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 Abstract-- A Neural Network structure has been applied for 
predicting neutron Ambient Dose Equivalent measured by means 
of a Bonner Sphere Spectrometer (BSS) set. The present work 
used the SNNS (“Stuttgart Neural Network Simulator”) as the 
interface for designing, training and validation of a MultiLayer 
Perceptron network. The back-propagation algorithm was 
applied . The Bonner Sphere set chosen has been calibrated at the 
National Physical Laboratory, United Kingdom, and uses gold 
activation foils as thermal neutron detectors. The neutron energy 
covered by the response functions goes from 0.0001 eV to 10 MeV. 
A set of 27 continuous neutron spectra was used for training and 
validating the neural network. Excellent results were obtained, 
indicating that the Neural Network can be considered an 
interesting alternative for estimating neutron Ambient Dose 
Equivalent measured by means of  Bonner Spheres. 
 
 

I. INTRODUCTION 
 

system commonly used for neutron field dosimetry is 
the Bonner Sphere Spectrometer (BSS) set. This type of 

spectrometer has the advantages of isotropic response and the 
ability to measure the neutron spectrum from thermal energies 
to tens of MeV. The response of each detector of an array may 
be written as a homogeneous set of Fredholm equations. The 
present work adopts an approach to solve these equations by 
applying a Neural Network structure. The SNNS (“Stuttgart 
Neural Network Simulator”) was used as interface for 
designing, training and validation of a MultiLayer Perceptron 
network. The Bonner Sphere set chosen has been calibrated at 
the National Physical Laboratory, United Kingdom, and uses 
gold activation foils as thermal neutron detectors. The neutron 
energy covered by the response functions goes from 0.0001 eV 
to 10 MeV.  

A previous paper describes the use of this technique for 
unfolding neutron spectra measured by means of Bonner 
Spheres [5]. The present work is focused in determining the 
Ambient Neutron Dose Equivalent. 

 
 
 
 

II. METHODOLOGY 

A. Deconvolution Method  
When the detector responses  are known for discrete energy 
groups the set  of Fredholm equations may be rewritten as a 
sum of products between the neutron fluence rate , the detector 
response and the energy width of the group. 

 
 

(1) 
 

where: 
Ci is the reaction rate from the i-th Bonner sphere; 
φj is the fluence rate of neutrons in the j-th energy interval; 
∆Ej is the j-th energy interval; 
Rij is the Bonner Sphere response function corresponding to 
the j-th energy interval. 
 

For the case of BSS spectrometers the deconvolution 
methods applicable for solving this set of equations are usually 
grouped into three categories: parametric, quadrature and 
Monte Carlo. The present work adopts an approach to the 
problem using a Neural Network structure [1-4]. The Network 
output corresponds to the Ambient Neutron Dose Equivalent. 
 

B. Ambient Neutron Dose Equivalent: H*(10) 
 The Bonner Sphere Spectrometer can be used for estimating 
neutron dose. For this purpose, conversion factors are 
necessary because there is no fundamental relationship 
between neutron detection probability at the center of the 
sphere and the neutron dose in the biological tissue. The 
present work applies the Ambient Neutron Dose Equivalent 
concept, which is part of the operational unit system 
introduced by the ICRU for radiation monitoring [10]. In this 
system the Ambient Dose Equivalent is suitable for using with 
strongly penetrating radiations such as neutrons. 
 
 This quantity is given by: 
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where: 
φ(E) = neutron fluence as a function of energy; 
h(E) = neutron fluence to dose conversion factor as a function 
of energy; 
∆E   =  energy interval. 
 The behavior of the Ambient Equivalent Dose conversion 
factor h(E) with neutron energy is shown in figure 1. Some 
numerical values are given in table 1 for monoenergetic 
neutrons incident on the ICRU sphere [10].  
 
Table 1 Ambient Equivalent Dose conversion factor h(E) with 
neutron energy. 

Energy 
(MeV) 

h(E) 
(10-12 Sv.cm-2) 

Energy 
(MeV) 

h(E) 
(10-12 Sv.cm-2) 

1.00E-09 6.6 3.00E-01 233 
1.00E-08 9.0 5.00E-01 322 
2.53E-08 10.6 7.00E-01 375 
1.00E-07 12.9 9.00E-01 400 
2.00E-07 13.5 1.00E+00 416 
5.00E-07 13.6 1.20E+00 425 
1.00E-06 13.3 2.00E+00 420 
2.00E-06 12.9 3.00E+00 412 
5.00E-06 12.0 4.00E+00 408 
1.00E-05 11.3 5.00E+00 405 
2.00E-05 10.6 6.00E+00 400 
5.00E-05 9.9 7.00E+00 405 
1.00E-04 9.4 8.00E+00 409 
2.00E-04 8.9 9.00E+00 420 
5.00E-04 8.3 1.00E+01 440 
1.00E-03 7.9 1.20E+01 480 
2.00E-03 7.7 1.40E+01 520 
5.00E-03 8.0 1.50E+01 540 
1.00E-02 10.5 1.60E+01 555 
2.00E-02 16.6 1.80E+01 570 
3.00E-02 23.7 2.00E+01 600 
5.00E-02 41.1 3.00E+01 515 
7.00E-02 60 5.00E+01 400 
1.00E-01 88 7.50E+01 330 
1.50E-01 132 1.00E+02 285 
2.00E-01 170 1.25E+02 260 

 
 

This factor remains between 6.6 and 13.6 pSv.cm2 in the  10-

9 to  10-3 MeV range. Above this energy the value of h(E)  
raises monotonically reaching a maximum of 600 pSv.cm2 at 
20 MeV and drops at higher energies. 
 The purpose of the present work was to develop a neural 
network which yields the neutron Ambient Equivalent Dose 

from the Bonner Sphere set responses without   knowledge of 
the neutron energy spectrum. 

 
 
Fig. 1 Behavior of the Ambient Equivalent Dose conversion 
factor h(E) with neutron energy. 

C. Neural Network Architecture 
 Neural Network models are algorithms for cognitive tasks, 
such as learning and optimization, which are in a loose sense 
based on concepts derived from research into the nature of the 
brain. It simulates a highly interconnected, parallel 
computational structure with many individual processing 
elements, or neurons. In mathematical terms  a neural network 
model has the following properties : 

a) a state variable νk is associated with each node k; 
b) a real-valued weight wkj  is associated with each link 

(kj) between two nodes k and j; 
c) a real-valued bias θk is associated with each node k; 
d) a transfer function fk [νk, wkj, θk, (k≠j)] is defined , 

for each node k, which determines the state of the 
node as a function of its bias, of the weights of its 
incoming links, and of the states of the nodes 
connected to it by these links. 

 
In the standard terminology , the nodes are called neurons, 

the links are called synapses, and the bias is known as the 
activation threshold. The transfer function is either a 
discontinuous step function or its smoothly increasing 
generalization known as a sigmoidal function [6-8]. This 
standard network structure with several layers is called 
MultiLayer Perceptron (MLP) (figure 2). 
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Fig. 2  Multilayer Perceptron network architecture. 

 
Among the many interesting properties of a neural network, 

the property that is of primary significance is the ability of the 
network to learn from its environment, and to improve its 
performance through learning; the improvement in 
performance takes place over time in accordance with some 
prescribed measure. A neural network learns through an 
iterative process of adjustments applied to its synaptic weights 
and thresholds. 

A prescribed set of well-defined rules for the solution 
of a learning problem is called a learning algorithm. There is 
no unique learning algorithm for the design of neural 
networks. Basically, learning algorithms differ from each other 
in the way in which the adjustment  to the synaptic weight is 
formulated.  

The present work used the SNNS (“Stuttgart Neural 
Network Simulator”) as the interface for designing, training 
and validation of the network. The back-propagation algorithm 
was applied .  

The Bonner Sphere set chosen is one Calibrated at the 
National Physical Laboratory, United Kingdom, which uses 
gold activation foils as thermal neutron detectors [9]. The 
neutron energy covered by the response functions goes from     
0.0001 eV to 10 MeV. A set of continuous neutron spectra was 
investigated. 
 

D. Training and test files 
The network consisted of three neuron arrays: input, hidden 

and the output array (see figure 2). The input array was built of 
10 neurons and corresponds to each reaction rate of the Bonner 
Sphere. The output array consisted of a single neuron and 
corresponds to the calculated Neutron Ambient Dose 
Equivalent. A sigmoid activation function was used 
normalised in the interval from –2 to 2. Several neutron spectra 
were chosen for training: Maxwellian, Watt, 1/E and 
combination of these. All spectra were normalized to unity 
neutron fluence. 

Interpolations were performed in order to obtain the 
conversion factors for the neutron energies corresponding to 
the Bonner Sphere response table. The reaction rates 
corresponding to each of the 27 selected neutron spectra were 
determined numerically. From this data a neural network was 
built having input given by reaction rates from the Bonner 
Spheres and a single output corresponding to the Neutron 
Ambient Equivalent Dose. The training was performed with 21 
neutron spectrum sets and testing was performed with the 
remaining 6 sets. 

 The training was repeated until the Standard Error was 
0.0005 which was achieved after 105 iterations. The training 
rate was 0.1 and the momentum constant parameter was 0.08. 
The final network consisted of 10:2:1 neurons in the input, 
hidden and output layers respectively. 

II. RESULTS AND DISCUSSION 
Table 2  shows the results obtained with the six SANDLIB 

testing neutron spectra. The network was able to predict the 
results for all the 6 unknown neutron Ambient Equivalent 
Dose with an accuracy between 1 to 6 %. Spectra numbered 
25, 30 and 42 correspond to fast neutrons and spectra 3, 34 and 
59 have a higher component of thermal neutrons. This 
behavior explains the higher values of neutron Ambient 
Equivalent Dose in the former spectra as compared to the latter 
cases.  

 
Table 2  Comparison between Ambient Equivalent Dose 

values expected for six testing neutron spectra from 
SANDLIB with those obtained by Neural Network. 

 

SANDLIB 

Neutron Spectrum 

Number 

Expected Ambient 

Dose Equivalent 

H*(10) 

(10-12 Sv) 

Obtained Ambient Dose 

Equivalent H*(10) 

(10-12 Sv) 

6 78.0 78.7 

25 220.6 215.4 

30 329.7 336.4 

34 147.0 142.9 

42 385.4 401.9 

59 167.8 158.9 

 

These results indicate that, once trained, the neuron network 
can supply a quick result for the Neutron Ambient Equivalent 
Dose with good accuracy, based on Bonner Sphere 
measurements. 
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