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DYNAMICAL PROPERTIES OF ALUMINIUM FROM EXPERIMENTAL

DISPERSION RELATIONS

João Batista Veigj Saltes Filho. Roberto Fulfaro and Laercio Antonio Vinhas

ABSTRACT

Measurements of phonon dispersion relations of alumir.iurr along the high symmetry directions were performed

by coherent inelastic scattering of thermal neutrons technique All measurements mare taken at room temperature using

the IPEN triple axis neutron spectrometer The results obtained with accuracy are in good agreement with the published

data

The dispersion relations were calculated theoretically within the framework of Born von Karman and Axially

Symmetric models, including interactions up to the fifth nearest shell of atoms

The elastic constants were datermined using the values of sound propagating velocity obtained directly from

the dispersion relations along of high symmetry directions of the crystal Applying theoretical models the fore? constants

of aluminium were also determined From these data several physical properties of the metal can be obtained

PROPRIEDADES DINÂMICAS DO ALUMÍNIO A PARTIR DE RELAÇÕES

ÜE DISPERSÃO EXPERIMENTAIS

RESUMO

Foram medidas para a temperatura de 300 K. as relações de dispersão do alumínio nas direções de mais alta

simetria do cristal, utilizando o espectrõmetro de três eixos do IPEN Os resultados mostraram te precisos, com exce-

lente concordância com alguns didos |á existentes na literatura Os cálculos teóricos das relações de dispersão foram

efetuado* com base nos modelos de dinâmica de redes de Born von Karman e Axialmente Simétrico, tendo sido in-

cluídas as interações até as cinco camadas de átomos mau próximas

Os cálculos das constantes elásticas do alumínio foram efetuado* a partir da valores da velocidade de t^opê-

gacio do som obtidos diretamente das curvas de dispersão, ao longo da certas dreçíes de simetria do cristal Por maio

de aplicações dos modelos teóricos foram determinada* as constantes de força do alumínio, a partir das quais podem

ser obtidas várias propriedades físicas desse metal

I. INTRODUCTION

The study of the dynamical behaviour of crystalline structure» is one of the most important

applications of the neutron inelastic scattering technique. As part of the slow neutron inelastic scattering

program of the Nuclear Physics Division of IPEN—CNEIM/SP, a triple axis neutron spectrometer was boi't.



Details of the design and construction were object of a previous paper13' Measurements of the known
dispersion relations of copper were also performed'34-5'. in order to verify the operational conditions
jncf ih.; performance of the instrument The principa! aim to be reached with these previous works was
to present the main characteristics and details of the instrument and the dificulties and solutions found
during its construction, as well as to acquire knowledgement about the experimental techniques

At the present concerning the development of the lattice dynamics study program, the main
interest is to obtain kncwledgement in the field of experimental data analysis and the application of
Theoretical models in order to determine physical properties in solids.

Therefore, from the experimental results of dispersion relations measured by using a
monocr ystalline sample of aluminium, the present study was developed Its aim is the understanding of
the main theoretical lattice vibration models applied to met' Is Since there are well known and accurate
dispersion relation data in the literature11 b . aluminium was chosen as matter of the study in order to
simplify the approach of the present work

The dispersion relations were calculated theoretically within the framework of Born von
Karman and Axially Symmetric models

II . THEORY

111 - The Born von Karman Model

The Bornvon Karman lattice dynamical model has been described extensive''/ by Born and
Huang12' The following approximations are considered in this theory

a) The adiabatic approximation. The electrons are always able to adapt themselves to the
instantaneous nuclear positions The physical basis of the approximation considers that the
ions, having a much larger mass, are moving much slower than the electrons Concerning the
dynamiral aspects this means that the motions between electrons and ions can be separated.
The valence electrons are able to give answer to perturbations in the plasma range times
(!• ~10 ' *H / ) . so the electrons will "effectively" follow the lattice motion instantaneously
for all the frequencies of vibration

b) The harmonic approximation. The potencial energy may be written as a general Taylor series
in terms of the displacements of the atoms from their equilibrium positions. The atomic
displacements >J are considered to be so small that the series expansion may be broken off
after the quadratic term

c) The requirement of periodic boundary conditions This is equivalent to replacing the finite
specimen by an infinite medium, neglecting surface effects.

Let us consider the harmonic approximation for a sclid with one rtom per primitive cell like
aluminium (fee) The primitive lattice translation vectors are represented by a, b and c; and the equilibrium
, _ , na ' mfo * pc, where n, m and p ar« integers The displacement of the V th atom from
its equilibrium position is indicated by w, being the position of the 1Í th atom given by: Rç - v + w/

Defining Q as the many body potential that governs the ion motion and expanding it in Taylor
series in terms of the displacements pj, one obtains:

• • *0 • i 5

where a is representing x, y or i and ^ is the Cartesian component a of *ii tor an atom with mass e

to M



The equilibrium potential 0O. corresponding to a static atomic lattice, may be taken as zero,

• r ô - i ^ l — V*-5'1 I r l , l (2)

The zero subscripts indicate that the derivates are evaluated for the equilibriurn configuration
of the nuclei At the equilibrium positions, where restoration force is zero, the second term in the second
member of the equation11', vanishes

From^the transitional invariance of the lattice it follows that: ^
and i 0ĉ J (t.il'l 0 The last expression is representing the fact that the resulting force in any atom
is zero, if each atom is displaced from equilibrium by a displacement vector of same value

In the harmonic approximation all terms beyond the harmonic term, i.e., the third term of the
second member in equation1'' are neglected. Thus, the equation of motion for the atoms in the crystalline
lattice can be written as:

M Ji? = - Z Z 0 t t / 3 (8 h 4 - (31

Taking in account the periodic boundary conditions, one can define the normal coordinates

Qq, related with M " by

iNMi'- a q q

where q are the N primitive vectors116' that are placed within the first Brillouin zone, and eq are the
polarization vectors. By substituting in eq.'3 ' , one obtains:

where D^lq) is an element of the dynamical matrix D(q) given by:

The frequencies of the waves described by Qq are obtained from the eigenvalue equation per
the polarization vectors eq

The three eigenvector» of IO(q)l and the corresponding normal coordinates are indicated by

and by Qq(J (a • 1.2.3).



In order to consider the polarization explicitly, equation'4' must be modified and rewritten
in the form

•NM'
(8)

The Hamiltonian that corresponds to the equations of motion'3' or the equivalent equation'6'
can be written in the diagonal form16'

where

•9)

co2(q,o) (eqO!D(q)ííqa) J e q ( J D Q

From the definition of Olq) in equation'5' it is possible to verify that"

0<q + G> Dtq) 111)

* *
where G is a reciprocal lattice vector Therefore u la) is periodic in the reciprocal lattice with a G period.

By applying the translational invariance condition of the lattice, the -nteratornic force constants
<t>na(t) can be written in the following form

112)

since in the he-mçnic^ approximation the potential energy of a solid can be represented by a sum of the
pair potentials 0<C, t } ) , which depends only on the distance between the ions.

By substituting in eq.'6 ' . one can observe that

113)

where the prime in the summation indicates that the term f 0 is excluded The eq.113 ' is the basic
result for the dynamical matrix in terms of the law of forces.

In the Born von Karman model, the harmonic interaction between two atoms described in terms
of a matrix of constants of tensorial forces, takes the following form' ' 3 I

ft
(14)

where 0fyj is the force applied along the "a" direction in «n atom on the origin (f - 0), when the sth
neighbor atom is moving a unitary distance along the "<J" direction.



This last expression, eq . l 1 4 > . giving the general form of the tensorial forces, will be used in the u>(q)
function calculation.

11.2 - Axially Symmetric Model

In the Axially Symmetric Model110 ' , the interaction potential between two atoms which have
been displaced from equilibrium in a crystal is assumed to consist of two quadratic terms. The first is
proportional to the square of the component of relative displacement along 6, the vector joining the
equilibrium positions of the two atoms, and gives rise to a central or "bond-stretching" force The
second terms is proportional to th square of the component of relative displacement perpendicular to 8
and causes a "bond-bending" force. Since all directions in the plane perpendicular to » are assumed to
be equivalent, the interaction potential and corresponding forces are axially symmetric.

If VI IS I) denotes the potential energy of interaction between two ions separated by a distance
if I. then

V l l í + ftl) = V(V» + V (k ) • — - • h V W - 8 — — + IA V" («) L _ ! i + (15)

+ higher terms in f>

where V is the magnitude of Í. f> is an arbitrarialy small vector displacement, and the primes on V(t)
denote differentiation with respect to V The term linear in A in eq. 1 ' 5 > must be taken into account when
considering the static stability of a lattice but can be neglected in determining the lattice vibrational
spectrum The third and fourth terrm in the above equation are the pair bond-bending and bond-stretching
contributions, respectively

The force constants matrix can be 'effered to a system in which the main axis, for instance
the X axis, is coincident with the line joining the two atoms. For this system, the matrix can be written
in the following way:

As 0 0

0 B' 0

0 0 B*

(16)

where 0 ^ has been difined previously.

This matrix, eq . 1 1 6 ' , will be used in the dynamical matrix calculation, eq . 1 1 3 ' , in order to
determine the frequencies of the lattice vibrational modes by the axially symmetric model application.

The discussion about the Born-von Karman and Axially Symmetric models, shows the similarity
between both calculations and also evidences a very simplified force constants matrix in the axially
symmetric model, if compared with the matrix of tlie Born-von Karman model. This means that in the
general case of an interaction of a given atom with the nth nearest neighbor atoms, in the Born-von
Karman model six force constants are necessary in order to represent the interaction, while in the Axially
Symmetric model only two are necessary So, since the solid allows the axial symmetry approximation
for the interaction potential, it is clear that the Axially Symmetric model presents some advantage in
order to represent the general case of interaction

Nevertheless, in the Born von Karman model it is possible to perform a reduction in the number

of independent constants, for the case of a shell of atoms with them on the direction of the crystal

lattice symmetry.



11.3 - Crystal Symmetry

By assuming V and L as two vectors of the crystal lattice and both related by a unitary

transformation "T", such as. L Tt , one can verify that if a given atom of L is moving to (L + TJIÇ),

thus the energy variation is the same as if the ion would move from Í to I? + jürfí). This can be represented

by1 1 4 1

where (T i I is a matrix that represents the unitary transformation "T" of the crystal lattice group of

rotations.

Taking again the equation161 and b • considering the operation of transformation T over the wave

vector of the crystal vibrations (q). one obtains:

- 1 V

1 * -iq T* {

' v A /TDI *~'Q - *

M l) Cip

the last above transformation follows from the fact that TV is a lattice crystal vector.

From equations 17 and 18 one verifies that:

[D(TC>| IT

Thus, D(Tq) and Dlq) are related by a unitary transformation, having the same eigenvalues.

This means that uiJ(q) has the Brillouin zone symmetry; and it also shows that one can be aware of

degenerescence of the lattice vibration frequency in symmetry positions to which there are operators
-p * * *

"J" such as Tq q • G, where G is a reciprocal lattice vector

In the present work, only the dispersion curves along the two directions of higher crystal

symmetry will be considered in order to obtain the Aluminium force constants.

1 Direction A = (0,0,q): the three polarization vectors for this direction are: (0,0,1), (0,1,0)
and (1,0,0) The first vector indicates a pure longitudinal mode, while the two others
indicate a degenerated transversal mode

2. Direction ~ ^ (q,q,0): the three polarization vectors for this direction are: (1,1,0) (1, 1,0)

and (0,0,1) The first vector indicates a pure longitudinal mode, while the two others

indicate transversal modes, generally nondegenerated.



11.4 - Vibrational Dynamical Matrix for a Continuum Medium with Cubic Symmetry

The relations among ciystal force constants and elastic constants can be obtained from a
companion between the solid crystal dynamical matrix and the vibrational dynamical matrix for a
continuum 'Medium, both assumed to be in the same symmetry

In a continuum medium, the torce tensor ( P I and the deformation tensor (Ej ) are symmetrical
having nine elements, from which six are independent From the general form of the Hooke's law, each
one of the ( P i nine elements are linearly related to the nine elements of (E ) Explicitly, the law,
assumes that

(19)
t M

where the constants T( | k m are forming a fourth order tensor

Usually the deformations are denoted by the symbols e,|, related to E( by the following
expressions

(20)
2E,,

being E|{ E | r Indicating the displacement components (representing a deformation) by n,, /J : and
then the E are defined by the equations17'

2
OXi OX j

(21)

where x,, x : and x t are the cartesian components x, y and z, respectively.

In a medium presenting cubic symetry. when the P,t and e ^ tensors are linearly related in
agreement with the tensonal relation'19', the Crs coefficients of the deformation components in the
six linear equations, give the following matrix:

C,,

c,,

C . j

0

0

0

C12

C M

c,,

0

0

0

C . i

C,2

CM

0

0

0

0

0

0

C44

0

0

0

0

0

0

C44

0

0

0

0

0

0

C44

(22)



The Crs coeficients are related to the elements of the T l ( y m tensor, by

C| i T11 11

C44 '* T 2 3 23+ T23.32 '

The amount of twenty one possible Crs coefficients can be reduced to three independent

coefficients as a consequence of keeping up invariant the tensorial form, e q , ' 1 9 ' . concerning the cube

symmetry operations181 The coefficients C, , , C, .- and C.. ̂  are the elastic constants for cubic crystals

in the Voigt's notation1 9 '

By substituting the eqs l 2 " in the linear relations between P|t and e V m and by using the matrix

of the e q 1 2 2 1 , one obtains

P, I C , C , . ) , f C i ; | I 1. . = 1 . 2 , 3
' " i •< 1 rt*k ,24)

d^, d/u,
P,( C44 I 9 x • 3 x ) , 1 : 1, 2, 3,1 --2, 3 and i > i

The equilibrium conditions'7 ' between the forces acting over a unitary volume, with mass

equal to P and the Pf| surface forces, can be expressed as

»-£" .C; i *•-•'•'
From the substitution of the eqs i 2 4 ' in eq l 2 5 ' , the wave equations for crystals with cubic

symmetry, can be obtained

(26)
3 3 2 u , a ' u j

C44U I " , - + ã r i ; I I . • ' 2.3

I n o r d e r t o solve the a b o v e e q u a t i o n s , t h e e q u a t i o n f o r a p lane wave m u i t be cons idered

<ij = A , e x p I i ( w t q x > 1, i = 1 , 2 . 3 , 127)

F r o m this s u b s t i t u t i o n , a systen-, of th ree h o m o g e n o u s e q u a t i o n s in A , , A 2 , A , , is o b t a i n e d :

| ( C M C 4 . , ) q J + C 4 , , q J p w 2 | A , + ( C , 2

+ (C,2 + C 4 4»qiq iA, =0

( C , 2

(28)
• (C , 2 + C 4 4 ) q j q , A , = 0

( C , , + C 4 4 ) q l q , A , + ( C , , + C 4 4 ) q 2 q , A 2 f [ ( C , , - C 4 4 ) q 2 , +

+ C 4 4q 2 p w 2 l A , - 0



where q2 = q? + q2 + q]

The condition for solving the set of equations above, is:

det[D(q) p w 2 l ] = 0 ( 2 9 )

where I is the identity matrix and D(q) is a dynamical matrix for a continuum medium with cubic
symmetry (for a large wavelength limit) represented by

Dlq> =

<C, i C 4 4 >q 2 +C 4 4 q 2 <C12 +C 4 4 )q ,q 2 (C, 2

(C, 2 + C4 4 )q,q2 (C, , C4 4)q2 + C 4 4q 2 (C, 2 + C44 )q2q,

(C, 2 + C 4 4 ) q , q j ( C l 2 +C 4 4 )q 2 q, (C, , C44)q2, + C 4 4 q 2

(30)

In the sequence of the present work the 0(q) matrix will be used in order to obtain the relations
between the elastic constants and the force constants for aluminium. From the knowledgement of this
relations it is possible to determine the force constants by the Born-von Karman model.

II I . EXPERIMENTAL RESULTS AND DATA ANALYSIS

By using the IPEN -CNEN/SP triple axis neutrons spectrometer131, the dispersion relation,
u> - u>(q), of alumin.um was measured, at room temperature, along the two directions of higher
symmetry of the fee crystal lattice: A = (OOf) direction and Z £ (ffO) direction. In the '.resent work
the mode of operation of the spectrometer was the "constant Q" method' 4 ' 5 1 2 I in which the momentum
transfer is kept constant while an energy distribution is obtained.

In the experiments, coherent one-phonon scattering processes occur preferentially, in which
the energy and momentum of the neutrons are changed from their initial values, E r and hk0 to final
values E| and hk, governed by the conservation conditions:

Eo = E, + hw,(q) (31)

ko k, = q + G = Q (32)

where Q is the momentum transfer vector, q the reduced wave vector of the phonon involved in the

scattering process, and G a vector of the reciprocal lattice previously mentioned. Peaks are obtained

when the frequency u> given by eq.1 3 1 ' coincides with that of the phonon whose wave vector is q, given

by eq. ( 3 2 > . This process is repeated for successive values of q along high-symmetry directions in the crystal.

Such measurements provide direct information concerning the interatomic forces.

The several experimental points of the aluminium dispersion relation1121, measured along

the (OOf) and (f f 0) higher symmetry directions, are represented in Figure 1 by full squares. These points,

obtained by using the IPEN-CNEN/SP spectrometer, are coincident with the experimental data for

aluminium measured by Yarneli et allii '161 . These authors kindly agreed to send us their results, through

private communication, in order to be used together with our results in the calculations of the present

work.
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111.1 - Velocity of Sound and Elastic Constants Calculation

The velocity of propagation of sound and elastic constants are physical properties c' a solid
that can be obtair.ee) directly from the experimental dispersion relation Simple expressions relating
elastic constants to the velocity of sound and the material density p can be achieved by choosing in an
appropriate way the directions of propagation and of polarization For this ourpose it is only necessary
to substitute the selected q and A values in the equations'28'

For long wavelength, where the dispersion is not present, the velocity of sound is given by116 '

w
V = — (33)

The (OOf) and (f fO) are two of possible propagation directions that give the mentioned simple
relations For a plane wave on the (00f) direction, one has q.i q and q> - a; = 0 Thus. Aj - A and
A, A3 0 describes a longitudinal wave The velocity of found is given by:

PV[ ~- C , , (34)

For transversal plane waves (A, 0) polarized in any direction perpendicular to Xjlor Z) axis,
the velocity VT is given by

P V^ = C 4 4 (35)

For the (ffO) direction one has that q, - u : - q / \ / 7 a n d q j - 0. The V L velocity of a longitudinal
wave (A3 = 0) is written as:

2C4«) (38)

The V T | velocity of a transversal wave, poleriznd in a direction perpendicular to X}(or Z) axis,
(A3 0) is given by

p V T , = ^ <Ci, C , , ) (37)

The velocity VT of a transversal wave, polarized in a direction parallel 'o the X ( axis
(A | = A3 - 0I is given by

i V | ; - C44 (38!

Tha velocity of propagation of sound for the (00f) and (ffO) directions in all the polarization!,

ww datarmined from Figure 1, in the long wavelength range (small q), where the variation of w with

ratpact to q is linear, in agreement with what is foreseen by equation'3-*'

Table I present» tha values determined for the velocity of sound propagating along the mentioned

directions.
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Table I

Direction

(OOf)

«fro»

Polarization

L

T

L

T,

T2

Velocity of Sound

(cm/s)

V L = (6.3 t 0.2) 10*

V T = (3.3 ± 0.1) 10'

V L = (6.5 ± 0.2) 10'

V T ) = (3.0 ±0 .1 ) 10*

V T i = (3.2 t 0.1) 10'

From the values of Table I and by considering p - 2.702 g/cm3 for the aluminium density, the

system of equations (36), (3/) and (38) can be solved in order to determine the values for C , , . C| 2 and

Table II presents (in units of 10*' dines/cm2) the results of the present work for the elastic

constants determination, as well as those existing in the literature113>

Table II

C,,

C M

C«4

Present Work

11.0 ± 0.6

6.2 ± 0 3

2.8 * 0.1

Literature

10.92

6.40

3.04

Ml.2 - Force Constant* Calc> .nion

'n order to obtain the aluminium force constants, from the experimental dispersion relations

Born von Karman and Axially Symmetric theoretical models were used.

111.2.1 - Bom-von Karman model

Dispersion relation analysis is made by assuming the harmonic approximation
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Ir. the determination of the crystal force constants values it is necessary to fit a u> = co(q) function
to the experimental dispersion relation This function is provided by the theoretical model, having the
force constants included as parameters

The theoretical function to be searched for is a solution of the eigenvalues equation17'. In order
to f i d the matrix element 0^(8) included in equation'13' it is necessary to use equation1171, which
can be calculated in a any lattice point, with the condition that Itf»^)*)) is known in a given particular
lattice point anci the matrix representing the rotation operation between these points |T(J J is also known.
The force constants matrix [0^(5)] is of order three and it has nine elements, being six of them
independent.

The crystal symmetry allows reducing the number of these elements. To do this, a unitary
transformation [T(jj that does not change the atoms positions in * and 8', is considered; thus, the
matricial relation that allows reducing the elements of the force constants matrix, can be written in
the form.

(39)

Let us consider a face centered cubic lattice (like the aluminium case) and assume only the
interactions between the nearest atoms or the first shell of atoms. It is useful to perform this last
assumption, t nee the calculations where the interactions between the atom and the s th shell of atoms
are considered, is made in a similar way'17 '

By assuming the interaction between "0" atom and " 1 " atom, one can represent this case in
the tensorial general form, as below:

(40)

The first neighbor coordinate is (a.a.O) By performing the two crystal symmetry operations
(reflections in xy and x y planes) that keeping up invariant the vector (a.a.O) joining the two atoms,
one can obtain the force constants matrix that represents the interaction between "0" and " 1 " atoms.
The matrix can be written in the simplified irreducible form:

0

«1

(41)

From equation" 7> it is possible to find the force constants matrix for the interaction between
the "0" atom and each one of the eleven remaining atoms on the shell*121

From the obtained results, one is able to calculate the dynamical matrix element D j , (q), by

using equation(13)

= — [ai(2-cosql(.co»qy o>sqM.cosqj)+oJ(1-cosqy.ooiq2)l
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The other dynamical matrix elements are obtained by performing similar calculations.

D j ; (q) = -- |Q! (2 cosq» cosqv cosqy co$qz) + a'(1 ooiq» oosq,))
M

j j lq ) = j ^ K ' 2 cosq.-cosq, cosqy cosqz) • a\ (1 cosqx cose,]

j j ln ) = D!,(q) = u -i sen q , sen qv

D'.,lq) -' 0' , , Iq) = — 0' sen qx sen qz

Dj,(q) = D' 2 <q) ' — &\ sen qy sen q,

Table III shows the force constants -atrices for the first five shell of atoms, with explicit
indication as to the interaction to which the matrix is referred.

Table III

Coordinate of Atom that
is Interacting with Atom

in (0.0.0)

(a. a, 0)

(2a. 0, 0)

(2a.a a)

(2a, 2a, 0)

(3a, a, 0)

Force Constant Matrix

o-l
03

J>

'a?
0
0

'a?
0?
fl3
Pj

01
0

'a?
03
0

0i
a'
0

0
a]
Ü

0?

n]

Pi

01
aí
0

0!
<*!
0

0
0

aL
o"
0

if
0?

Õ"
0

°1o!

N? of Atoms
ifi the Shell

12

24

12

24

The element 0( |(q) of the Born-von Karman dynamical matrix, that corresponds to interactions

up to the fifth shell of atoms, is given by:

j((q") = I D'jlq) (42)
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where Dfjfq) is the |i,j) aiement of the dynamical matrix for interactions between the atom in the origin

and the S l h shell of atoms. Therefore, from equation(42) one can write:

2oj(2 oo$2qy a»2q2) • 8a? |1 cos2qxcosqycosqz) +

8ai(2-oosqxcos2qvcosqz-cosqxcosqYcos2qz) +

(43)
4a*(2 cosq,coiqv cosqxCOtq,)+4ajd cojqvco$qx) •

4af(2 cos3q,cosqy cos3qxcosq,) *4a\(2cosqxcov»qy-cosqxco*3q,)

4a!(2cosqycos3q,-cos3qycosqz)]

D , j (q )= — (40jsenqxsenqv+80?senqxsenqvcos2qv

80i(sen2qxsenqycosq7+senqxsen2qycosqt) + 403senqxsenqv • (44!

? •$enqxsen3qy)]

The element D2 a (Dj j ) can be found from D , , <D3 j ) by changing x by q, y by z and i by x. In a

similar way, the element D21 ( D , , I also can be obtained from D, 2 (Dj j ) by a cyclical permutation of x, y

and z. It is convenient to point out that the matrix is symmetric.

Ill.2.2 - Axially Symmetric Model

In this model there are two axially symmetric constants for each shell of atoms assumed in the

interaction.

For sake of simplicity, the axially symmetric force constants are obtained in function of the

tensorial force constants, since this procedure allows the utilization of the dynamical matrix calculated for

the Bornvon Karman model (ortensorial)

For interactions up to the first shell of atoms, the relation between these force constants can

be obtained by assuming the interaction between the "0" atom and the " 1 " atom, by performing a 45°

rotation around the z axis, in such a way that the x axis stays coincident with the direc on joining these

atoms.
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The matrix that performs the rotation is given by:

0

'145) - V •< V z 0

0 0 1

When a rotation is applied to the 01 (0.1) matrix given by the equatk>n(41), one obtains:

ViTi \fv7 o

\/2/2 0

0 1

145)

0

2 \j7n

2 y/lil

0

0

0

1 0

B\

a!

0

0

0

oi

0

0

0

«Si

0

0

:' 0 (46)

By comparing the (45) and (46) matrices and in order to have axially symmetric forces, one
must have:

a! - (47)

where axially symmetric force constants are given in function of tensorial force constants, such as:

A1 = a', + 0i and B' = a{ 0}

Expression (47) is the restr.ction of the axially symmetric model to the tensorial force constants,
for interactions up to the first shell of atoms

Table IV shows (for the five first shell of atoms centered at origin) the tensorial force constants,
the restrictions imposed to them by the Axially Symmetric model and the axially symmetric force
constants

According to what was previously mentioned, in order to obtain the theoretical function
u; u>(q) it is necessary to solve the eigenvalue equation (7) This task becomes easier when the function
is calculated for the crystal directions of higher symmetry. For aluminium (fee) these directions are: (00f)
and

In order to obtain the eigenvalue of the lD(q)l matrix for each one of the mentioned directions,
it is enough a multiplication by the correspondent eigenvector of each excited mode.

Table V shows the eigenvectors for the five branches of the experimental dispersion relation.

Let us write the dynamical matrix in the following form:

D n D,i D t J

D(q) =

where, by simplicity, the indication of the dependence of each element withq was suppressed



Table IV

FORCE CONSTANTS

Shell

1

2

3

4

5

Tensor n l Model

(Born-von Karman)

<*!

e\

a?

*?

«?
a?
0?
0?
a?
a?
<??

a ?
a!
a5
&\

Axially Symmetric

Model Restrictions

a\=a\-0\

fi = \ (a? í̂)

a^ = ^(9a|-a?)

í5j = |(o?-o5)

Axially Symmetric

Model

A1

B>

A2

B1

A J

BJ

A4

B4

A'

B*

Table V

Direction

(00 f)

(ffO)

Polarization

L

T

L

T,

T,

Eigenvector

(0,0,1)

(0,1,0)

(1,0,0)

(1,1,0)

(1,-1,0)

(0,0,1)
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For a phonon that is propagating along the (00?) (qx qq = 0) direction, the dynamical matrix

can be written in the diagonal form

D(q) -
0
D
0

0
0

where the square of the frequency of the longitudinal mode(u^) is given by:

0
0
1

D M

0
0

- D,,.

0

D M

0

0
0
1

0
0
D33

0
0
1

(48)

and the transversal mode by

*«4 -= D n (49)

From the theory one can obtain two transversal modes, but in the case of (OOf) direction these
modes are degenerated, as can be seen by solving the eigenvalue equation for the (0.1.0) eigenvector.

In analogy, tor a phonon propagating along the I f {0) (q, - qy and q , : 0 l , the dynamical matrix
can be written in the form

D|q) =
D M

D,2

0

0,2
D M
0

0
0

the square of the frequencies of the longitudinal (CJ^) and transversal (u>j | and <*>t2> modes, are
given by:

«

L

2 _

= D M D.j

D, }

(90)

(51)

= (52)

In the (00f) *"d (ff0> directions, the functions (48) to (52) are relating the u; - u>(q) curve

with the crystal force constants. From this, it is possible to obtain the aystal force constants by performing

a fit of each mentioned function with the respective branch of the experimental curve, by the application

of the non linear least-square method1 n '



19

Since each pauneter of the u> - co(q) function is a linear combination of force constants, a

system of equations where crystal force constants are the unknown values, is produced when the Itast-

-squares method is applied. For interactions between the atom on the origin with the atoms on the five

nearest shells, the Born von Karman model gives an indeterminated linear system, when the ( 0 0 0 and

(JfO) directions are considered In order that the system has a unique solution, one must add to tht

system independent linear equations relating force constants with elastic constants.

By assuming the limit for long wavelength (small values for wavevector q) in the crystal dynamical

matrix and by comparing it with the dynamical matrix in a continuum medium with cubic symmetry

(eq ( 3 0 ' ) , one can obtain the following relations between force and elastic constants:

2aC, , = 4a| + 4af + 16a? + 8a? + 16a? • 36at + Aa\

2aC44 ~- 2a! + 2 ( 1 5 + 4 0 1 + 4 0 ? + 20a? • 8af + 8at + 2a\ + 18a| • 20a? <53>

2a(C12 • C««) - 40j • 80? + 320f • 160J • 2 4 $

where 2a is the fee cubic lattice parameter.

Table VI shows the values of the tensorial force constants as well as the values of the axially

symmetric force constants, obtained for aluminium by the Born-von Karman and Axially Symmetric

Modes, respectively

This table presents the values for force constants of the tensorial and axially symmetric types,

obtained from experimental dispersion curves of aluminium, measured at 300 K. For the application

of the models were considered the interactions between the atom on the origin with the atoms on the

five nearest shells. The third and fourth columns are showing the results for tensorial force constants

obtained by using the Born von Karman and Axially Symmetric models, respectively. A comparison

between the values in both columns is showing that they are not coincident, however in the determination

of the parameters of the lattice vibration frequency function, a linear conbination of the mentioned values

is used This last cited function is utilized in order to reproduce theoretically tht dispersion relations,

whose calculated curves by the models application can i • seen in Figure 2 in good agreement with the

experimental points

Figure 2 is showing the calculated dispersion relation for aluminium, obtained from tht

application of the Born-von Karman and Axially Symmetric models, by assuming interactions between

the atom on tht origin and the atoms on the five nearest shells.

The results of fht calculation of Axially Symmetric model application are showing that for

aluminium the axial symmetry can be used for th* interatomic forces study. The fifth column of Ttbte VI

presents tht obtained values for the axially symmetric force constants calculated from tht Axially

Symmetric model and tht Figure 2 shows tht dispersion relation for aluminium at 300 K calculated

in tht ( f f 0) and (00f) directions by tht application of the mentioned modtis, as wall as tht experimental

points obtained by Yarned t t a l l 1 S ) .
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Table V I

Shell

1

2

3

4

5

FORCE CONSTANTS (dines/cm)

«!

<*\

ft
A1

B'

af
a?
A2

BJ

a?

af

if

A 3

B3

aí

at

0t

A4

B4

af

a!

aí

tf
A»

B5

Tensorial

Born von Karman
Model

10253

2549

10570

2806

1740

113

300

156

27

-591

-44

-340

282

77

-43

0

Axially Symmetric
Model

10004

1903

11907

2828

1426

-169

-256

29

58

-547

-19

-528

282

33

2

93

Axially Symmetric

Axially Symmetric
Model

21911

-1903

2828

1426

-111

-285

-1075

-19

313

2



Born-von Karman Model

21

CJ|O> <OOf >

Axially Symmetric Model

1 I 1

. • • 1.

(OOfl

Fifur* 2 - Owptrtton Rtlations Calculated by the Born von Karman and Axially Symmetric Model*
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