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ABSTRACT
Cu-doped sodium potassium niobate single crystal fibers (KNN-Cu)
were grown by the micro-pulling-down technique under different
atmospheres, namely, argon, synthetic air and oxygen. The structural
analysis revealed that all fibers were grown in the perovskite phase
with no secondary phase. In comparison with the precursors pow-
ders, the results from EDX showed no significative chemical changes,
suggesting that monocrystalline and stoichiometric KNN-Cu fibers
were produced. The ferroelectric phase transitions characterized by
thermal strain measurements corroborated this assumption. The
dielectric results showed that the fibers produced under synthetic air
presented the best results. Piezoresponse measurements revealed
domains with typically orthorhombic symmetry morphology.
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1. Introduction

Ferroelectric materials have been investigated since the 1950s [1]. From the techno-
logical point of view, Pb-based ferroelectric materials such as Pb(Ti Zr)O3 (PZT) and
Pb(Mg Nb)O3 (PMN) are the most commercialized compositions due to their wide
applicability in piezoelectric transducers and actuators. However, the increase in the
environment concerns and governmental restrictions have resulted in a strong demand
for developing lead-free ferroelectric materials to replace PZT and PMN compositions
[2, 3]. In this way, several lead-free ferroelectric compositions have been studied.
Among them, BaTiO3, (Na Bi)TiO3 and (K Na)NbO3 [2, 4, 5] are the most known com-
positions. Surely, (K Na)NbO3 family (KNN) is one of the promising composition as
Pb-free ferroelectric materials [5–7]. KNN presents a complex phase diagram such as
PZT [8]. By appropriated Na/K ratio the piezoelectric and dielectric properties of KNN
present higher values [6, 9] when compared to other lead-free ferroelectric oxides [10].
In comparison to ceramic counterparts, ferroelectric single crystals usually present

superior piezoelectric properties, since the optimal crystallographic orientation can be
achieved in crystals [11, 12]. However, up to 2000s almost all investigations on KNN
were concentrated on ceramics. Nevertheless, over the last decade the interest in pro-
ducing KNN in single crystal matrices has strongly raised [13–16]. Thus, several routes
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have been employed, such as high temperature solution, micro-pulling-down,
Czochralski and Bridgman techniques [17–20]. Among them, the micro-pulling-down
technique (l-PD) is an attractive route due to its relative low cost. The growth of
KNbO3 single fiber crystal by l-PD method was firstly reported by Chani [21] and fur-
ther by others [22, 23]. It was shown that the l-PD technique is a versatile method to
grow high quality KNbO3 crystals fibers. However, there is not too many reports view-
ing for improvements of physical properties of KNbO3 crystals fibers through doping or
compositional modification.
The present work aims to investigate the growth of Cu-doped (KNa)NbO3 crystal

fibers by the l-PD technique, starting from a stoichiometric powder composition and
melted under different atmospheres. The ferroelectric domain morphology, structural,
dielectric and thermomechanical properties were investigated.

2. Experimental

(K0.48Na0.52) (Nb0.985Cu0.015)O3 powders (KNN-Cu) were prepared by the conventional
mixed-oxide process by using K2CO3 and Na2CO3 (Sigma-Aldrich, 99.0% purity),
Nb2O5 (Sigma-Aldrich 99.9%) and CuO (Sigma-Aldrich, 99.5%). The carbonate powders
were firstly dried in an oven for 3 h at 250 �C to eliminate adsorbed water. The precur-
sors were weighted according to the desired stoichiometry and then mixed in a ball
milling for 3 h in an ethanol solution. The dried material was calcined at 850 �C
for 3.5 h.
KNN-Cu fiber crystals were obtained using the l-PD method with resistive heating.

The doped crystals were grown under three different atmospheres: oxygen, argon, and
synthetic air. The used crucibles were of platinum with size of 10� 6 � 3mm, the
capillary had external diameter of 1.2mm with internal diameter of 1mm. During
growth, non-oriented KNN crystal was used as a seed. The seed crystal was brought
into contact with the stoichiometric melt drop at 1232 �C (main heater) and the pulling
down rate was 0.1mm/min.
The structures of the KNN-Cu fibers were characterized at room temperature by X-

ray diffraction (XRD) (Ultima IV, Rigaku) using CuKa. In order to make electrical
measurements gold electrodes were sputtered on both faces of the fibers. Computer
assisted dielectric characterizations were made employing an Impedance Analyzer HP
4194A from 1 kHz to 1MHz at room temperature with a probing field of 500mV. The
thermal strain measurements were performed by using a NETZSCH 402 pushrod dila-
tometer. The measurements were performed at a cooling rate of 5 K/min with a

Figure 1. Pictures of the as grown KNN-Cu fiber crystals growth in: a) Ar; b) O2 and; c) synthetic air
atmospheres. The fibers are on a millimeter paper.
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constant force applied of 25mN in He atmosphere in the temperature range from
550 �C to 50 �C. Thermal expansion technique (dilatometry) has been used successfully
to investigate the nature of phase transitions in ferroelectric materials [24–26].
For the topography (AFM) and piezoresponse (PFM) analysis, a Shimadzu SPM9600

Atomic Force Microscope, adapted for piezoresponse measurements was utilized. Pt/Ir
coated probes (PPP-EFM, from Nanosensors), with a force constant of 2.8 N/m, were
utilized. The probing voltage and frequency were 4 Vpk at 35 kHz, respectively. This fre-
quency was empirically chosen, and it was far from any resonance. The images were
obtained in the lateral part of the fibers.

3. Results and discussion

Figure 1a–c show the pictures of the KNN-Cu fiber crystals growth in Ar, O2 and syn-
thetic air atmospheres, respectively. The pictures reveal fibers with a good macroscopic
homogeneity presenting a brownish color. The final diameters of the fibers were around
0.8mm. This technique allowed us to grow fibers up to 10mm long.
Figure 2 depict the XRD patterns obtained from the crushed crystal fibers. For the

sake of comparison, the XRD patterns of the starting calcined powder are also shown.
It is possible to note the formation of the perovskite structure with orthorhombic sym-
metry [27], thus maintaining the same symmetry of the precursor powder before the
melting. In comparison to undoped KNN [3], the subtle shifty observed in our results

Figure 2. XRD patterns of the crushed crystal fibers. For the sake of comparison, the XRD patterns of
the starting calcined powder is also shown.
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in the diffraction peaks in the KNN-Cu may be attributed to the substitution of Nbþ5

ions by the Cu2þ.
The EDS analyses of the crystals grown under the three different atmospheres are

shown in Table 1. According to the results from EDS, the stoichiometry of the crystals
is quite close to that of the calcined powder. Therefore, although the growth of the
fibers does not occur in sealed crucible, this result reveals that the l-PD technique is
able to pull stoichiometric KNN-Cu single crystal fibers.

Table 1. EDS results from KNN-Cu crystal fibers prepared under different atmospheres.
Elements Synthetic air, nominal Argon, nominal Oxygen, nominal Calculated

O 28.14 28.68 28.69 28.03
Na 4.28 9.90 10.40 6.98
K 10.50 5.23 4.93 10.96
Cu 0.36 0.15 0.17 0.56
Nb 56.72 56.04 55.8 56.75

Figure 3. Frequency dependence of the relative dielectric permittivity (e’) and the dielectric losses
(tgd) of the KNN-Cu fibers measured at room temperature and growth under different atmospheres.
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Figure 3a and b show, respectively, the frequency dependence of the relative dielectric
permittivity (e’) and the dielectric losses (tgd) of the KNN-Cu fibers. The data reveal
that the fiber grown in the synthetic air atmosphere (N2/O2) present the lowest dielec-
tric loss and a higher and almost constant value for e’ (�475 at 1 kHz). The value for e’
is higher than those found for KNN-Cu ceramic counterparts [28–30]. In contrast, the
fiber grown under Argon atmosphere present the highest tg(d) with a strong frequency
dispersion. This fact is credited to a higher formation of oxygen vacancies due to
aggressive reducing atmosphere. The high values found for e’ at lower frequencies for
the fiber grown under Argon atmosphere is due to undesirable contribution of the
dielectric losses. However, the fiber that was grown under O2 atmosphere also present a
relative high dielectric loss. We expected values for tg(d) similar or even lower than
those observed in fibers grown under synthetic air. The reason for this apparent dis-
crepancy is unknown and is still under investigation.
Figure 4a–c depict the thermal strain measurements performed in the KNN-Cu fibers.

The data show that all fibers present two anomalies in the strain curve. One is at
around 420 �C and another at around 210 �C. These anomalies can be associated to the
paraelectric-ferroelectric and tetragonal-orthorhombic phases transitions, respectively.
Indeed, these temperatures are in good agreement to those reported in the literature for
ceramics with similar compositions [31, 32]. This fact corroborates our results from
EDS analysis, that indicates that the crystal fibers are quite stoichiometry. Thus, such
anomalies match the temperatures in which the respective phase transitions
are expected.

Figure 4. Thermal strain measurements of the KNN-Cu fibers growth under different atmospheres.
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Figure 5a–b show the topography and piezoresponse maps of the KNN-Cu single
crystal growth under synthetic air. The images were obtained on the lateral surface of
the fibers. A clear domain structure, typical for orthorhombic symmetry is observed
[33]. This result corroborates the XRD data, in which an orthorhombic symmetry is
verified. In addition, we can distinguish two different arrangements of domains. In the
lower part of Figure 5d we observe two sets of domains, most likely separated by 90�

walls, while the upper part is probably a composition of domains separated by 60� and
90� walls. Similar structures were observed in the parental phase KNbO3 [32] and in
BaTiO3 orthorhombic single crystals [33]. It is interesting to point out that the domains
form wedges, which were also observed by Wiesendanger [34]. A deeper investigation
of the domain structures in the KNNþCu fibers is reserved for a future work.

4. Conclusions

Stoichiometric Cu-doped sodium potassium niobate single crystal fibers were success-
fully grown under argon, synthetic air and oxygen atmospheres by the micro-pulling-
down technique. The as grown fibers presented perovskite structure with absence sec-
ondary phase. The paraelectric-ferroelectric and tetragonal-orthorhombic phases transi-
tions were characterized by thermal strain measurements. The dielectric results showed
that the fibers produced under synthetic air present the better dielectric results, while
the piezoresponse measurements revealed ferroelectric domains with morphology typical
of orthorhombic symmetry.
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