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Abstract—The F method is used to establish numerical results basic to polarization studies in plane

parallel atmospheres.

1. INTRODUCTION

In a recent naper.! hereafter referred to as I, the F. method was used to establish an
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approximate semi-analytical solution of the equation of transfer
1
p;a;l(r, W+ p)= %wQ(#) L QT (u(r, phdw', 7€EI0, 7o), (n

subject to the boundary conditions
10, p)=Fy(p), p>0, (2a)

and

Here we wish to report some numerical results that show the computational merit of the
method.

We use I(r, u), with components I(r,u) and I(r, u) to characterize the azimuthally
symmetric component of the polarized radiation field. We also write

1/2¢ PAY

‘“[ ®

Q( )=§(c+2)‘”2 cn+2B3)1-¢) Qo'
#=3 (13)c +2)

and allow a combination of Rayleigh and isotropic scattering.2 As reported in 1, we can write

(7, ) = A(no)®(mo, w)e ™"+ A(=no)®(—ng, p)e™™ + f_l 1 ®(n, p)A(n)e"dy “

and use the full-range orthogonality properties of the functions ®(£, u) to deduce the following
system of singular integral equations and constraints for the surface intensities:
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)0 = Fhat ot .’0 ~= \ S5~ Os 'U-)d# = L](g)’ {:E <y (Sa)
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tPermanent address: Instituto de Pesquisas Energeticas e Nucleares, Cidade Universitaria, Sio Paulo, Brasil.
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where the known functions are
1 1
L) = fo WO (— & pFy(u) du e f w7 (&, Fs(u) di (6a)
and
1 1
L) = fo BT (~&, p)Fy(u)dps + e fo w7 (& w)F(u)dps: (6b)

also, £ € PSEE n,U (0, 1). In order to be brief we do not repeat here all of the basic definitions
given in I.

2. ANALYSIS
We now consider the planetary problem formulated by Chandrasekhar,” i.e. the illumination
of an atmosphere of optical thickness 7, by a beam of polarized light. At the ground location,
=1, we allow reflection according to Lambert’s law,” with an albedo Ao, and thus for this
application Egs. (2) become

10, ) = %M# - woF, u, po>0, (Ta)
and
1 1 l 1) ! 1
I(TO, _/J') = /\0 1 1 A I(7.07 14 ):U' d”' y M > 0, (7b)

where the constant F has components F, and F. Equation (7b) clearly indicates that the
“ground” introduces a component of unpolarized light into the atmosphere. We recall that the
Q(u) given by Eq. (3) already allows (if ¢# 1) a combination of Rayleigh and depolarizing
isotropic scattering within the atmosphere.

We now introduce the Fy method, and thus we approximate the unknown surface in-
tensities by

N
I(Os —M’) = Q(p') Zoaauas “ > 09 (83)
and
N
K(ro, )= 3000 ~ o)e OF + Q) 33 buns®s >0, (8b)

where the constants a, and b, are to be determined. In Eqs. (8) we have included a factor Q(u)
that was not used in 1. If we substitute Eqs. (8) into Egs. (5) and use the boundary conditions
given by Egs. (7), we find

,:oA"(f)a“ +e 0t 20 {I‘a(f)— )\OBOT(g)D[QO(a 12) +Q2(a 14)]}1,‘, =K\(& (%)
and

S {80 @m[0(z45) + 03y [Jpe e B T0n =K, )
where

I



The Fy method for polarization studies—II

Ad©)= Qo+ 30s+ £(-3)0u- 0@ og (1+) Mo
Bu6)= [ 246~ Qu-30:+ (63 )0 c0@ 10g 1+) M,

AO=Q7 @1+ 080 (Q+30:) |
and the known functions are,
Kl(f) = %#0{[1 _ e—ro[(lluo)ﬂllf)]]wig(bT(_g, #0) + Aoe—‘ro[(l/uo)+(l/£)]B0T(§)D}F
and
-1 “Té g ~Tolko lth + Age TVH0A, T (£)D IF.
Ki(8) 2#0 [e € ]w§ (& po) +A¢ o (&)
The functions I',(£) and A, (&) appearing in Egs. (9) are defined by
L©=2 [ 40" (- waqwan
a wg 0 t] \i
and
A — 2 J.l a+l(DT d
.,(E)—;E , (& )Q(p)du

and can readily be generated from

Fo(§)= (T (O +MT(6R,

with
u(6) = M7 (©)Ro - £K ()]
and
A,(6)= 8o (- M (DR,
with
T 2
Ade) =M@ 21-Ro- k0]
Here
R, =0/ Q(57) + @70+ 070z 15) + @0 ()

and

K(O)= Q0" Qulog (1+7) + @70+ Q7 €10g (1+3) +1-¢]

+Q7Q:[ 10g (1+§,)+1_§+£_§3],

where we have written

Qi) = Qo+ 1’Q.
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We use M(¢)=1, £ € (0, 1), whereas M(ny) is a null vector of the dispersion matrix,? i.e.

where A(no)M(mo) =0, 19
AD)=T+z f_'l ¥ (20)

and the characteristic matrix is
¥(x) = 3007 ()Q). e3)

It is apparent that, once the desired constants a, and b, are found, the surface intensities
become known, and thus other quantities of physical interest are readily available. For
example, the albedo

1
A*=2uFy + F) fo O, —) + 1,0, —)]pe dp (222)

and the transmission factor

1
B* = 2uo(F + F)I" fo (o, 1)+ L (rou)]ae da (22b)

can be expressed, in the Fy approximation, by
1T & 1 1
0 2 [%a
2, |e32)0* (T5a)p (232)

A*=2uoF+ FI )

and

B* = 2uo(F + F,)r'{%ﬂo(p, + Feomos [!

T ;1::0 [(a_-lf-_i)Qo + <a‘1:74>Q2 ]b.. } (23b)

In a similar manner, the Stokes parameters? at the two surfaces

10,-p)=10,-p)+ L©O,-u), u>0, (24a)
I*(ro, ) = I (70, p) + I¥(7, ), >0, (24b)
Q(Oa —/-") = Il((), _.U') - Ir(ov —I"’)v 123 > 0’ (24C)
and
Q*(ro, ) = I'f(7o, p) — (10, ), >0, (24d)
where
P(r, 1) = I(r, 1) =581 ~ e F, - (25)

can be expressed in the Fy approximation as

1 T N

10,-p)=|, Q(u)zoaau", u>0, (262)
1 T N

I, )= ||| QW) Z s, 1>0, (26b)

1 T N
00,-w)=|_y| @ S awe w>o, (260)
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and

T N
Q(u) 20 b, n>0. (26d)

Q*(TO9 ,LL) = ’_}

3. NUMERICAL RESULTS

In order to find the required constants a, and b, we now consider the following set of linear
algebraic equations generated by evaluating Egs. (9) at selected values, say {&}, of £ € P:

N

3 aga +e i 3 [r@) -1 @00 ) + () [ -6 @

a=0

and

éﬂ {8.6) - 2407 @D[ Q0 35) + Qo) | Jou e io L.(6)a, =Kyf&). (27b)

In I a particular scheme was suggested for selecting the points {£}, and a restriction was
placed on the form of a, and by. We have tried the scheme suggested in I and have concluded
that the restriction placed on a, and b, impedes the numerical accuracy of the method. In
addition, the point £ =1 cannot be used as suggested in I, since Q(1) is singular. Here we use
the approximations given by Egs. (8). We obtain a simple (and effective) scheme for choosing
the points by using, for the F, approximation, & = 7, in Egs. (27) to establish two scalar
equations, while for £ =1 we use only two of the four scalar equations obtained from Eqgs.
(27); in particular, we use for & =1 the upper (scalar) equations in Eqgs. (27). In addition, we
define, for higher order Fyy approximations, & = (2j —3)/(2N), j=23,4,... N +1, and use each
of the four resulting scalar equations, for each &, j>1, from Eqs. (27). Thus, in general, we
must solve a system of 4(N + 1) linear algebraic equations to establish the desired constants
{a,} and {b,}.

From a computational point-of-view, the first resuit we wish to establish is 7. We thus use
the explicit expression

o= [(1 - w)(l —%wc)]_m exp [—% J; 1 0(t)d—t9], (28)

where 6(¢) is known.* The result can then be refined by solving iteratively det A(z) = 0. Once 1,
was established, we solved the system of linear algebraic equations given by Egs. (27), with
F, = F, =1/2, for the data cases given in Table 1. In Tables 2 and 3, we report the albedo and
transmission factor as computed from various orders of the Fy approximation. We also list
“Exact” results deduced from “converged” Fy computations and confirmed, for the half space,
with a previous work.® Tables 4-6 show the “converged” Fy results for the Stokes parameters
for data cases 1, 3, and 5. For the half space, the results of Table 6 agree with the exact analysis
of Bond and Siewert.* For the finite atmospheres, our “converged” results for (0, —x) and
Q(0, —u) shown in Tables 4 and 5 agree to the given accuracy with the work of Kawabata’ and
Hansen.®

We note that our Fy calculations have generally “converged” to five significant figures,
except near £ =0 and u =1, for the angular-dependent Stokes parameters. The method

Table 1. Data. Table 2. The albedo A*.

Case o ¢ A 70 po Case F F; F, “Exact”

09 1.0 00 10 10
09 10 01 1.0 10
09 08 0.1 50 1.0
09 08 02 50 1.0
09 08 — o 10

027016  0.27022 027023  0.27023
0.29950  0.29956  0.29957  0.29957
041753 041754 041754  0.41754
041802 041803 041803  0.41803
041960 041961 041961  0.41961

AR LR
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Table 3. The transmission factor B*.

Case F, F; F; “Exact”
i 0.59591 0.59618 0.5%9617 0.59%17
2 0.61772 0.61800 0.61800 0.61799
3 0.082955  0.082958  0.082958  0.082958
4 0.087331  0.087334  0.087334  0.087334
5 — — - 0.0

Table 4. “Converged” results for case 1.

po 10,-p) -QO,-p)  I*rp) —Q*rop)

0.02 02812 0.2184 0.1549 0.1003
0.06 0.2856 0.2155 0.1671 0.1062
0.10 0.2875 0.2105 0.1776 0.1109
0.16 0.2879 0.2006 0.1919 0.1165
020 02869  0.1928 0.1998 0.1187
028 02829  0.1749 0.2111 0.1183
032 0.2803 0.1652 0.2148 0.1159
0.40 0.2751 0.1450 0.2198 0.1078
052 0.2688 0.1142 0.2241 0.09020

0.64 0.2655 0.08401 0.2277 0.06914
072 0.2651 0.06449 0.2305 0.05417
0.84 02667 0.03616 0.2358 0.03110
092 02692 0.01786 0.2401 0.01556
096 02708  0.00888 0.2425 0.00778

098 02717  0.0044 0.2438 0.0039
100 02726 0.0 0.2450 0.0
Table 5. “Converged” results for case 3. Table 6. “Converged” results for case 5.
g 10,-p) =Q0,-g) I*rep)  —Q*o, u)X 100 TR (7)) -Q(0, ~p)
002 03624 0.1660 0.03444 0.4432 002 03633 0.1661
0.06 0.3730 0.1617 0.03686 0.4457 0.06 03739 0.1618
0.10  0.3801 0.1567 0.03912 0.4499 0.10 03810 0.1568
0.16 0.3876 0.1484 0.04242 0.4568 0.16  0.3886 0.1485
020 03913 0.1424 0.04462 0.4613 020 03924 0.1425
028 03971 0.1300 0.04911 0.4685 0.28  0.3983 0.1301
032 03995 0.1235 0.05144 0.4709 032 0.4008 0.1236
040  0.4037 0.1101 0.05630 0.4725 040  0.4052 0.1102
0.52  0.409 0.08928 0.06419 0.4630 052 04112 0.08936
0.64 04156 0.06772 0.07288 0.4289 064 04175 0.06780
072 0419 0.05303 0.07907 0.3843 072 04220 0.05309
084 04269 0.03057 0.08888 0.2699 084 0.4294 0.03061
092 04321 0.01537 0.09571 0.1537 092 04348 0.01539
096 04348  0.00770 0.09919 0.08181 096 04377 0.007715
098"  0.4362 0.00386 0.1010 0.04216 098 04392 0.003862
100 04376 0.0 0.1027 0.0 LO0  0.4407 0.0

yielded, not surprisingly, even better results for the integrated quantities A* and B*. We note
that me—® as w-> 1 and that the calculation of the quantities I',(n,) and A, (7o) requires some
care, for w = 1, to avoid a loss of accuracy. Finally, we have observed that the method becomes
less accurate for small thickness (7 =0.1); however, a modification in Egs. (8) can improve the
method for very thin media.
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