BLEISR?

ISSN 0101-3084

CNEN/SP

m
’ e n Instituto de Pesquisas
Energéticas e Nucleares

DYNAMICAL PROPERTIES OF ALUMINIUM FROM EXPERIMENTAL
DISPERSION RELATIONS

JoSo Batista Veiga Salles Filho, Roberto Fuifaro and Laercic Antonio Vinhas

\PEp ~Pud - fo<

PUBLICACAO IPEN 106 MAI0/1887

SAO PAULO



PUBLICAGCAO IPEN 105 MAI0/1987

DYNAMICAL PROPERTIES OF ALUMINIUM FROM EXPERIMENTAL
DISPERSION RELATIONS

Jc #) Batista Veiga Salles Filho, Roberto Fulfaro and Laercio Antonio Vinhas

DEPARTAMENTC OE FISICA F QUIMICA NUCLEARES

CNEN/SP
INSTITUTO DE PESQUISAS ENERGETICAS € NUCLEARES
SAO PAULO - BRASIL



Série PUBLICACAO IPEN

INIS Categories and Descriptors
A13

ALUMINIUM

AXIAL SYMMETRY
DISPERSION RELATIONS
DYNAMICS

INELASTIC SCATTERING
NEUTRON SPECTROMETERS
THERMAL NEUTRONS

Publicacdo aprovada pc.a CNEN em 07/05/86



DYNAMICAL PROPERTIES OF ALUMINIUM FROM EXPERIMENTAL
DISPERSION RELATIONS

Jodo Batista Veiga Salles Fitho, Roberto Fuifaro and Laercio Antoriv Vinhas

ABSTRACT

Measurements of phonon dispersion relations of aluminium along the high symmaetry directions were performed
by coherent inelastic scattering of thermal neutrons technique All measurements were taken at room tempg 2rature using
the IPEN triple axis neutron spectrometer The results obtained with accuracy are in good agreement with the published
data

The dispersion relations were calculated theorstically within the framework of Born-von Karmaen and Axially
Symmetric models. inciuding interactions up to the fifth nearest sheitl of atoms.

The elastic constanis were datermined using the values of sound propagatirg velocity obtained directly from
the dispersion relations along of high symmetry directions of the crystal. Applying theoretical models the forc> constants
of aluminium were aiso determined From these data several physical properties of the metal can be obtsined

PROPRIEDADES DINAMICAS DO ALUMINIO A PARTIR DE RELACOES
DE DISPERSAO EXPERIMENTAIS

RESUMO

Foram medidas para a temgsratura de 300 K. 83 relacSes de dispersdo do sluminio nas direcdes de mais aita
simetria do cristal. utlizando o espectrometro de trés eixos do IPEN Os resultados mostraram-se precisos, com exce-
lante concordancia com alguns didos |3 existentes na hiteratura. Os cdiculos tedricos das relacdes de dispursdo foram
efetuados com base nos modelos de dindmice de redes de Born-von Karman ¢ Axisimente Simétrico, tendo sido in-
cluidas as interacdes até as cinco camadas de 4tomos mais proximas.

Os céiculos das constantes eldsticas do aluminio foram efstusdos 8 pertir de valores ds velocidade de prope-
gacdo do som obtidos diretamente des curvas de disparsdo, ao lonjo de certas diregles de simetria do cristsl Por meio
de aplicagdes dos modelos tedricos foram determinadas as constantes de forca do sluminio. a partir des quais podem
s&r obtidas virias propriedades fisicas desse metal

I. INTRODUCTION

The study of the dynamical behaviour of crystailine structures is one of the most important
applications uf the neutron inelastic scattering technique. As part of the slow neutron inelastic scattering
program of the Nuclear Physics Division of IPEN—CNEN/SP, a triple axis neutron spectrometer was bui't.



Details of the design and construction were object of a previous paper!3’'. Measurements of the known
dispersion relations of copper were also performed'34.3' in order 10 verify the operational conditions
andt th. performance of the instrument The principa! aim to be reached with these previous works was
to present the main characteristics and details of the instrument and the dificulties and solutions found
during i1ts construction. as well as to acquire knowledgement about the experimental techniques.

At the present. concerning the development of the lattice dynamics study program, the main
interest is to obtain kncwledgement in the tield of experimental data analysis and the application of
theoretical models in order to determine physical properties in solids.

Therefore, trom the experimental results ot dispersion relaticns measured by using a
monocrystalline sample of aluminium, the present study was developed. [ts aim is the understanding of
the main theoretical lattice vibration models applied to met: Is. Since there are well kno'wn and accurate
chspersion relation data in the literature! 19 aluminium was chosen as matter of the study in order to
simphty the approach of the present work.

The dispersion relations were calculated theoretically within the framework of Born-von
Karman and Axially Symmetric models.

1. THEORY
H.1 — The Born-von Karman Model

The Born-von Karman lattice dynamical model has been described extensive! by Born and
Huang!2' The foliowing approximations are considered in this theory

a) The adiabatic approximation. The electrons are always able to adapt themselves to the
instantaneous nuclear positions The physical basis of the approximation considers that the
1ons, having a much larger mass, are moving much slower than the electrons. Concerning the
dynamiral aspects this means that the motions between electrons and ions can be separated.
The valence electrons are able to give answer to perturbations in the plasma range times
{r ~10'®Hz), so the electrons will “eftectively’”’ follow the lattice motion instantaneously
for all the frequencies of vibration

b) The harmonic approximation. The potencial energy may be written as a general Taylor series
in terms of the displacements of the atoms from their equilibrium positions. The atomic
displacements u are considered to be so small that the series expansion may be broken off
after the quadratic term

¢} The requirement of periodic boundary conditions. This is equivalent to replacing the finite
specimen by an infinite medium, neglecting surface effects.

Let us consider the harmonic approximation for a sclid with one stom eer primitive cell. like
atuminum (fcc) The pnmmve lattice transtation vectors are represented by a b and c; and the equilibrium
positions by { na t mb ¢ pc where n.m and p are integers. The displacement of the ¢ th atom from
its equilibrium position 1s indicated by uy being the position of the ¢ th atom given by : Rq - 5 + Lp

Detining » as the many body potential that governs the ion motion and expanding it in Taylor
series in terms of the displacements iy, one obtains:

e oo o,
R A e AW A 7T ()

. v . . L d .
where a is representing x, y or 2 and ug is the Cartesian component a of ut for an atom with mass eaua!
to M.



The equilibrium potential ¢,. corresponding to a static atomic lattice, may be taken as zero,

d i Ie
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The zero subscripts indicate that the derivates are evaluated for the equilibrium configuration
of the nuciei. At the equitibrium positions, where restoration force is zero, the second term in the second
member of the equation''' vanishes

> > > > » >
From the translational invariance of the lattice it fol'ows that: dag(0,l') = allC)  Ougit-)
and 3 ¢gg (L) 0 The last expression is represanting the fact that the resulting force in any atom
is zero, if each atom is displaced from equilibrium by a displacement vector of same value.

In the harmonic approximation all terms beyond the harmonic term, i.e., the third term of the
second member in equation!!' are neglected. Thus, the equation of motion for the atoms in the crystalline
lattice can be written as:

a _ 3 .
MU= T Zog @ 4. (3)

Taking in account the periodic boundary conditions, one can define the normal coordinates
Qq, related with yé’ by-

a_. _1 a ]
Hy = — Le, Q, v
¥ am'z g % Y

(4)

R d >
where q are the N primitive vectors! 16} that are placed within the first Brillouin zone, and e, are the
polarization vectors. By substituting in eq.'3), one obtains:

a > (5)
—Gq 8, = Qg E Daa(q)cg
where Daﬁ(a) i1s an element of the dynamical matrix D(a) given by:
Do 3 ¢ ghrea? (6)
af™ v B

The frequencies of thc waves described by 0q are obtained from the eigenvalue equation per
>
the polarization vectors L

qQ

goaﬂ(é;.{,‘ - whed (M

The thres eigenvectors of télq)l and the corresponding normal coordinates are indicsted by
850 ad by Qg l0 = 1,23).



In order to consider the polarization explicitly, equation'4’ must be modified and rewritten
in the form

- 1 S - " 6
J h3 q 8)
Ky o0 Qqotqo © {
KM

The Hamiltorian that corresponds to the equations of motion'3’ or the equivalent equation'S’
can be written in the diagonal form'6’

AN 3 . »
B 751050000 * Q50Qg0w’ (0.00] 9)

WHA.0)  (6o!DIQ)iegg) o eqoDqgialed, (10

From the definition of D(q) 'n equation'3’ it is possible to verify that''
Dia + G) - D(a) (1

» b4
where G is a reciprocal lattice vector Theretore w? () is periodic in the reciprocal lattice with a G period.

By applying the translational invariance condition of the lattice, the ‘nteratomic force constants
®qag (©) can be written in the following form-

a‘.’
op® - 1 22, 12)
since in the ha'mgnig approximation the potential energy of a solid can be represented by a sum of the

pair potentials ®({, ¢;), which depends only on the distance between the ions.

By substituting in q.'®’ one can observe that

» b z
Dyg'd) (1 e by e (13)

Bu: 8[.{3

»
where the prime in the summation indicates that the term ¢ = O is excluded The eq.''3' is the basic
resuit for the dynamical rmatrix in terms of the law of forces.

i
M

in the Born-von Karman model, the harmonic interaction between two atoms described in terms
of a mstrix of constants of tensorial forces, takes the following form! 13-

s ; &
#g- B ot @ aa)
& [y o}

»
where ¢'aﬂ is the force applied along the “a” direction in an atom on the origin (£ = 0}, when the sth
neighbor atom is moving a unitary distance along the “B" direction.



(14)

This last expression, eq. . giving the general form of the tensorial forces, will be used in the u(a)

function calculation.

1.2 — Axially Symmetric Model

in the Axially Symmetric Model''0' the interaction potential between two atoms which have
been displaced from equilibrium in a crystal is assumed to consist of two quadratic terms. The first is
proportional to the squaie of the component of relative displacement along ¢, the vector joining the
equilibrium positions of the two atoms, and gives rise to a central or “bond-stretching” force. Thg
second terms is proportional to th- square of the component of relative displacement perpendicular to ¢
and causes a “bond-bending’’ force. Since all directions in the p'ane perpendicular top% are assumed to
be equivalent, the interaction potential and corresponding forces are axially symmetric.

»
s it V(K] denotes the potential energy of interaction between two ions separated by a distance
1€l, then

. » > > » 2 » 2
vies 8 = vio s vin 2 L nve iﬁ—’;—g’v+ RVERTY @ &
s s

QJ

{15}

b d
+ higher terms in

where ¢ is the magnitude of E § is an arbitrarialy small vector displacement, and the primes on V(%)
denote differentiation with respect to €. The term linear in » in eq.'’5’ must be taken into account when
considering the static stability of a lattice but can be neglected in determining the lattice vibrational
spectrum. The third and fourth terms in the above equation are the pair bond-bending and bond-stretching
contributions, respectively

The force constanis matrix can be reffered to a system in which the main axis, for instance
the X axis, is coincident with the line joining the two stoms. For this system, the matrix can be written
in the following way:

AS 0 0
¢;ﬁ = 0 8* 0 (16}
0 0 8t

where Waﬁ has been difined previously.

This matrix, eq.''6', will be used in the dynamical matrix calculation, eq.!'3', in order to
determine the frequencies of the lattice vibrational modes by the axially symmetric model application.

The d'scussion about the Born-von Karman and Axially Symmetric models, shows the similarity
between both calculations and aiso evidences a very simplified force constants matrix in the axially
symmetric model, if comnared with the matrix of the Born-von Karman model. This means that in the
general case of an interaction of a given atom with the n-th nearest neighbor atoms, in the Born-von
Karman mode! six force constants are necessary in order to represent the interaction, while in the Axially
Symmetric model only two are necessary. So, since the solid allows the axial symmetry approximation
for the interaction potential, it is clear that the Axially Symmetric model presents some advantage in
order to represent the general case of interaction.

Nevertheless, in the Born-von Karman mode! it is possible to perform a reduction in the number
of independent constants, for the case of a shell of stoms with them on the direction of the crystal
lattice symmetry.



11.3 — Crystal Symmetry
By assuming ¢ and L as two vectors of the crystal lattice and both related by 3 umtary
>
transformation T such as, L Ta one can verify that if a gwen atom of L is moving to (L + TMQ)
thus the energy variation is the same as if the ion would move from { to U? + u’l) This can be represented
by( 14

[0gg (TO] = (T)) [8gg (01} (T, (17)

where (T,,) is a matrix that represents the unitary transformation ‘T of the crystal lattice group of
rotations.

\

Taking again the equation'®' and b considering the operation of transformation T over the wave

»>
vector of the crystal vibrations (q), one obtains:

> 1 T _n’.ﬁ
D io—— X ¢ @
aﬁ(Tq) M T tbaﬁ( je

Rl e T (8)
.1 jg €
v zvcpaﬁ(rﬁ)e

the last above transformation follows from the fact that T6 is a lattice crystal vector.

From equations 17 and 18 one verifies that:
[DITQ)| -~ (T,)[Dla) (T

Thus, D(Té) and Dla) are related by a unitary transformation, having the same eigenvalues.
This means that w’lé) has the Brillouin zone symmetry; and it also shows that one can be aware of
degenerescence of the lattuce wbvatvon frequency in symmetry positions to which there are operators
“T” such as Tq q + G where G is a reciprocal lattice vector.

In the presant work, only the dispersion curves along the two directions of higher crystal
symmetry will be considered in order to obtain the Aluminium force constants:

1. Direction A = (0,0,q): the three polarization vectors for this direction are: (0,0,1), (0,1,0)
and (1,0,0). The first vector indicates a pure longitudinal mode, while the two others
indicate a degenerated transversal mode.

2. Direction ¥ = (q,q,0): the three polarization vectors fo: this direction are: (1,1,0) (1, 1,0)
and (0,0,1). The first vector indicates a pure longitudinal mode, while the two others
indicate transversal modes, generally nondegenerated.



11.4 — Vibrational Dynamical Matrix for a Continuum Medium with Cubic Symmetry

The relations among crysta! ftorce constants and elastic constants can be obtained from a
comparison between the solid crystal dynamical matrix and the vibrational dynamical matrix for a
continuum medium, both Assumed to be in the same symmetry

In a continuum medium, the force tensor (P”D and the deformation tensor (E”) are symmetrical
having nine elements, from which six are independent From the general form of the Hooke's law, each
one of the !PH? nine elements are linearly related to the nine elements of (E.l) Explicitly, the law,
assumes that

Pv] : :',z T||,VM EYm (‘9)
m

where the constants T are forming a fourth order tensor.

TR

Usually the deformations are denoted by the symbols e
expressions

B related to E” by the following

(20}

being E” E” Indicating the displacement components (representing a deformation) by u,, u. and u;

then the E” are defined by the equations'’'
e L TR uy o Ay w0y
b I, M A Y A MY A, Ax
(21)
au, A @El Ay
_Lx ".,,,, - — +—...
O T Y A g

where x,. x. and x, are the cartesian components x, y and z, respectively.

In a medium pretenting cubic symetry, when the Pa. and eg., tensors are linearly related in
agreement with the tensonial relation' 'S’ the C , co~fticients of the deformation components in the
six linear equations, give the following matrix:

(e, C, Ci. 0 0 0o )
C, Ci Ch 0 0 0
Ci: Ci: Ci 0 0 0
(22)
0 0 0 Cas 0 0
0 0 0 0 Caa 0
0 0 0 0 0 C44)



The C,s coeficients are related to the elements of the T,Lgm tensor, by
Civ = Ty g

C.: - THJ? (23)

Caa "' Ty393*To332"

The amount of twenty one possible C . coefficients can be reduced to three independent
coefficients as a consequence of «eeping up invariant the tensorial form, eq.'19', concerning the cube
symmetry operations'a‘ The coefficients C,,, C,, and C.. are the elastic constants for cubic crystals
in the Voigt's notation'®’

By substituting the egs '2'' in the linear relations between P, and ey, and by using the matrix

of the eq 122)  gne obtains
o 3
P, - (Cy, Cl.‘}‘-;x"cl.": a'k]:':1,2,3
i j ko1 Ox (24)
) T .
P” C“'éx. ’{),‘, J.171,2,3,1°2,3 and |>i

The equilibrium conditions' 7' between the forces acting over a unitary volume, with mass

equal to p and the P,| surface forces, can be expressed as:

a’u; ‘3 P,y
P+ -
4 a'l l

0;1:1,23 {25)

| i)xk

(24}

From the substitution of the egs. in eq 2%, the wave equations for crystals with cubic

symmetry, can be obtained

Ay, Py 3 Ay
| L3
o ] e +C, | ¥ =SE
P a GG W C Ikl, %,
(26)
3 Ay Ay,
! )
+CulZ |, a1 ie1.2,3
44 [;:'1 | axy Ix, dx, 3

In order to solve the above equations, the equation for a plane wave must be considered:
g = A explilwt qx)1;§=1,23,. (27)
From this substitution, a syster. of three homogenous equations in A;, A, A,, is obtained:

[(Ci1 Ca.)at +Casq? pwW?|A, +(Cyy + Caslg qsA; +

+(Cy; +Cysa)q;q3A; 70

(Ciz +Caalaia:Ay +[(Cyy Caslal + Casq® pu? )A, + 281
+1{Cy; +Csala;q0:A; =0

{Cy2 + Csula asA; +1(Cy,; + Cagla,qiA, +[(C,,-Caslgl +

+Cas® pW'A, =0



where g° = a} + q} + q}.

The condition for solving the set of equations above, is:
det [D(@) pw?l]=0 (29)

where | is the identity matrix and D(q) is a dynamical matrix for a continuum medium with cubic
symmetry (for a lirge wavelength limit) represented by

{Cyy Csala} +Casq® (Cy, +Caslaiq; (Ci12 + Caalg;qs
Di@) = | (C,; + Css)aia; (Cii ~Casdad *+Cas@®  (Cy3 + Cqylqras (30)
{Cy; +Csalayq; (Cy; tCqslq2a: {Cy) "Caalgi + Caaq?

In the sequence of the prasent work the D(a) matrix will be used in order to obtain the relations
between the elastic constants and the force constants for aluminium. From the knowledgement of this
relations it is possible to determine the force constants by the Born-von Karman model.

i, EXPERIMENTAL RESULTS AND DATA ANALYSIS

By using the IPEN -CNEN/SP triple axis neutrons spectrometer'3' the dispersion relation,
w = u(a), of alumin,um was measured, at room temperature, along the two directions of higher
symmetry of the fcc crystal lattice: A = (00{) direction and X = {{{ 0} direction. In the r.resent work
the mode of operation of the spectrometer was the “‘constant Q’* method'4.5.12) in which the momentum
transfer is kept constant while an energy distribution is obtained.

In the experiments, coherent one-phonon scattering processes occur preferentially, in which
>
the energy and momentum of the neutrons are changed from their initial values, E_ and hk to final
hd
values E, and hk, governed by the conservation conditions:

Eo = E + how, (@) (31)
;07-;|=a+é=6 {32)

where 6 is the momont::m transfer vector, é the reduced wave vector of the phonon involved in the
scsttering process, and G a vector of the reciprocal lsttice previously mentioned. Peaks sre obtained
when the frequancy w given by eg.'3!! coincides with that of the phonon whose wave vector is G, given
by q./32), This process is repeated for successive values of q along high-symmetry directions in the crystal.
Such messurements provide direct informstion concerning the interatomic forces.

The seversl experimental points of the aluminium dispersion relstion''2’ measured along
the (000) and ({{0) higher symmetry directions, ere represented in Figure 1 by full squares. These points,
obtained by using the IPEN—CNEN/SP spectrometer, are coincident with the experimental data for
sluminium messured by Yarnell ot allii'?5). These authors kindly agreed to send us their results, through
private communication, in order to be used together with our results in the calculstions of the present
work.
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Figure 1 — Dispersion Curves for Aluminium, at Room Temperature
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111.1 — Velocity of Sound and Elastic Constants Calculation

The velocity of propagation of sound and elastic constants are physical properties ¢* a solid
that can be obtaired directly from the experimental dispersion relation. Simple expressions relating
elastic constants to the velocity of sound and the material density p can be achieved by choosing in an
appropriate way tne directions Pf propagation and of polarization. For this purpose it is only necessary
to substitute the selacted q and A values in the equations' 28

For long wavelength, where the dispersion is not present, the velocity of sound is given bv"s'

w
q

v =

{33

The (C0{) and {{{0) are two of possible propagation directions that give the mentioned simple
relations. For a plane wave on the (00{) direction. one has q; qand q;, = q; = 0. Thus, A; = A and
A, A, O describes a longitudinal wave The velocity of found is given by:

PVl = Cy, (34)

For transversal plane waves (A, - 0). polarized in any direction perpendicular to X,lor Z} axis,
the velocity V; is given by

PV} = Cas (35)

For the ({{0) direction one has thatq, = = aA/Zendq;y - 0. The V_ velocity of a longitudinal
wave {(A; = 0} is written as:

pVi = ‘/z(C., + Cl) 2C44) (36)

The VT, velocity of a transversal wave, polarizad in a direction perpendicular to X;({or Z) axis,
{A; - 0) is given by:

pV}l = %Gy, G (37)

The velocity VTJ of a transversal wave, polarized in a direction perallel o the X; axis
(A, = A; = 0} is given by:

P Vi, = Cys (38

The velocity of propagation of sound for the (00{) and ({{0) directions in all the polarizations,
was determined from Figure 1, in the long wavelength range (smal! 6), where the veristion of w with
respect 10 q is linesr, in agreement with what is foreseen by equation'3s’

Table | presents the values determined for the velocity of sound propegsting along the mentioned
directions.
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Table |
Direction Polarization Velocity of Sound
(cm/s)
L vV, = (63102 10°
(00¢)
T Vi = (33 ¢ 01)10°
t V, = (65102 10°
(“0) Tl VTI = (3001 10’
T2 VTZ = (321t 01) 105
1

From the values of Table | and by considering p = 2.702 g/cm® for the aluminium density, the
system of equations {36), {3/) and (38) can be sulved in order to determine the veiues for C,,, C,, and
Caa.

Table || presents (in units of 10'' dines/cm?) the results of the present work for the elastic
constants determination, 8s well as those existing in the literature''3'.

Table (1
Present Work Literature
Ci 110 t 06 10.92
C;, 6.2 £ 03 6.40
Cas 28 t 01 3.04

11).2 — Force Constants Calcr.vtion

'n order to obtein the sluminium force constants, from the experimental dispersion relations
Born-von Karmsn and Axislly Symmetric theorstical mode!s were used.

111.2.1 — Born-von Karman model

Dispersion relstion snalysis is made by sssuming the harmonic approximstion.
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»

in the determination of the crystal force constants values it is necessary to fit 3 w = w(q) function
to the experimental dispersion relation. This function is provided by the theoretical model, having the
force constants included as parameters

The theoretical function to be searched for is 2 solution of the eigenvalues equation'’’. In order
to f'nd the matrix element 9,g(¢) included in equation' '3 it is necessary 10 use equation''?' which
can be calculated in a any lattice point, with the condition that Ioaﬁ( )} is known in a given particulsr
lattice point anG the matrix representing the rotation operation between these points IT.,] is also known.
The force constants matrix [@aﬁ( }] is of order three and 1t has nine elements, being six of them
independent.

The crystal symmetry allows reducing the number of these elements. To do this, a unitary
transformation [Tij] that does not change the atoms positions in ¥ and U, is considered; thus, the
matricial relation that allows reducing the elements of the force constants matrix, can be written in
the form.

[0aptl - 1) = (T [ggglt- B] (T, (39)

Let us consider a face centered cubic lattice (like the aluminium case) and assume only the
interactions between the nearest atoms or the first shell of atoms. It is useful to perform this last
assumption, s'nce the calculations where the interactions between the atom and the sth shell of atoms
are considered, is made in a similar way''?’

By assuming the interaction between “0" atom and ‘1" stom, one can represent this case in
the tensorial genera! form, as below:

al g B
o't01 =] B a} LH (40)
8; g} al

The first neighbor coordinate is (a,3,0). By performing the two crystal symmetry operations
(reflections in xy and x - y planes) that keeping up invariant the vector (a,a,0) joining the two atoms,
one can obtain the force constants matrix that represents the interaction between "0’ and "1’ stoms.
The matrix can be written in the simplified irreducible form:

al g 0
o'ion=1| B} al 0 41
0 0 ol

From equation'!”’ it is possible to find the force constants matrix for the interaction between
the “0” atom and each one of the eleven remaining atoms on the shell' 12},

From the obtsined resuits, one is able to calcuiate the dynamical matrix element D{, (E), by
using equation'13’.

4
0}, (6) = —; [a} (2- cosq, .C08qy - CI8qy . C08q,) + a;(l—cosqv.com,)]
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The other dynamical

D;;(&)
D} 1(&)
D! l(a)

D!\ (q)

Table Itl shows the force constants ~atrices for the first five shell of

4
" |a}(2-cosq, cosq, .cosq, .cosq,) + ai(1-cosqy .c0sq,)]

= %mm €05Q, .COSqQ, COSGy .C0sq,) + aj{1-cosq,.cose, ]

- Nt S = 4 nl
= D;,lq) = Mo sen q, sen q,
= Dilq) = ﬁ*lﬂ sen q, sen q,
B N
= Di,lq) - 'WB_; sen q, .sen q,

indication as to the interaction to which the matrix is referred.

matrix  elements are obtained by performing similar calculations.

atoms, with explicit

Table I}
Coordinate of Atom that o
Shell is Interacting with Atom Force Constant Matrix N of Atoms
) inn the Shell
in (0,0.0)

o} 8} 0]

1 {a, 0, 0) ! al 0 12
L0 0 aj |
[o? 0 0)

2 (28,0, 0} 0 a3 0 6
o0 o
— oy
a 3 3

3 (2a, a a) H al [ 24
s/ d
’af fip] 0]

4 (29, 28, 0) i af (] 12
0 0 a} |
o} 3 0]

5 (3a,0,0) H o 0 24
s

The element Dﬁ(a) of the Born-von Karman dynamical matrix, that corresponc's to intaractions
up to the fifth shell of atoms, is given by:

. 8 >
Dijla) = 21 D} (a)
.-

(42)
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where Di'i (6) is the (i,j) wiement of the dynamical matrix for interactions between the atom in the origin
and the S'™ shell of atoms. Therefore. from equation(42) one can write:

»> 1
Diita) = [4a}(2-cosq,cosq, cosq,cosq,) + 4a}({1-cosgycos,) +

+ 2a}(2-c0s2q, cos2q,) + Baj(1- cos2q,cosq, cosq,) +

+ 8a3 (2-c0sq, c0s2q, C08G, - 008G, COSG., COS2G,) +

(43)
+ 4af(2- cosq,c0sq, -03q,c08q,) + 4a3(1-cosqyc0sq,) +
+ 4a}(2-c0s3q,c08q, €0$3q,005q,) + 403 (2~ C03Q,cOt3q, ~COSG,COs3q,) +
+ 4a3(2- cosq, cos3q,~ cos3a, c0sq,)]
1
Dy, la) = m (48} senq,senq, + 85} senq,senq, cos2q, +
+ 863 (sen2q,senq, c03q; + 38N, 3en2q, c03q,) + 403 senq,senqy + (44

+ 46 (sen3q,senq, + senq,senda, )]

The element D, ;(D;,) can be found from D, {D;;) by changingx byq,ybyzand zby x. In s
similar way, the element D, , (D, ,) also can be obtained from D, ; (D; ;) by a cyclical permutation of x, y
and 2. It is convenient to point out that the matrix is symmetric.

111.2.2 ~ Axislly Symmetric Model

In this mode! there are two sxislly symmetric constants for each shell of atoms sssumed in the
interaction.

For sake of simplicity, the sxislly symmetric force constants are obtained in function of the
tensorial force constants, since this procedure aliows the utilization of the dynsmical metrix calculated for
the Born-von Karman model (or tensorisl).

For interactions up to the first shell of stoms, the reiation between these force constants can
be obtained by assuming the interaction between the "0” stom and the “1” stom, by performing s 45°
rotation around the z axis, in such » way that the x axis stays coincident with the direc -an joining these
stoms.
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The matrix that performs the rotation is given by:

0

Tias) - 0 145)

3

When 3 rotation is applied to the ¢' (0.1) matrix given by the equation(41), one obtains:

0

v2/2 V272 0] [a}l 8% 0] (V22 272 0) [af+B) O 0]
V772 V2iz ol |8 & 01|22 V22 ol=lo al-gl 0 (46)

0 o0 100a;001lo 0 a

By compering the (45) and (46) matrices and in order to have axially symmetric forces, one
must have:

ay = af - (47)

where axially symmetric force constants are given in function of tensorisl force cons.ants, such as:
A' = a} + 8 and B' -al . B!

Expression {47) is the restr.ction of the axially symmetric modei to the tensorial force constants,
for interactions up to the first shell of atoms

Table IV shows (for the five first shell of atoms centered at origin) the tensorial force constants,
the restrictions imposed to them by the Axially Symmetric model and the axially symmetric force
constants.

According to what was previously mentioned, in order to obtain the theoretical function
«w wliq) it is necessary to solve the eigenvalue equation (7). This task becomes easier when the function
is calculated for the crystal directions of higher symmetry. For alumirium (fcc) these directions are: (00{)
and ({$0).

in order to obtain the eigenvalue of the ID(&H matrix for each one of the mentioned directions,
it is emough a multiplication by the correspondent eigenvector of each excited mode.

Table V shows the eigenvectors for the five branches of the experimental dispersion relation.

Let us write the dynamical matrix in the following form:

D, 0.1 Dys

.
Diq) = (o ]9} D;: D33
Dis D:s Dss

where, by simplicity, the indicstion of the dependence of each element withﬁ was suppressed.
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Table IV
FORCE CONSTANTS
Shell Tensorial Mode! Axially Symmetric Axially Symmetric
{Born-von Karman) Model Restrictions Model!
al Al
v a} o} -l 5}
B3 8
2 a? - A?
al g?
L 4 S S
a} 8} - ytai ad) A
3 ol
8 83 =% (a} a}) 8
H
af A’
4 a3 af =a} -3
B3 8*
4 aj = z(9a -a}) A’
a3
5 s $ _ 3,8 .8 s
ay B3 = Flai -a3) 8
3
Table V
Direction Polarization Eigenvector
L (0,0,1)
{00¢)
T (0,1,0)
(1,00
L (1,1,00
(£¢0) T, {1,-1,0)
T, (0,0,1)
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For a phonon that is propagating along the (00%) (q, = Q = 0) direction, the dynamical matrin
can be written n the diagonal torm

. 0., 0 0
D(Q) - 0 D|| 0
0 0 D3,

where the square of the frequency of the longitudinal modo(wf) is given by:

0 D,, 0 0 1]
wl of={o 0., 0 0 (48)
1110 0 Dysl I
0
1
UE = D);
and the transversal mode by
w} = Dy (49)

From the theory one can obtain two transversal modes, but in the case of (00{) direction these
modes are degenerated. as can be seen by solving the eigenvalue equation for the (0,1,0) eigenvector.

In snalogy. tor a phonon propagating along the ({{0) (a, = q, and q, = 0), the dynamical matrix
can be written in the form

> Dll DIZ 0
Diq) = D;; D,, 1]
i o 0 Dj,

the square of the frequencies of the longitudinal (w@) and transversal (w-? , and w% ,) modes, are
given by:

wE =Dy, *+ Dy, (80)

w$| =Dy, - Dy, 51
.

w.'?] = D, (52)

In the (00{) and (t{0) directions, the functions (48) to (52) sre relating the w = w(t;) curve
with the crystal force constants. From this, it is possible to obtain the crystal force constants by performing
8 fit of esch mentioned function with the respective branch of the experimental curve, by the application
of the non linear least-square method'' "'



Since each parameter of the w = w(a) function is a linear combination of force constants, a
systemn of equations where crysta! force constants are the unknown values, is produced when the least-
-squares method is applied. For interactions between the atom on the origin with the atoms on the five
nearest shells, the Born-von Karman model gives an indeterminated linear system. when the (00{) and
(¢t0) directions are considered. In order that the system has a unique solution, one must add to the
system independent linear equations relating force constants with elastic constants.

By assuming the limit for long wavelength (small values for wavevector 6) in the crystal dynamical
matrix and by comparing it with the dynamical matrix in a continuum medium with cubic symmetry
{eq.!39"), one can obtain the following relations between force and elastic constants:

2aC,, - 4a} + 4a? + 16a} + 8a} + 16a} + 36a} + 3aj

2aC,q = 2a} + 20} + 4al + 4a} + 20a] + 8a} + Ba? + 2a} + 18a} + 20a {53)

2a(C,; » Cas) = 48} + 887 + 328] + 1683 + 2463

where 2a is the fcc cubic lattice parameter.

Table VI shows the values of the tensorial force constants as well as the values of the axislly
symmetric force constanrts, obtained for aluminium by the Born-von Karman and Axially Symmertric
Modes, respectively.

This table presents the values for force constants of the tensorial and axislly symmetric types,
obtained from experimental dispersion curves of aluminium, messured st 300 K. For the application
of the models were considered the interactions between the atom on the origin with the stoms on the
five nearest shells. The third and fourth columns are showing the results for tensorial force constants
obtained by using the Born-von Karman and Axially Symmetric models, respectively. A comperison
between the values in both columnns is showing that they are not cuincident, however in the determination
of the parameters of the lattice vibration frequency function, a linear conbination of the mentioned values
is used. This last cited function is utilized in order to reproduce theoretically the dispersion relstions,
whose calculated curves by the models application can i : seen in Figure 2 in good sgreement with the
experimental points.

Figure 2 is showing the calicuisted dispersion relation for sluminium, obtsined from the
application of the Born-von Kerman and Axislly Symmetric models, by sssuming interactions beiwesn
the stom on the origin and the atoms on the five nearest shells.

The results of the calculetion of Axisily Symmetric mode! spplication are showing that for
sluminium the axial symmetry can be used for the interstomic forces study. The fifth column of Table V!
presents the obtained values for the axislly symmetric forcs constants calculated from the Axislly
Symmetric model snd the Figure 2 shows the dispersion relation for sluminium st 300 K calculsted
in the (£$0) and (00$) directions by the spplicstion of the mentioned models, a3 well as the experiments!
points obtained by Yarnell et oi'!5'



Table VI

FORCE CONSTANTS (dines/cm)

Sheil Tensorial Axially Symmetric
VM_B:m-von Karman— » Axially Symmetric Axially Symmetric
Model Model Model
b . e

a 10253 10004 o

al 2549 -1903 - -

1 ! 10570 11907 -——
Al -—- -—- 21911

8’ --- -—- -1903

S -

a} 2806 2828 -

al 1740 1426 —

2 A? —— —— 2828
B2 - - 1426

al 113 -169 - -

a? -300 -256 --

3 ? 156 29 --
2 27 58 --

A’ - - - -1

8’ - - -— -285

af -591 -547 -

a3 -44 -19 -

4 B3 -340 -528 -
Al - - -1075
8* -- - -19

af 282 282 - -

a} 77 13 -

a} -43 2 -

® f 0 93 --
A* -- - 313
8’ -- - 2
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