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Abstract-Certain numerical characteristics of an inverse formulation for three-term scattering radiative 
transfer are investigated. Specifically, approximate solutions to the direct problem are constructed by the 
FN and Monte Carlo methods, allowing approximation of the various surface angular moments and related 
quantities needed for the inverse calculation. Several numerical schemes are employed in order to 
demonstrate the computational characteristics for some specific phase functions. The numerical results 
indicate that the single-scatter albedo can be calculated fairly consistently and accurately, but the higher 
order coefficients of the scattering law are more difficult to obtain by this method. 

I. INTRODUCTION 

We are concerned here with the practical application of the inverse formulation given by 
Siewert’ for radiative transfer in plane geometry with a three term phase function. We consider 
first the equation of radiative transfer of the form 

I(T CL) = @I_‘, ~(/-&‘)I(T I.L’) dp’, TE[L,Rl (1) 

subject to 

I&, p) = F, (p), CL > 0, (2) 

OR, IL) = 6 (CL), CL < 0, (3) 

where I(T, p) is the radiation intensity, T is the optical variable, p is the direction cosine of the 
propogating radiation with respect to the positive 7 direction, w is the sinlge-scatter albedo, 
f(p(p’) is a probability density function (pdf) describing the scattering law inside the slab 
atmosphere contained in L s r c R, and F, and F2 are known incident distributions. Next, we 
consider the specific pdf 

~(P’/cL’) = fP + h-w’+ M’A~CL)&(~‘)l, (4) 

where b, and b2 are constants and P2(x) is the Legendre Polynomial of Order 2. Similarly, we 
restrict our analysis to the specific incident distributions given by 

F,(p) = A,pB, A, = 0 or 1, (5) 

and 

F2(p) = Arpp, A, = 0 or 1, (6) 

where /3 is a nonnegative integer. Following Siewert,’ we define the following quantities: 

1y = obJ3, (7) 

/I = 2ob,/5, (8) 

Y = (5 - 9a)/[lO(l - (Y)], (9) 
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Sv = 
I 

O’ I@, cL)cL”b(cL) dtL -I,’ Z(L, - pU)p”F,b) G, v = 0, 2, 4, (10) 

Z,(x) = 
I 

_j(x, p)P,(cc) dp, v = 0, 172, (11) 

I 
K(x) = 

I 
Z(x> P)CL’ dkCL, (12) 

-I 

L(x) = 
I 

I 
Z(x> CL)CL~ &L, (13) 

-I 

I 
M(x) = 

I 
Zk P)P’ @CL, (14) 

-I 

I 

I 
N(x) = Zk I-L)P’ dp, (15) 

-I 

M*(x) = $L(x) -ill(x), (16) 

and 

2 
u(x)=-&wl_a - -!- Z,(x$N(x) + yL(x), (17) 

where P,(p) is the Legendre Polynomial of order v and x = L or R. Siewert’ has derived the 
following set of formulas using these quantities which can, in principle, be used to effect the 
inverse calculations for the quantities CO, b, and bz: 

4S0 = gl(w, o, 81= w[Z;(R) - Z;UJ1-3~[Z:(R) - Z:UJl +$V:@!, - Z:(Ul, (181 

4s~ = g&, a, P) = &U:(R) - Z:(L)1 - 3 & [K’(R) - K*UJl + 2 _ p -%- [M:(R) - M:tUI, 

(191 
and 

1 1 
4s4=&?3bd)=j1_a l_w - (z)h2W) - Z,*(L)1 - ($-r (& +; CT*) 

[K*(R) - K*(L)] + & {& [Z,(R)L(R) - I,(L)UL)I -6a 

[K(R)M(R) - K(L)M(L)] + 3a[L2(R) - L*(L)]} -& 

+ [; M(R) - yK(R)]*- FM(L) - yK(L)]2}. (20) 

For a specific inverse formulation to be much practical value, it should converge to a 
solution reasonably close to the true solution given approximate input. We demonstrate the 
numerical characteristics of this particular formulation in the following sections. 

2. ANALYSIS AND RESULTS 

In order to evaluate inverse solutions numerically, a means of generating approximations to 
the intensity and/or various moments of the intensity is first needed. If it is difficult to measure 
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these experimentally, one can use exact or approximate solutions to the direct problem. For 
our purposes, the FN method developed by Siewert2v3 was selected, in which surface intensities 
can be approximated by using 

I&-CL)=2 G”P,F>O (21) 
a=0 

and 

(22) 

where N defines the order of the FN approximation, Here, the a, and b, are obtained by the 
methods described by Siewert, Maiorino, and 0zisik.3 Once the surface intensities are known, 
the other surface quantities needed for the inverse computation can be determined from Eqs. 
(IO)4 17). 

For simplicity, we consider only the case of unitary isotropic incidence at the left boundary 
and a free surface condition on the right boundary, corresponding to A, = 1, A, = 0, and p = 0. 
Various order FN results were generated for the case o = 0.9, bl = b2 = 1. The results, shown in 
Table 1, indicate convergence to about four significant figures by F9 or F,,. As a means of 
verifying these FN solutions, a Monte Carlo algorithm was designed. Monte Carlo and FN 
calculations were compared for two values of the single scatter albedo, w = 0.8, and w = 0.99. The 
results in Table 2 demonstrate sufficient agreement between the two methods to suggest 
that these approximate F,, solutions are correct to several significant figures. 

There are two questions to be addressed concerning the numerical characteristics of this 
inverse formulation. Firstly, is the solution to Eqs. (18~(20) with approximate moments (say 
four significant figures) unique and sufficiently close to the true solution of the equations with 
correct moments? Secondly, is the system sufficiently well-behaved that a simple numerical 
search will converge quickly and unambiguously to the solution? In an effort to answer the first 
question, a simple test (designated as TZ) was devised which consisted in solving each of Eqs. 

Table I. Surface quantities calculated by the FN method for a unit slab with lo- -0.9, b, = b2= I. 

b(R) 0.46500 0.46527 0.46535 0.46537 0.46535 

I,(L) 1.34693 1.34670 1.34661 1.34657 1.34656 

II(R) 0.27533 0.27534 0.27534 0.27534 0.27534 

II(L) 0.36184 0.36186 0.36186 0.36186 0.36186 

12(R) 0.06294 0.06281 0.06276 0.06276 0.06277 

12(L) -0.05056 -0.05044 -0.05040 -0.05037 -0.05037 

K CR) 0.19696 0.19696 0.19696 0.19696 0.19696 

K (L) 0.41527 0.41527 0.41527 0.41527 0.41527 

L CR) 0.15342 0.15341 0.15341 0.15341 0.15341 

L O-1 0.19268 0.19268 0.19268 0.19268 0.19268 

M CR) 0.12563 0.12562 0.12562 0.12562 0.12562 

M CL) 0.24381 0.24381 0.24381 0.24381 0.24381 

k!(R) 0.09247 0.09245 0.09245 0.09245 0.09245 

M2(L) 0.10810 0.10809 0.10809 0.10809 0.10809 

N CR) 0.10635 0.10633 0.10634 0.10634 0.10633 

N (L) 0.13131 0.13131 0.13131 0.13131 0.13131 

so -0.34693 -0.34670 -0.3466 1 -0.34657 -0.34656 

SP -0.08194 -0.08194 -0.08194 -0.08194 -0.08194 

54 -0.04381 -0.04381 -0.04381 -0.04381 -0.04381 

F6 F7 F8 Fg Flo 
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Table 2. Comparison of FN and Monte Carlo surface quantities for b, = bZ = I 

Flo Flo 

IO(R) 0.3951 0.3960 0.5475 0.5479 

I,(L) 1.2733 1.2704 1.4311 1.4303 

11(R) 0.2403 0.2407 0.3157 0.3157 

11(L) 0.3928 0.3935 0.3255 0.3257 

12(a) 0.0636 0;0634 0.0609 0.0604 

12(L) -0.0418 -0.0408 -0.0595 -0.0592 

K (n) 0.1741 0.1743 0.2231 0.2229 

K (L) 0.3966 0.3963 0.4374 0.4373 

L (0) 0.1366 0.1367 0.1726 0.1723 

L (L) 0.2049 0.2060 0.1770 0.1771 

M (a) 0.1123 0.1124 0.1407 0.1404 

M (‘-1 0.2337 0.2336 0.2558 0.2558 

M2(R) 0.0847 0.0847 0.1010 0.1006 

M2(‘-1 0.1124 0.1123 0.1028 0.1028 

n (a) 0.0954 0.0955 0.1187 0.1185 

N (L) 0.1395 0.1396 0.1216 0.1216 

50 -0.2733 -0.2704 -0.4311 -0.4303 

52 -0.0632 -0.0630 -0.1041 -0.1040 

54 -0.0337 -0.0336 -0.0559 -0.0558 

* The quantity in parentheses indicates the number of Monte Carlo histories. 

w= 0.8 w = 0.99 

(18)-(20) for each of the parameters in terms of the other two. Equations (18) and (19) are linear 
in the parameters and the solutions are straightforward; Eq. (20) yields quadratic equations for 
each of the variables. By substituting approximate moments and the exact values of two of the 
parameters into these equations, it can be seen how close the third parameter is to its true 
value. While this is not a direct answer to the first question, it offers substantial insight towards 
its answer. 

Several cases defining different phase functions were considered using test TZ and other 
tests to be described subsequently. The cases considered are indicated in Table 3. In applying 
test TZ, the solution of each equation for w was quite good, the solutions for (Y not so good, and 
the solutions for p poor, as the selected results in Table 4 indicate. The F,, moments were 
rounded to four significant figures to generate these results. In order to investigate the 
sensitivity of the solution to the degree of accuracy of the moments, solutions using test TI 

Table 3. The 

Case w bl 

1 0.800 1.000 

2 0.900 1.000 

3 0.990 1.000 

4 0.992 0.600 

5 0.800 0.000 

6 0.800 2.01 

: sr recific ohase function for several cases 

1.000 0.267 0.320 

1.000 0.300 0.360 

1.000 0.330 0.396 

0.000 0.198 0.000 

0.500 0.000 0.160 

1.56 0.536 0.500 

Comnents 

linearly anisotropic 

Rayleigh scattering 

8-term scattering* 

l b3 = 0.674, b4 = 0.222, b5 = b0 0.0472, 0.00005. b6 = 0.00671, b7 = 0.00068, = 



Solution 
from 

equation w Cl 6 Case 

* 0.800 0.267 0.320 

18 0.801 0.263 0.123 

19 0.800 0.267 0.553 

20 0.806 0.239 0.325 

* 0.990 0.330 0.396 

18 0.990 0.322 0.029 

19 0.990 0.327 1.57 

20 0.990 0.326 1.19 

* 0.992 0.198 0.000 

18 0.992 0.165 -1.97 

19 0.992 0.192 1.71 

20 0.992 0.192 1.43 

* 0.800 0.536 0.500 

18 0.792 0.566 -0.793 

19 0.800 0.536 0.806 

20 0.801 0.506 0.537 

* These are the exact values for the indicated cases. 
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Table 4. Results of test Tl for several cases with F,, moments rounded to four significant figures. 
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were obtained with three-, four-, and six-significant figure input for Case 2. The results are 
shown in Table 5 and tend to indicate that the solutions to Eq. (20) for (Y and /? are not very 
close to the true solutions, even for six-significant figure input. Finally, solutions to Case 5 were 
considered, where both the true value of p and /3 = 0 were used in the equations for w and (Y, as 
shown in Table 6, in order to test the sensitivity of the solutions to the value of /3 used. 

The results obtained using test TI tend to indicate the following: 
(a) The solution of the approximate set of equations for o is quite near the true solution and 

fairly insensitive to the value of B (see Table 4). 

Table 5. Results of test 7’1 for case 2 as a function of input accuracy*. 

Solution 
from 
equation 

Number of 
Lignificant 
figures 

6 

t __ 0.900 0.300 0.360 

18 3 0.896 0.339 2.21 

18 4 0.900 0.304 0.561 

18 6 0.900 0.299 0.334 

19 3 0.899 0.304 0.0890 

19 4 0.900 0.301 0.551 

19 6 0.900 0.300 0.611 

20 3 0.901 0.291 -0.0635 

20 4 0.901 0.286 0.322 

20 6 0.901 0.285 0.364 

* FlO mOments were rounded to the number of significant figures 
indicated for input. 

t These are the actual values for case 2. 
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Table 6. Dependence of test Tl for case 5 on the value of @ used. 

Solution 
from 

equation w a 6 

__ 0.800 0.000 0.160 

18 0.800 -0.003 -0.008 

18 0.800 0.000 -0.008 

19 0.800 0.000 0.297 

19 0.801 -0.005 0.297 

20 0.807 -0.036 0.163 

20 0.801 -0.006 0.163 

Comments 

Actual 
case 5 
!JalLles 

B = 0.160 

6=0 

B = 0.160 

B-0 

6 = 0.160 

B=O 

(b) The solution for (Y obtained from Eq. (19) is generally better than the solutions for a 
from Eqs. (18) or (20). 

(c) The values of /I obtained by solving the different equations are rarely reproducible and 
seldom near the true value; hence, a unique solution of the approximate equations for the triplet 
(w, (Y, P) may not exist and even if it does, it may not be sufficiently near the solution of the 
exact equation. 

These results offer only modest encouragement to attempt a three-term inverse solution 
numerically. However, in order to demonstrate the types of results that might be obtained we 
employed several algorithms to effect the inverse calculation. The algorithms T2, T3, and T4 
consist of the following: Algorithm T2 involves solving Eqs. (18) and (19) for w and (Y in terms 
of /I, then solving Eq. (20) for /3, given w and (Y. An iterative procedure results, requiring only 
an initial estimate for p. Algorithm T3 is a variant of T2 which uses the fact that solutions for w 
and (Y are rather insensitive to B. Here, test T2 is taken through only one iteration, with the 
starting point /3 = 0. Algorithm T4 consists in utilizing a straightforward pattern search to locate 
the minimum of an objective function obtained as the square of the sum of the squares of 
certain residuals, i.e. 

Q(o, 61, b,) = [(o - h,)* + (b, - h2)* + (b2 - M*l*, (23) 

where h,, h2 and h3 are solutions of Eqs. (18)-(20) for w, b, and b2 respectively. The minimum 
of this objective function is the solution to Eqs. (18)-(20). Fymat and Lenoble4 discuss a similar 
approach to another inverse problem. 

Results of these three inverse algorithms are presented in Table 7 for Cases 1 and 2. These 
techniques consistently yield accurate values for o. We note that algorithm T2 yields solutions 
that are within about 0.1% for w, 1% for (Y, and 10% for /3, for Cases 1,2, and 3. Comparison of 
entries 6 with 7 and 14 with 15 tend to verify that the F,, calculations are not good to more than 
about four- or five-significant figures, since not much improvement in accuracy of the inverse 
calculation is achieved in going from five-significant figure to unrounded double precision input. 
We note also that algorithm T4 with five-significant figure input computes all parameters, 
including p to within three digits in the third decimal place, which is generally less than 1% 
error. Even for only two-significant figure input, algorithm T4 yields reasonable results (see 
entry 12). Also, the T3 results show that the calculation for /3 is extremely sensitive to the values of 
w and (Y, since after one iteration the computed values of /3 are very poor while the computed 
values of o and a are moderately good. Finally, we note that two derivative-based search 
algorithms were also attempted, but gave no better results. 

3. CONCLUSION 

This study has shown that the third equation in Siewert’s’ inverse formulation is extremely 
sensitive to the accuracy of the input moments. This input affects the behaviour of this system 
of equations for three-term inverse analysis. A one-step inverse algorithm (T3) yields values of 
o and (Y that are reasonable but values of p that are small by approximately an order of 
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Table 7. Inverse calculations using different algorithms and F,, input rounded to the number of significant figures 

Entry Algorithm 

1 Exact 

2 T2 

3 T3 

4 T4 

5 Exact 

6 T2 

7 T2 

a T3 

9 T4 

10 T4 

11 T4 

12 T4 

13 Exact 

14 T2 

15 T2 

16 T3 

17 T4 

18 Exact 

19 T3 

20 T4 

Number of 
significant 
figures w G 6 

__ 

l 

4 

5 

__ 

t 

5 

4 

5 

4 

3 

2 

__ 

l 

5 

4 

5 

-_ 

4 

5 

3.800 0.267 0.320 

3.801 0.270 0.336 

3.794 0.238 0.043 

0.799 0.266 0.320 

0.900 0.300 0.360 

0.900 0.303 0.380 

0.900 0.300 0.351 

0.896 0.269 0.035 

0.900 0.301 0.362 

0.900 0.301 0.362 

0.899 0.299 0.352 

0.907 0.299 0.366 

0.990 

0.990 

0.990 

0.990 

0.990 

0.800 

0.797 

0.800 

0.330 0.396 

0.333 0.422 

0.326 0.354 

0.330 0.008 

0.330 0.393 

0.000 0.160 

0.018 0.024 

0.001 0.160 

*Double-precision FlO intensities were used. 

own. 

Case 

1 

magnitude (see Table 7). However it is noted that both iterative algorithms attempted, one of 
them (T4) with only two-significant figure input, converged to solutions that were excellent for 
o and a and fair for p, for the cases considered. 

The inverse computation has the properties that the solutions for w and Q are relatively 
insensitive to the value of p assumed (see, for instance, Table 6) and that convergence is rather 
slow, typically requiring between 100 and 200 iterations. Thus, this inverse formulation 
consistently computes w and (Y satisfactorily, even if p is not computed accurately. This results 
in, for instance, the ability to identify Rayleigh scattering (with (Y = 0) but not linearly 
anisotropic (with /3 = 0), since the inverse computation will yield a near-zero value for CY in the 
Rayleigh scattering case but probably not a near-zero value for p in the linearly anisotropic 
case (see Tables 4 and 7). Similarly, we note that o and a are reasonably correct even for phase 
functions with more than three terms (see Table 4), although again p is not. The ultimate 
conclusion then, is that this inverse formulation is a useful one provided too great reliance need 
not be placed on the value of p computed and a slow convergence is not unacceptable. 
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