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ABSTRACT 
In this work the novel approach to artificial neural 

networks based on the design of task-specific networks and on 
a neuron model with multiple synapses developed by Baptista, 
Cabral and Soares (1998) is extended to accommodate external 
perturbations. As an example of this new development the 
neural network is applied to control the fluid temperature of a 
natural circulation loop. The learning and the action processes 
are made through simulations. The natural circulation loop 
simulation model is based on physical equations and on 
experimentally identified parameters. The results show that 
besides the excellent learning capability and generalization, 
the new improvements are suitable to accommodate external 
perturbations so that the network is able to maintain the 
controlled variable within allowable limits even in the 
presence of strong perturbations. 

INTRODUCTION 
The purpose of this work is to present new developments 

associated with a new concept of artificial neural networks 
which was introduced by Baptista, Cabral and Soares (1998) 
and Baptista (1998). This new neural network concept, now 
nominated MULSY Neural Network (Multiple Synapses N.N.), 
is based on the design of task specific neural networks and on 
the physiology of biological neural systems. Baptista, Cabral 
and Soares developed a basic neural network control unit 
which was used to control a planar two-link manipulator. This 
control unit is improved here to deal with external 
perturbations that affect the control task. 

In this work a thermal-hydraulic system is used as the 
control object. This system consists on a Natural Circulation 
Loop (NCL) which resembles an Advanced Pressurized Water 

Reactor Decay Heat Removal System. The NCL problem is 
very non-linear and due to the complexity of its functions it 
represents a difficult control problem. Comparing the NCL 
with a manipulator arm both are non-linear but their dynamic 
behavior is quite different, the NCL is more complex but it is 
much slower than the manipulator. In this work a system of 
different nature was chosen to show the capability of the 
MULSY Neural Network to deal with different kinds of 
problems. 

This paper consists of six sections. The first section is this 
introduction. The second section reviews the basic principles of 
the MULSY concept. The third section shows the Natural 
Circulation Loop and the dynamic model used to simulate it. 
The fourth section presents the application of the MULSY in 
the control of the NCL and the new developments and 
improvements added to the basic control unit. The fifth section 
is devoted to show the results. The sixth section presents the 
conclusions. 

MULSY CONCEPT 
The present ANNs consider regular arrays of units 

(representing neurons) interconnected by single connections 
with linking weights (representing synapses). In the last years 
ANN's researchers have focused on the limitations of this 
approach. Kolen and Goel (1991) concluded that current 
connectionist methods may be too limited for the task of 
learning they seek to solve, and they proposed that the 
development of task-specific methods may enhance the power 
of neural networks. 

Baptista., Cabral and Soares (1998) have developed the 
MULSY Neural Network based on the following principles: 1) 
an ANN design shall be based on biological systems to take the 
profit of their evolutionary nature; 2) it shall represent what it 
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knows and what is to learn and it must have capabilities to 
generalization, therefore it must have different regions 
specialized for different functions; 3) it must be robust to 
missing information, incorrect data and unit removal or 
malfunction; 4) the learning task shall be done in real-time 
while functioning and shall be independent on the initial unit 
strength; and, 5) the process of learning and functioning must 
be computationally efficient without limiting the power of 
connection's transfer functions to obtain higher classes of 
input-to-output functions. 

Figure 1 presents the "motor control unit", which the 
MULSY Network is based on as developed by Baptista., Cabral 
and Soares (1998). The input pathway from the upper level 
system ("The Wish" - Ie) and that from the sensory system 
("The Actual Condition" - IS) converge to the unit responsible 
for sensing the actual error (E) and to the motor unit. This 
resembles the architectural design and flow of information 
present in biological neuronal circuits as described by Kandel, 
Schwartz and Jessel (1991). 

To model the biological function of a pool of neurons, it is 
enough a single unit with a transfer function in a scaled 
positive/negative domain to emulates agonist and antagonist 
circuits. The transfer function chosen is the modified 
hyperbolic tangent function expressed as, 

O =TN  tanh(ay, S),  (1)  

where, O is the output signal, TN represents the "size" of the 
unit, a is a gain, and ES is the summation of all synaptic input 

to that unit. The "size" can be set to convenient values to  

improve the linearity in the range of interest or to amplify or  

reduce the input to output relation.  

The signals are transmitted to the neural units through  

connections (synapses) that are modeled by the following  

expression:  

S
_  

l+ a(I —le)2 	
(2)  

where, T is the "strength" of the synapse, which can be set as  
any positive value (excitatory) or as any negative value  

(inhibitory), a is a constant that can be adequately choose to  

produce smooth functions according to the number of  

synapses, I is the signal value that pass through the axon, and  
Io  (which is called here "threshold") is the value of I that  
maximizes S, the output value to the target cell. This function  

is much simpler than sigmoidal functions in terms of  
computational time and permits amplification and selective  

response. With convenient strengths and thresholds, a set of  

these functions can produce any kind of continuous function.  

The wish and the actual condition signals are linked to the  
error sense unit with rigid connections (synapses) that will not  

change with training. These connections are modeled to make  

the error unit to sense the actual condition from the sensory  

system with the opposite sign of the wish signal, i.e., e = Ie  — 
Is. 

Figure 1 - Motor Control Unit of the MULSY Neural Network as developed by Baptista., Cabral and Soares (1998). 
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The schema of multiple branches of synaptic terminals 
improves the reliability as long as it allows the increase in the 
number of terminals, what can make a more fail-proof system. 
Equations (3) through (6), which model the terminal types' 
Se+, Se_, and S,_, indicated in Fig. 1, are based on the model 
of a single synapse. 

1 r 	2 
S = 	  

N 1+ 0.25(/ — 2)2 j; 

1 	2 
S = 	  

N(1+0.25(1 +2)2 

1 	— 2 
S = 

N(1+0.25(1+2)2 j; 

1 	—2 s — 
N(1+ 0.25(/ — 2)2 	 j; 

where, N is the number of redundancies, which does not 
modify the net result, the subscript e refers to the excitatory 
synapses, and the subscript i refers to the inhibitory synapses. 

The rate of change of the sensory signals is sensed by the 
differences between signals from units in different layers. The 
inter-units responsible for this function are presented between 
the error signal and the actual condition signal of Fig. 1. These 
units are coupled with rigid connections, which do not change 
during training. The output signals of these units in the several 
levels represent the rates of change of sensory signals. These 
signals are equivalent to the rate of change of the error signal 
when the desired value is constant. These signals are combined 
to the error signal into one intermediate unit that makes the 
connections with the output unit. This signal combination 
represents the system dynamics as an analogy to the 
summation of ao e + al de / dt + a2 d2e / dt2 + ... The 
coefficient ao of the error was implemented by the following 
synaptic functions that result in a linear transfer function: 

1 s
'

— 
N 1+ 0.25(1 — 2)2 

1 	Te  S = 
N(1+0.25(1+ 2)2 j; 

where T, is the strength of the error synapse. 

The synaptic transfer functions for the connections of the 
rate of change of the sensory signals with the inter-unit are 
modeled with damping characteristics of the type of x/x/. This 
is necessary to attenuate oscillations and to make the process 
stable even in the presence of high rates of change. Equations 
(9) and (10) implement the coefficients a, according to that 
characteristic.  

''' 	N(1+11(I —1)2); 
1 	 

S = 

1 l 	—T, 	N 
S„ =   ; 

' N 1+11(I +1)2 i 

where Tr is the strength of the rate of change synapses. 

The sensory, the upper level, the error and the sensory 
rates of change signals converge to the output unit, whose 
output signal (0) will be the input to the actuator's drive. Then 
the output unit receives sensory information, upper level 
commands, and a combination of error and rates of change of 
the signals, and generates the output signal according to the 
following equation, 

0 =TN tanh[a(8 +ES, +ESA, 	 (11) 

where S, and Sk are the outputs of the upper level and sensory 
motor unit synapses respectively, and 3 is the signal generated 
in the inter-unit as a function of the error and rates of change. 

The sensory and upper level signals are transmitted 
through two symmetrical (in terms of threshold and strength) 
sets of synapses, which are the synapses with plasticity that 
will be adjusted by learning. Equations (12) and (13) represent 
these plastic synapses. This solution maintains similitude with 
the mechanisms of sensitization, habituation and classical 
conditioning, as described by Kandel, Schwartz and Jessel 
(1998). 

s — 
1+ a(I, — 102 

T, 

1+ a(1,— I o.,)2 

where S, is the output of the j-th synapse connected with "the 
wish", Sk is the output of the k-th synapse connected with the 
actual condition signal, T., and Tk are the strength of the j-th 
and of the k-th synapses respectively. 

The action of the facilitating inter-unit over the 
presynaptic contacts of the motor unit (the learning cell) is to 
increase a source term that acts on the long-term plasticity. 
This is done through a cumulative process, expressed by the 
following equation: 

dC 
—=7' 	, 

dt 

where, C is a long-term change's trigger factor, 8 is the output 
signal of the facilitating inter-unit, A. is a decay constant, and, 

(7) 

(8) 

sk - 

(12) 

(13) 

(14) 
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T is the strength of the facilitating synapse (that controls the 
rate of change). 

According to equation (14) the long-term change's trigger 
factor (C) can grow in a rate proportional to the learning 
signal (S) up to an equilibrium value. This makes the change 
in the synapses strength faster or slower. If the incoming 
learning signal decreases to zero the long-term change's 
trigger factor will also decrease to zero, according to the rate 
established by the decay constant (A.). This means that after a 
reasonable period of training, when there are no error and no 
excessive movement, there will be no need for further changes, 
thus making the process inherently stable. To complete this 
idea, it is necessary to set an artifice that makes the changes 
occurring mainly in the convenient synapses, i.e., in the 
synapses where the threshold (Ia) is closer to the incoming 
desired values, like in the resonance hypothesis of Paul Weiss 
(1948). This characteristic makes the correct synaptic 
selection. In equation (15) the rate of change of the strength of 
the motor unit synapses (parameter Tj  or Tk in equations 12 
and 13) is a function of the long-term change's trigger factor 
and of the synaptic threshold. 

dT , k _ 	C 

dt 	l+a(I:  — lo.  , k ) 
(15) 

where, To, is the strength of the j/k-th synapse of the motor 
unit, as  is the constant of the Gaussian like function of the 
facilitating synapse, II` is the signal value that comes from the 
upper control level (the Wish), and 10,1  is the threshold of the 
synapse. 

In summary, equation (14) emulates a cumulative process 
within the synaptic terminal which generates a source term 
that is the trigger of the long term changes, and equation (15) 
selects the correct synaptic terminal which generates the rate 
of change of the synaptic strength. This process acts on all 
synaptic contacts in the target unit but, with a higher growing 
rate in the synapses that have the threshold closer to the input 
desired signal (I /0,j). Before any training the plastic 
synapses have no strength, i.e., Tik = O. The existence of an 
error signal E yields a S signal different from zero that acts to 
increase or to decrease the long-term trigger factor C given by 
equation (14). The plastic changes, responsible for the learning 
process, take place in the motor unit synapses. The synapse's 
strength changes according to equation (15). The dotted line in 
Fig. 1 indicates that I, is used to provide the selective 
characteristic of the learning process. Thus, the wish signal is 
used to control the plastic change of both motor unit synapse 
sets to guarantee the symmetry between them. 

NATURAL CIRCULATION LOOP - THE CONTROL PROBLEM 

Fig. 2 presents a schematic of the Natural Circulation 
Loop (NCL) which resembles an Advanced Pressurized Water 

Reactor Decay Heat Removal System. The NCL has an electric 
heater, that it is the hot source of the system, and a heat 
exchanger, that is the heat sink. The heat exchanger is made of 
two horizontal manifolds connected by a vertical tube bundle 
immersed in a water tank. Cold water coming from a elevated 
water reservoir is supplied to the water tank by gravity. A 
magnetic flow meter is installed in the main circuit line. The 
secondary cooling water flow is controlled by a globe valve 
with the aid of a flow meter. 

A numerical model, described in Appendix A, was 
developed to simulate the thermal and hydraulic processes of 
the NCL. Fig. 2 also presents some conventions used in the 
simulation model. Tables 1 and 2, inside Fig. 2, show the 
parameters used in the model. A description of these 
parameters is found in Appendix A 

The coupling of the NCL Model with MULSY Network 

The NCL control problem consists on the control of the 
primary water temperature at a given position in the loop, 
acting only on the heater power. The secondary side water 
temperature and flow rate are assumed to be disturbances to 
the process, and they should be monitored by the neural 
network controller to adjust the magnitude of the power 
control signal. The solution of this problem requires an 
improvement of the Motor Control Unit of the MULSY 
Network presented in Section II. 

To manage the external disturbances the MULSY Network 
is modified to receive beyond the desired and actual 
temperature signals, the secondary water inlet temperature and 
the cooling water valve flow area fraction. Note that these 
signals are all scaled to the range of —1 to +1. Fig. 3 shows the 
MULSY network with these modifications. In this new 
configuration, the control motor unit of Fig. 1 is linked to two 
parallel branches which processes the disturbances signals. 
Each one of these branches has a set of plastic synapses. The 
expressions of these plastic synapses are exactly the same as 
the ones used for the wish and the actual signals, eq. (2). 

The S signal, composed by the combination of the error 
with the rate of change of the controlled temperature, is also 
used to modify the synaptic strength of these new sets of plastic 
synapses. The desired signal, IC, is also used to provide the 
selective characteristic for the strength adjustment of these 
disturbance synapses. 

The output of the disturbances units are used to modulate 
the gain of the motor unit output (0) in order to generate the 
control signal, as follow: 

S, = 0,0Z 0 , 	 (16) 

where S, is the control signal and 0, 01 and 02  are the outputs 
of the control units of Fig 3 
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• Heat transfer area of the electric heater. 0.474&; 
• Overall heat transfer coefficient through 

the thennal insulation: 	 2.0W/maiC; 
• Maximum heater power. 	 22-50W; 
• dp 	 0.000131; 

R-6 

WATER RESERVOIR 

R-5 

MAGNETIC FLOW METER 

R-4 

\ / 

2s 

Table 2 - Heat exch nger secondary side data. 

Parameter Region 1 Region 2 Region 3 
Heated perimeter (m) 0.13964 0.53863 0.13964 
Heat transfer area (m`) 0.13964 0.34203 0.13964 
Flow area (m`) 0.2056 0.2500 0.2056 
Volume lengths - As (m) 0.100 0.127 0.100 
h, (W/m"C) 500.0 645.0 500.0 
h, (W/m`°C) 500.0 645.0 500.0 

R-7 

3 

Table 1 - NCL prim ry side hydraulic data. 

Region Control 
Volumes 

D. (m) Le, 
(m) 

Flow Area 
(d) 

Volume 
(m'l 

1 5 0.0381 283.1 0.00114 0.00114 
2 5 0.007945 179.9 0.0008924 0.000527 
3 5 0.0381 223.1 0.00114 0.00114 
4 5 0.0208 284.0 0.0003198 0.001018 
5 10 0.0208 457.5 0.0003398 0.001642 
6 5 0.0208 230.5 0.0003398 0.001417 
7 2 0.0208 103.8 0.0003398 0.000027 
8 5 0.0144 118.1 0.00188 0.00374 
9 2 0.0144 58.9 0.00188 0.00033 
10 8 0.0208 228.2 0.0003398 0.001224 
11 2 0.0208 48.4 0.0003398 0.0000595 

Figure 2 - Schema of the Natural Circulation Loop (NCL). 

Figure 4 - MULSY Neural Network controller representation. 
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In this implementation, the network considers only 
the first order variation of the error signal (l s` order 
approximation). Higher order terms are neglected because of 
the huge inertia of the NCL. This large inertia, which can be 
observed in the great time constant of the NCL, eliminates fast 
variations. 

Neural Network Data 
Table 3 presents the data used in the MULSY Neural 

Network of Fig. 3. These data are the same as the ones used in 
the case of the planar two-link manipulator controller of 
Baptista, Cabral, and Soares (1998), except by the number of 
synaptic terminals and the values of some constants. The decay 
constant for adjustment of the plastic synapses strength, X, was 
reduced by a hundred times (from 10 to 0.1) to match with the 
process time constant, which is very slow for a natural 
circulation process. As long as a different number of synapses 
is used, the constant a s  of the facilitating synapses is different, 
see Baptista. (1998). However, its relationship with the 
constant a of the plastic synapses is the same, i.e., a s/a = 
144/28.8 = 100/20 = 5. Note that, as it is necessary to turn off 
the plasticity process in some instances (as it is explained in 
the item regarding the training) the constant T c  assumes two 
different values, either 0 or 0.1. 

Table 3 - Neural network data. 

Parameter Value 
Unit's size - TN 2.1 
Units gain constant - a 0.5 
Plastic synapse's constant - a 20.0 
Plastic synapses in the sensory to output unit 13 
Plastic synapses in the "wish" to output unit 13 
Plastic synapses in the disturbance units 13 
Consecutive thresholds 	interval 	in the plastic 
synapses (pl = Io J+, - I  o,; ) 

0.2 

Strength of error synapses - Te  2.5 
Strength of rates synapses - T,. 0.09 
Strength of facilitating synapses - Te  0 / 0.1 
Synaptic strength decay constant - A, 0.1 
Plastic synapse's plastic constant - as  100.0 

RESULTS 
Training phase 

The MULSY Network training is performed during the 
execution of action commands, following an unsupervised 
training method. Desired temperatures and projected 
disturbances constitute the training universe. Different from 
the manipulator's case, there are three training data tables, one 
for each given variable: the desired temperature, the cooling 
water valve opening and the inlet cooling water temperature. 

Tables 4 to 6 show the data sets - note that the training is 
developed in three stages. The effects of the three variables are 
not superposed, i.e., while training for one of the variables, the 
synaptic plasticity process of the branches associated with the 
others variables is blocked (no-plastic changes). This is done 
by setting Tc  = O. 

Each stage of the training phase is divided into sessions, 
making possible to observe the learning progress. In the 1 s' 
stage the seven conditions specified in the Table 4 are 
submitted for 3 times to the MULSY Network controller. This 
represented 3x7x14,400 = 302,400 seconds of process time. 
The 2nd  stage consists on the repetition for 2 times the 9 
conditions of Table 5, or 2x9x12,800 = 230,400 seconds of 
process time. In the 3`d  and last stage the first session is 
accomplished with 10,800 seconds for the first condition and 
3,600 seconds for each one of the other conditions. The second 
session considers 7,200 seconds for the first condition and 
again 3,600 seconds for the others. Thus, the last stage 
represents 1x10,800 + 1x7,200 + 2x9x3,600 = 82,800 seconds 
of process time. Therefore, the whole training phase represents 
a total of 615,600 seconds of simulate process, which is about 
171 hours. 

Table 4 - Training data for the desired temperature 
Condition Duration 

(s) 
Ten„ 
(°C) 

Cooling 
Temp. 

Valve 
opening 

Desired 
Temp. 

1 14400. 25.0 20.0 0.25 30.00 
2 14400. 25.0 20.0 0.25 35.00 
3 14400. 25.0 20.0 0.25 40.00 
4 14400. 25.0 20.0 0.25 45.00 
5 14400. 25.0 20.0 0.25 50.00 
6 14400. 25.0 20.0 0.25 55.00 
7 14400. 25.0 20.0 0.25 25.00 

Table 5 - Training data for the cooling water temperature 
perturbation (stage 2). 

Condition Duration 
(s) 

T. 
(°C) 

Cooling 
Temp. 

Valve 
opening 

Desired 
Temp. 

1 12800. 25.0 14.0 0.25 50.00 
2 12800. 25.0 16.0 0.25 50.00 
3 12800. 25.0 18.0 0.25 50.00 
4 12800. 25.0 20.0 0.25 50.00 
5 12800. 25.0 22.0 0.25 50.00 
6 12800. 25.0 24.0 0.25 50.00 
7 12800. 25.0 26.0 0.25 50.00 
8 12800. 25.0 28.0 0.25 50.00 
9 12800. 25.0 30.0 0.25 50.00 

After executing the three training stages, the strength of 
the synaptic contacts grew from the initial values (zero) to the 
values shown in Fig. 4 to 6. It took about 1.48h of CPU time in 
a PENTIUM 166 MHz microcomputer to perform the training 
phase with a simulated time of 171 hours. 
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Figure 4 - Synaptic strengths after the 1 0  training stage. 
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Figure 6 - Synaptic strengths after the 3 rd  training stage.  
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Performance Tests  
After the training, the MULSY Network controller is able  

to control the NCL primary water temperature under several  

conditions of disturbances in the cooling water valve opening  

and in the cooling water temperature. Tests are performed to  

evaluate the generalization capacity of the network to execute  

commands that are not present in the training tables. During  
these tests, the plasticity mechanisms are blocked to avoid  
additional synaptic strength modification. The tests are  

executed on the physically possible domain, limited by the  
plant design.  

The results of a single simulation test composed of several  

transient operations within a 26 hours period are presented.  

The test begins with the environmental temperature at 25 °C  
and the cooling water temperature at 20 °C. In the first  
command the desired primary side temperature is equal to the  

mean training conditions, i.e., 50 °C at the heater outlet, with  
the cooling water valve opening corresponding to 25%. The  

test continues with the conditions shown in Table 7.  

Table 7 -  Performance test data set.  

Condition Duration 
(s) 

Tenv 
(°C) 

Cooling 
Temp. 

Valve 
Openin 

g  

Desired 
Temp. 

1 16000. 25.0 20.0 0.25 50.00  
2 7200. 25.0 23.0 0.25 50.00  
3 7200. 25.0 25.0 0.25 50.00  
4 7200. 25.0 25.0 0.25 55.00  
5 7200. 25.0 25.0 0.12 55.00  
6 7200. 25.0 25.0 0.08 55.00  
7 7200. 25.0 25.0 0.08 60.00  
8 7200. 25.0 25.0 0.08 33.00  
9 7200. 25.0 15.0 0.08 33.00  
10 7200. 25.0 15.0 0.08 53.00  
11 7200. 25.0 15.0 0.08 42.00  
12 7200. 25.0 17.0 0.33 37.00  

LJUlluuuu  

Synapses strength of-
A aiv  unit (02 - outlet) 

u Table 6 -  Training data for the valve opening perturbation.  

Condition Duration 
(s) 

Tenv 
(°C) 

Cooling 
Temp. 

Valve 
opening 

Desired 
Temp. 

1 1x10800 
1 x7200.  

25.0 20.0 0.05 50.00  

2 2x3600. 25.0 20.0 0.10 50.00  
3 2x3600. 25.0 20.0 0.15 50.00  
4 2x3600. 25.0 20.0 0.20 50.00  
5 2x3600. 25.0 20.0 0.25 50.00  
6 2x3600. 25.0 20.0 0.30 50.00  
7 2x3600. 25.0 20.0 0.35 50.00  
8 2x3600. 25.0 20.0 0.40 50.00  
9 2x3600. 25.0 20.0 0.45 50.00  
10 2x3600. 25.0 20.0 0.50 50.00  
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Figure5 -  Synaptic strengths after the 2nd  training stage.  
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Figure 8 - Temperature error evolution. 
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The duration of the first condition was chosen to allow the 
NCL primary water temperature to approach almost a steady 
state condition. The natural circulation process in the NCL 
requires approximately 22,000 seconds (experimentally 
measured) to reach a steady state condition in the heat 
exchanger secondary side. Note that 16,000 seconds is about 
the time to reach partial regime stability in the primary side of 
the heat exchanger, therefore this is the duration chosen for the 
first step. All the other steps last 7,200 seconds, which is about 
1/3 of the time to reach stabilization, this leads to about 95% 
of the steady state primary side temperature. Fig. 7 shows the 
tests conditions as a percentage of the mean training 
conditions (primary water temperature of 50°C, cooling water 
temperature of 20°C and valve opening fraction of 0.25). 
Observe that some values of Table 7 are out of the training set 
range, others are between two training values but not 
coincident with any one. 
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Figure 7 - Relative Perturbations. 

It took about 16 minutes and 35 seconds of CPU time in a 
PENTIUM 166 MHz computer to perform the tests of Table 7, 
which represents 95,200 seconds of simulated process time. 

The error in the desired temperature, defined as the 
difference between the observed and desired temperatures is 
presented in Fig. 8. Only in four conditions the observed 
temperature errors are over the range of ±0.5°C. Two of these 
conditions happen when the time was not enough for the 
system to accommodate the perturbation. Another condition 
happens when the two highest perturbations (cooling water 
temperature of 15°C and valve opening of 0.08) are combined. 
The last condition happened when the valve opening of 0.08 is 
combined with a desired temperature 5°C over the maximum 
trained temperature. 

CONCLUSIONS 
As it was demonstrated by Baptista, Cabral, and Soares 

(1998), the option of task-specific networks with the use of 
multiple contacts in the axon terminals increases the 
integration capability of the network. Higher classes of 
connection's (synapse) transfer functions improve the input-to-
output relation, allowing a reduction in the total number of 
units with expensive sigmoidal functions. The training task is 
performed without the need of input-output examples, allowing 
on-line training during the execution of desired commands, as 
in an unsupervised learning approach. 

In this work an improvement in the MULSY Neural 
Network concept to accommodate external perturbations is 
presented. The results obtained in the NCL temperature 
control, even with perturbation conditions outside the training 
set, show that the MULSY Network is able to generalize the 
learning. The good performance indicates that the MULSY 
Network with this disturbance rejection scheme can be easily 
implemented in the control of any kind of system. 

ACKNOWLEDGMENTS 
The authors acknowledge the financial support given by 

Funda9do de Amparo Pesquisa do Estado de Sdo Paulo 
(FAPESP) to present this paper. 

REFERENCES 
Baptista F., B.D.., Cabral, E.L.L. and Soares, A.J., 1998, "A New Approach to 
Artificial neural Networks," IEEE Transactions on neural Networks, VoL 9, No. 
6, pp. 1167-1179. 
Baptista F., B. D., Neural Networks for Control of Nuclear Reactor Systems, 
São Paulo: 1998, Thesis (Doctoral) — Instituto de Pesquisas Energéticas e 
Nucleares fin portuguese). 
Kolen, J.F. and Goel, A.K., 1991, "Learning in Parallel Distributed Processing 
Networks: Computational Complexity and Information Content", IEEE 
Transactions on Systems, Man, and Cybernetics, VoL 21, No. 2. 
Kandel, E.R., Schwartz, J.H. and Jessel, T.M., 1991, Principles of Neural 
Science, Prentice-Hall International Inc., Third Edition. 
Weiss, P., and Hiscoe, H.B., 1948, "Experiments on the mechanism of nerve 
growth", J Exp. ZooL, 107:315-395. 

8 	 Copyright © 2000 by ASME 



APPENDIX A — THE NCL MODEL 
	 exchanger. An energy balance in the tube walls results in the 

following expression: 
This Appendix presents the numerical model used to 

simulate the thermal-hydraulic processes of the NCL. 
Although the model is simple it is able to adequately simulate 
the dynamics of the NCL. The basic assumptions used in the 
model are one-dimensional flow and incompressible fluid. 

A. Mass Conservation 

For the mass conservation equation the water is considered 
an incompressible fluid. Thus, for one-dimensional flow, the 
mass conservation results in a constant mass flow rate 
throughout the whole loop at any instant. This result allows to 
decouple the continuity and momentum equations from the 
energy equation. 

B. Energy Conservation 

In the energy balance the dissipation terms and the heat 
conduction through the water are neglected, so that the general 
energy equation for the fluid in a control volume is given by: 

pA aT =-riiC  as —Pg ii , 	 (17) 

where p is the average water density in the volume, C is the 
water specific heat at constant pressure, T is the temperature, A 
is the flow area, lit is the mass flow rate, s represents the 
dimension in the flow direction, P is the section perimeter, and 
q" is the heat flux. 

To distinguish between the two fluids in the heat 
exchanger, the water in the main loop is called primary fluid 
and the cooling water in the heat exchanger is called 
secondary fluid. With this convention the energy equation is 
applied to the NCL as described next. 

The NCL is divided into regions. These regions are 
presented in Fig. 2, for example region 4 is denoted by R-4. 
Each region is further divided into several volumes. The 
general energy equation applied to the primary side results in 
following expression: 

Pr V C 
aT.r.i — mpCos aT .r.i 

—Sr.,g° at 	as 	° 

where the subscript r defines the region, the subscript i denotes 
the volume, the subscript p specifies the primary side, As is the 
volume length, and S is the volume surface area. For the 
secondary side of the heat exchanger the energy equation is 
similar. 

The coupling between the primary and secondary fluids is 
made by the heat transfer across the tube walls of the heat 

PMYMvM 
 aTM.r.I  — (v 

 at  (19) 

where the subscript M denotes the metal and, q'p  and q"s  are 
the wall heat fluxes at the primary and secondary sides 
respectively. These heat fluxes are given by the following 
equations: 

q p...1 = hP   ( p .r.i — TM.r.i ) 	 (20) 

(21 ) 

where hp  is the heat transfer coefficient from the primary fluid 
to the tube wall, hs  is the heat transfer coefficient from the tube 
wall to the secondary fluid, and TM  is the temperature of the 
metal of the tubes. These heat transfer coefficients are obtained 
experimentally. 

For the regions inside the electric heater, the heat 
generated by the electric resistance is completely transferred to 
the water, so that the term Sp, r, ;q"p,r, 1 represents the fraction of 
the electric heat generated inside the volume i. For the others 
primary side regions, the heat flux corresponds to the heat loss 
to the environment, which is calculated according to eq. 20 
and the next expression: 

= Z% (TM.r.i 
—T,„„) ; 	 (22) 

where q"n, is the heat transferred from the tube wall to the 
environment, U,so , is the global heat transfer coefficient from 
the tube metal to the environment through the thermal 
insulation, Tel,,, is the environmental temperature. The tube 
wall temperature, TM, is calculated by an equation similar to 
equation (19). 

C. Momentum Conservation 

For the momentum conservation the difference in the 
water specific mass through the loop is considered, because in 
a natural circulation loop the flow is driven by the difference in 
the fluid density between the ascending and the descending 
lines. The primary fluid mass flow rate is calculated by the 
momentum conservation equation, which is written for each 
pipe segment presented in Fig. 2. For the segment between 4 
and 1, corresponding to the ascending line, this equation 
results in the following: 

m j' 	v z 
L4 , dt° =(P4 - p.)+P,,g(z4-z.)-. /4. D̀41  PA 2 , 	(23) 

(18) 
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where pA  is the water specific mass in the ascending line, L41  is 
the pipe length between points 4 and 1, p4  and pi  are the 
pressures in points 4 and 1 respectively, g is the gravity 
acceleration, z4  and z1  are the heights of point 4 and 1 
respectively, f41 is the friction factor, Leq,41  is the equivalent 
length for the pressure loss, D is the pipe hydraulic diameter 
(the internal pipe diameter), and v41  is the average water 
velocity between points 4 and 1. Observe that as the overall 
effect of acceleration along the circuit is canceled, the 
acceleration terms of the momentum equations were removed. 

The momentum equations for the other segments are 
similar to equation (23). Summing all the momentum 
equations written for every segment, results in: 

	

drit 	z+z 	 z+z 

	

L dt 	2 	 2  

	

° 	_° 	' P,,  —Pn)+ i 	a  

where L represents the total loop length, pp is the water  
specific mass in the descending line, and the last term  

represents the total friction in the loop. The water specific  

masses in the heat exchanger and in the electric heater are  

assumed to be an average of the water specific masses in the  

ascending and in the descending pipes.  

D. Cooling Water Control Valve Modeling 

The secondary side mass flow rate is modulate by the  
cooling water control valve. To simulate the cooling water  

control valve behavior, a generic valve model is considered.  

This model relates the flow rate to the valve coefficient,  C.  
The valve inlet and outlet pressures are considered to be  

constant, since the flow rate is small and the reservoir water  

level could be maintained constant. Therefore, the secondary  

side mass flow rate is given by the following equation:  

ri?„ = P,A„OPC„ , 	 (25)  

where ps  is the secondary side water specific mass, A„ is the  
valve flow area, and 4p is the pressure drop in the valve which  
is considered constant. The maximum C„ value was  
experimentally obtained. Its dependence with the valve flow  
area is modeled by:  

C, = (2.7A,e -A  )C,.^,^ . 	 (26)  

E. Numeric Solution, Parameters and NCL Data 

The equations that model the thermal and hydraulic  

processes of NCL are solved with the aid of a computer  
program. The time derivatives in the dynamic equations are  

approximated using the Euler Method. Thus, for instance, in  
the case of the temperatures this approximation yields,  

T`;°` = T ` +OtT̂' , 
at  

(27)  

where t is the time and At is the integration time step. In the 
energy equations the space derivatives are approximated by the 
donor cell method. 

The solution of the dynamic processes follows a tandem 
approach, where the energy equations are solved first (using 
the previously determined flow rates) followed by the 
momentum equations. The solution of the energy equations 
begins at the heat exchanger primary water inlet, in the region 
numbered R-1. The solution of the energy equations follows 
the sequence of Fig. 2. 

In the momentum equation, the water properties are 
evaluated at the water mean temperature in each region and 
not at the conditions in each control volume. As each region is 
uniformly divided into several control volumes of identical 
size, the region mean temperature is the arithmetic average of 
the temperatures of each control volume. The water physical 
properties are evaluated at these mean temperatures by means 
of temperature dependent functions. 

The friction factor for Reynolds numbers greater than 100 
was experimentally obtained, yielding: 

f = 0.7x 91e-0." . 	 (28)  

for Re _< 100 the friction factor is assumed constant and equal 
to 0.22.  

Fig. 2 shows the NCL primary side divided into eleven 
(11) regions. Each one of these regions is further divided into 
the control volumes indicated in the Table 1, inside Fig. 2. 
This Table also presents the NCL hydraulic data. 

As mentioned, the primary and secondary heat transfer 
coefficients of the heat exchanger and the friction factor 
correction factor were experimentally obtained. Overall heat 
transfer coefficients variations within a 15% range were 
observed in the initial phase of the experiments. This variation 
is considered small so that constant heat transfer coefficients 
for both the primary and secondary sides of the heat exchanger 
are used in the simulations. Table 2 shows the experimental 
values obtained for these coefficients, note that these values 
reproduce the experimental global heat transfer coefficient 
applied to the total heat transfer area (133 W/ °C). 

f  

Pp —  PA ) — f 
D 

 p 2; (24)  
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