (1) homogenizing 10 g of the mixture in an agate

mortar, (2) calcining in air at 1250 �C for 1 h, (3)

homogenizing again, (4) grinding the mixture in an attritor

mill with 60 mL of Tosoh Y-TZP (ZrO2:3 mol% Y2O3)

2-mm-diameter grinding medium and 30 mL ethanol for

25 min at 500 rpm, (5) collecting the powder suspension

(finer particles) with a fine sieve and (6) drying that sus-

pension at 100 �C overnight. These powders are referred as

‘‘as prepared’’. To improve densification, the powders were

uniaxially pressed at 100 MPa, sintered at 1500 �C for 4 h,

crushed and submitted again to attrition milling. This

procedure was repeated twice to ensure homogenization

and single crystallographic phase. These powders are

referred as ‘‘attrition-milled powders’’. The distribution of

particle size was evaluated at room temperature with 1 g of

powder in a solution of water and sodium pyrophosphate

ultrasonically dispersed (Vibra-Cell Sonics & Materials,

5 min) in a granulometer Cilas 1064.

P2O5, ZnO and B2O3 (all from Alfa Aesar) additions in

the 1–5 mass% range were carried out according to the

following procedure: (1) mixing the attrition-milled BZY

powders with the calculated stoichiometric amounts of

P2O5, ZnO or B2O3 with 30 mL acetone, (2) mixing and

drying the mixture on a hot plate at 100 �C, (3) uniaxially

and isostatically pressing approximately 600 mg at 100 and

200 MPa, respectively, (4) inserting in a furnace kept at

100 �C and (5) sintering at 1550 �C for 4 h with a 2 �C
min-1 heating rate and 10 �C min-1 cooling rate in a

Zircar furnace.

The evolution of the reaction of BaZr0.8Y0.2O3-d with

the additives was monitored by thermo-gravimetric (TG)

and differential thermal (DTA) analyses in a STA 409E

Netzsch equipment with a flow of 5 L min-1 synthetic air,

a-alumina as reference and 10 �C min-1 heating and

cooling rates. The collected data were processed with the

Netzsch Proteus� software for evaluation of peak temper-

ature and area, mass loss, besides smoothing noisy raw

data.

The thermo-dilatometric analyses were carried out in an

1161 Anter vertical dilatometer in the RT-1500–200 �C
range in air with 10 �C min-1 heating rate. Typical sam-

ples were uniaxially (10 MPa) and isostatic (30 MPa)

pressed cylindrical pellets with dimensions 5 mm diameter

and 5 mm thickness.

Geometric and Archimedes apparent densities were

evaluated, the latter by using kerosene as liquid medium

[44] due to the hygroscopic nature of BZY.

The cubic perovskite phase was evaluated by X-ray

diffraction in a Bruker-AXS D8 Advance diffractometer

with h–2h Bragg–Brentano configuration with CuKa radia-

tion with Ni filter, 40 kV–40 mA power, in the 10�–90� 2h
range, 0.05� step size and 5 s counting time per step.

Impedance spectroscopy measurements were taken in a

two-electrode cell at selected temperatures in the 400–

700 �C range using a Hewlett Packard 4192A Impedance

Analyzer connected to a model 362 Hewlett Packard

Controller, in the f = 5 Hz–13 MHz frequency range in

sintered cylindrical pellets with parallel surfaces coated

with silver electrodes. An Inconel 600 sample chamber

holding 3 specimens with platinum leads and a K-type

thermocouple was used inside a programmable furnace.

A special software was used to collect and analyze the
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[-Im Z(f) 9 Re Z(f)] data [45], where Im Z and Re Z are

the imaginary and the real components, respectively, of the

impedance, Eq. 1 [46]. The component values were nor-

malized according to the geometrical factor (sectional area-

to-thickness ratio) of the sintered pellets.

Zðf Þ ¼ Re Zðf Þ þ iIm Zðf Þ ð1Þ

SEM analyses were performed in a Inspect F50 FEI

scanning electron microscope.

Results and discussion

Synthesis of BaZr0.8Y0.2O32d

Figure 1 shows the particle size distribution of BaZr0.92-

Y0.08O3-d powders prepared by solid-state reaction and the

effect of attrition milling.

The distribution of the as-prepared powders (Fig. 1a) is

bimodal, centered at 10.5 and 80 lm. After milling in the

attritor, the distribution (Fig. 1b) approaches to mono-

modal centered at *38 lm.

The X-ray diffraction patterns of BaZr0.8Y0.2O3-d

compounds, prepared by solid-state reaction of BaCO3,

ZrO2 and Y2O3, are shown in Fig. 2. Data were collected

after the first, the second and the third sintering procedures

at 1500 �C for 4 h with intermediate grinding. The triple

procedure was performed to assure a high homogeneity of

the powder as the X-ray penetration into the specimen

under X-ray diffraction analysis is lower than the powder

average particle size.

All patterns show the perovskite cubic phase, depicted at

the bottom in the same figure, with the nine main reflec-

tions indicated by the Miller indexes (JCPDS file #6-399)

at the top of the figure.

Figure 3 shows the results of the TG and DTA of the

stoichiometric mixture of barium, zirconium and yttrium

oxides. The total mass loss is approximately 17.4% in three

temperature ranges: from room temperature to approxi-

mately 200 �C, due to removal of adsorbed water and to

the decomposition of barium hydroxide originated from the

water adsorption after handling at room temperature the

precursor barium oxide. The endothermic peak at approx-

imately 130 �C is due to that decomposition. The

exothermic peak at approximately 370 �C is probable due

to dehydration of the compound, as reported after high-

temperature X-ray diffraction and thermo-mechanical

experiments on BZY [47]. The second mass loss in the

600–800 �C range is due to the decomposition of residual

barium carbonate, produced by the exposition of barium

oxide to ambient carbon dioxide [47, 48]. The third mass

loss in the 1000–1300 �C range is assigned to barium oxide

evaporation [Alfa Aesar 2010 catalogue]. These results
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Fig. 1 Distribution of particle size of BaZr0.92Y0.08O3-d prepared by

the mixing of oxides technique: a as synthesized, b after attrition

milling
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Fig. 2 X-ray diffraction patterns of BaZr0.8Y0.2O3-d ceramic pow-

ders prepared by mixing and heat treating a mixture of zirconium,

yttrium and barium oxides. Effect of sequential milling–sintering

procedure. Miller indices on top
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show that the temperature to complete the reaction of

formation of the BaZr0.8Y0.2O3-d compound is approxi-

mately 1300 �C.

Figure 4 shows the X-ray diffraction pattern of

BaZr0.92Y0.2O3-d surface of pellets sintered at 1550 �C for

4 h using BZY powders processed three times at 1500 �C
for 4 h (Fig. 2) and, for comparison purposes, the JCPDS

6-399 file. The sintered pellets have the perovskite cubic

crystalline structure.

Figure 5 shows the images of the fracture surfaces of

BaZr0.8Y0.2O3-d pellets sintered at 1550 �C for 4 h. Fig-

ure 5a–c corresponds to pellets prepared with powders

manually mixed, pressed and sintered. The other three

micrographs (Fig. 5d–f) correspond to pellets prepared

with powders after comminuting by attrition milling.

All images show that the pellets have high porosity,

which is a characteristic of these compounds when sintered

at that temperature, without liquid-phase sintering aids.

There are differences in shape and size of the particles,

depending on the preparation route. Powders processed in

the attritor show less rounded shapes, reduction in open

porosity, but larger agglomerates probably due to an

increase in temperature during the high-energy milling

process, known to produce hard agglomerates.

Sintering aid: P2O5

The reaction of BZY with P2O5 was monitored by TG

analysis of 0.95 BZY ? 0.05 P2O5. The result is shown in

Fig. 6.

The total mass loss reaction is completed at approxi-

mately 1000 �C. The loss up to 400 �C is due to release of

adsorbed and structural water [47], at 340–360 �C due to
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Fig. 4 X-ray diffraction patterns of sintered BaZr0.92Y0.08O3-d pellet
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melting and evaporation of P2O5 and afterward to the

decomposition of remaining barium carbonate resulting

from the synthesis of BZY in non-controlled atmosphere

(in air). The total mass loss is approximately 5%, part due

to water and the rest to P2O5 added to BZY. A further 1% is

lost upon cooling down to 200 �C due to reaction of barium

with CO2 and O2 of the atmosphere.

The next three figures (Figs. 7–9) show the monitoring

of the shrinkage level of pressed pellets of BZY with 1, 2

and 5 mass% P2O5, respectively. The mass loss evaluated

by TG is also shown.

In all these figures, the mass loss corresponds to

volatilization of P2O5. Moreover, carbon oxide and water,

known to easily be adsorbed at BZY compounds, are also

thermally removed. Interesting are the results on the

shrinking upon heating. Shrinkage as well as expansion

occurs, depending on the amount of phosphor pentoxide

addition. The final attained shrinkage level is 1.75, 3.0 and

6.5% for 1, 2 and 5 mass% P2O5 addition, respectively. The

enhancement of sintering with that additive is probably due

to liquid-phase sintering: Melting of P2O5 might wet the

BZY particles which by subsequent heating might be

removed from the specimens causing pore elimination by

capillarity.

Figure 10 shows results of thermo-dilatometric mea-

surements on BaZr0.8Y0.2O3-d with and without the addi-

tion of P2O5. The dependence of the degree of final

shrinkage on the P2O5 content is also shown (inset).

Apparently the larger is the amount of the sintering aid,

the higher is the shrinkage effect for contents larger

than *2.5 mass%.
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Figure 11 shows impedance spectroscopy diagrams

measured at 600 �C of BaZr0.8Y0.2O3-d sintered without

and with 5 mass% P2O5. The decrease in the electrical

resistance is remarkable, showing a full suppression of the

grain boundary blocking of charge carriers, an indication

that melted P2O5 reacts at the space charge layer, removing

the species responsible for the blocking of protons at these

interfaces. The total resistivity decreases from 345 to

31.6 kX cm.

Sintering aid: B2O3

Figure 12 shows the results of the X-ray diffraction anal-

ysis of BaZr0.8Y0.2O3-d without and with the addition of 1,

2 and 5 mass% B2O3 along with the main reflection lines of

BaZrO3, JCPDS 6-399 file.

The diffraction patterns show the BZY pellets sintered

with B2O3 addition present cubic perovskite single phase,

characteristic of BaZrO3 compounds, similar to the speci-

mens sintered with P2O5 addition.

Figure 13 shows the impedance diagrams measured at

600 �C of BaZr0.8Y0.2O3-d pellets sintered at 1500 �C
without and with the addition of B2O3. The diagrams

consist of one semicircle due to contribution to the total

electrical resistivity, including bulk and interfaces, mainly

grain boundaries. The enhancement of the electrical con-

ductivity is nearly a tenfold increase: 2.9 lS cm-1 (pure

BZY) to 27 lS cm-1 (1 mass% B2O3 addition). Increasing

the amount of sintering aid (2 and 5 mass%) did not

improve the electrical conductivity, probably by formation

of a thick intergranular amorphous phase [34], difficult to

analyze due to the low Z value of the boron element.
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Sintering aid: ZnO

Figure 14 shows the results of the X-ray diffraction anal-

ysis of sintered (1500 �C for 4 h) BaZr0.8Y0.2O3-d pellets

prepared with powders without and with ZnO addition (1, 2

and 5 mass%). The reflection lines of pure BaZrO3 are also

depicted, according to the JCPDS 6-399 file.

Similar to the results on BaZr0.8Y0.2O3-d pure and sin-

tered with P2O5 or B2O3 addition, here also the structure is

the perovskite cubic.

Figure 15 shows the impedance diagrams measured at

600 �C of BaZr0.8Y0.2O3-d pellets sintered at 1500 �C with

and without the addition of ZnO.

It is apparent the beneficial effect of the addition of ZnO

to the decrease in the intergranular resistivity. At 600 �C, the

resistivity decreases 50% with only 1 mass% ZnO added to

the yttrium-doped barium zirconate. 2 mass% seems to be

the optimum amount of ZnO to be added for improvement

of the electrical conductivity. The electrical resistivity

at 600 �C drops from 345 kX cm for a BZY without to

30 kX cm to BZY with 2 mass% ZnO addition. Table 1

shows the values of total (bulk plus interfaces, mainly grain

boundaries) electrical resistivity measured at 600 �C and the

apparent density of the various sintered compounds.

These values show that the three sintered aids are

effective on reducing the total electrical resistivity, but

only P2O5 and ZnO promote densification higher than 94%

of the theoretical density. Moreover, P2O5 is believed to act

as a catalytic agent, in the sense that it accelerates the

densification without taking part in the obtained solid

electrolyte (BZY).

Conclusions

Thermo-gravimetry (TG), differential thermal analysis

(DTA) and thermo-dilatometry on yttrium-doped barium

zirconate (BZY) compounds mixed to phosphor pentoxide

(P2O5), boron oxide (B2O3) and zinc oxide (ZnO) allowed

for explaining their densification and the enhancement in

the electrical conductivity. The procedures with the results

reported here namely the attainment of high density and the

enhancement of the electric conductivity might be exten-

ded to other novel protonic conductors.
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T.D.: theoretical density—6.21 g cm-3, evaluated using X-ray
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