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Abstract
Since the establishment of robotics in industrial applications, industrial robot programming involves the repetitive andtime-consuming process of manually specifying a fixed trajectory, resulting in machine idle time in production and thenecessity of completely reprogramming the robot for different tasks. The increasing number of robotics applicationsin unstructured environments requires not only intelligent but also reactive controllers due to the unpredictabilityof the environment and safety measures, respectively. This paper presents a comparative analysis of two classes ofReinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied tothe discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previousknowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergenceare analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom(DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacleplacement. The DQN algorithm presented significantly better performance and reduced training time across all testprojects, and the third reward function generated better agents for both algorithms.
Keywords: Artificial Intelligence; Deep Neural Networks; Reinforcement Learning; Robotics.
Resumo
Desde o estabelecimento da robótica em aplicações industriais, a programação de robôs manipuladores envolve oprocesso repetitivo e demorado de especificação manual de uma trajetória fixa, o que resulta em tempo ocioso deprodução e na necessidade de reprogramação completa para diferentes tarefas a serem executadas pelo robô. A tendênciade aumento das aplicações da robótica em ambientes não estruturados requer controladores inteligentes e reativos,devido respectivamente à imprevisibilidade do ambiente e a medidas de segurança. Este artigo apresenta uma análisecomparativa de duas classes de algoritmos de Aprendizagem por Reforço, iteração de valor (Q-Learning / DQN) eiteração de política (REINFORCE), aplicada à tarefa discretizada de posicionar um manipulador robótico em um ambientesimulado repleto de obstáculos, sem conhecimento prévio das posições dos obstáculos ou da dinâmica do braço do robô. Odesempenho do agente e a convergência do algoritmo são analisados sob diferentes funções de recompensa e em quatroprojetos de teste cada vez mais complexos: robô 1-DOF, robô 2-DOF, robô industrial Kuka KR16, robô industrial KukaKR16 com setpoint em posição aleatória. O algoritmo DQN apresentou desempenho significativamente melhor e tempode treinamento reduzido em todos os projetos de teste e a terceira função de recompensa gerou melhores agentes paraambos os algoritmos.
Palavras-Chave: Aprendizado por Reforço; Inteligência Artificial; Redes Neurais Profundas; Robótica.

1 Introduction

The diversity of modern industrial robotics applicationsrequires the emergence of robots with different degrees ofautonomy, appropriate for executing different tasks, such

as welding, machining, assembly and cargo handling. Thedevelopment of more sophisticated sensors, along withthe increasing computational capacity of controllers andadvances in the fields of computational vision and artificialintelligence has shifted the field of robotic manipulators:
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Repetitive and fixed pre-programmed routines have givenway to flexible and more reactive controllers, capable ofdynamically identifying the orientation of workpiecesor learning optimal routines directly from data (Rosen,1999).This tendency is not limited to robotics. Recentdevelopments in Artificial Intelligence, namelyReinforcement Learning, have been dedicated totraining robust models for a wide variety of applications,from economics and finance (Charpentier et al., 2021) tohealthcare systems (Coronato et al., 2020). ReinforcementLearning is an increasingly popular field in AI in which anintelligent agent is trained to perform a specific task whilemaximizing a reward signal (Sutton and Barto, 2018).This work aims to obtain the optimal reward functionformulation and algorithm choice for the task ofpositioning a simulated KUKA-KR16 industrial robotwhile avoiding both known and unknown obstacles. Theagents are trained through two different reinforcementlearning algorithms over successive interactions withan obstacle-filled simulated environment. For training,it is only necessary to provide the initial specificationof a reward function, which represents the quality ofactions taken by the agent and guides its exploration.After training, the agent is capable of positioning therobot’s end effector in generic positions while avoidingobstacle collision-based solely on sensor data from itscurrent pose.The main contributions of this work are thedevelopment of a Reinforcement Learning (RL) frameworkfor robotics applications in MATLAB, including trainingand visualization modules, and a comparative analysis ofstandard RL algorithms: episodic REINFORCE and DQN.Different reward functions are tested and the agent’sperformance is evaluated. The entire project is opensource, and all codes can be found in Github Repository
2 State of the Art

The recent development of Reinforcement Learningmeans that its practical applications are currently mostlyrestricted to simulation environments for testing andperformance validation, such as OpenAI gym (Brockmanet al., 2016). There are several Robotic related tasks inOpenAI gym which utilize a physics engine for simulationand collision detection known as MuJoCo (Todorov et al.,2012). The concept of state and action space exploringinherently requires large amounts of data to be processedand training directly in the real world may lead toaccidents. Simulation-based training solves both issuesby providing a risk-free environment in which the controlagent can acquire faster experience.Several authors have tried to train RL agents insimulated environments and transfer the resulting modeldirectly to real-world applications. James and Johns (2016)were partially successful in the simulation-based trainingand subsequent model transferring of a DQN agent forcontrolling a seven DOF robot in a cube locating andlifting task. The work environment was structured in away that maximizes the similarity with the simulationenvironment in order to enable model transfer. The

resulting RL agent was able to correctly locate the cubewhen applied directly to the real-world robot, but subtledifferences in the environment prevented it from grabbingand lifting it.One of the biggest challenges associated withimplementing Reinforcement Learning in industrialrobotics is Low Sampling Efficiency. Most RL algorithmstypically require a large volume of training data beforeoptimal policies can be learned, and the generationof data in real-world settings is often impractical,as it requires a long idle time. To work around thisproblem, hand-crafted specific initial policies thatcapture the desired behavior are often used. However,this approach conflicts with the main advantage of RL,i.e., the autonomous learning of various behaviors withminimal human intervention. Gu et al. (2017) present aninnovative architecture of the DDPG (Deep Deterministic
Policy Gradient) and NAF (Normalized Advantage Function)algorithms in which multiple robots interact with theenvironment, gain experience according to its currentaction politics and send data asynchronously to a serverthat samples transitions and trains a DQN network. Thisarchitecture allows the robot to continue interacting withthe environment and collecting state transitions whilethe DQN parameters are updated, promoting scalabilityfor the inclusion of new robots. The authors validatedthe proposed architecture in learning the task of openinga door by manipulating robots with seven degrees offreedom, and the action policy was obtained withoutprevious demonstrations.Chen et al. (2019) used a combination of the DistributedProximal Policy Optimization (DPPO) and DQN algorithmsto solve the similar task of positioning a simulated 2-dimensional robot manipulator while avoiding multipleobstacles. The authors showed that the two-step solutionof using DPPO to perform obstacle avoidance while a DQNagent performs navigation resulted in better performancethan either algorithm individually.A major issue in path planning tasks for roboticmanipulators in unstructured obstacle-filledenvironments is the blindness of exploration. Commonsparse functions that reward an agent’s action onlywhen the proposed task is successfully completed, andprovide zero information otherwise, can lead to a highlyinefficient learning process. In order to solve this, Xieet al. (2019) have developed an azimuth dense rewardfunction that provides feedback to the agent regularly,reducing the number of training epochs and improvinglearning efficiency.
3 Problem Definition

A typical Reinforcement Learning framework consists ofthree interacting modules: environment, interpreter andagent. The environment’s current condition is captured byan interpreter, which encodes it at time t as a state st andassigns a reward value rt. The agent, based on the stateand reward received by the interpreter, takes an action at,which leads to a state transition according to the systemdynamics.The application of this framework to the control of a
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Figure 1: Simplified diagram of a real systemenvironment trained by reinforcement learning.

Figure 2: Test projects developed for comparativeanalysis of algorithms.
robot manipulator is exemplified in the diagram of Fig. 1.

In order to determine the best algorithm, rewardfunction and hyperparameters, simplified versions ofthe problem were studied under two main classes ofalgorithms: Iteration over policy function πθ and iterationover value function Qθ. Fig. 2 shows the four test projectsconsidered and the two algorithms implemented for each:Episodic REINFORCE and Q-Learning/DQN.
In the first two simplified projects (1 and 2 DOF robots),the reduced dimension of the state S and actionA spacesallowed the use of a Q-Learning algorithm known as Q-Tables, in which every possible state-action combinationis directly mapped to Q(s, a), which is a function of state

s and action a, given by a table. However, due to theincreased dimensions of the last two projects, the more

sophisticated algorithm DQN was implemented, in whicha Feedforward Neural Network approximates the state-action value function Q(s, a).
The software chosen was MATLAB because of thesupport libraries and functions for robotics simulations.This saves time programming both the visualizationand the dynamics computation, besides having all thenecessary tools of reinforcement learning and neuralnetwork implementations. While other programminglanguages such as Python offer significantly moresupport for machine learning applications in libraries likeTensorflow and Keras, the available Python libraries forrobot kinematics present limited functionality comparedto MATLAB.

4 Implemented Algorithms

Reinforcement Learning algorithms can be divided intwo major classes: Policy-based and Value-based. Theformer represents the agent’s policy directly and performsupdates on it according to the reward obtained by takingdifferent actions in different states. The latter learns astate-action value function Q(s, a) instead from whichthe agent’s actions are derived.
In this work, a baseline Deep Reinforcement Learningalgorithm of each class was implemented: The Policy-based REINFORCE and the Value-based DQN. However,the developed framework allows for other RL algorithmscompatible with discrete action spaces to be implemented,such as A2C (Mnih et al., 2016) and PPO (Schulman et al.,2017).

4.1 First Algorithm: Episodic REINFORCE

The first implemented algorithm is the classic actionpolicy iteration algorithm, episodic REINFORCE proposedby Williams (1992), adapted to the manipulation robotpositioning problem according to the pseudocode below.REINFORCE consists in the parameterization of theaction policy function π(s) as πθ(s) using any functionapproximation method, such as neural networks or high-degree polynomials, and training by successive updates ofthe parameters θ in order to maximize the Performancefunction J(πθ), which represents the quality of policy πθ.Let τ = {s0, a0, r1, s1, a1, r2,..., sT–1, aT–1, rT} be a trajectory generated by a genericpolicy πθ, the performance function J(πθ) can be definedas the expected value of discounted rewards over thetrajectory (Eq. (1)).
J(θ) = Eτ∼π(τ)[r(τ)] (1)

where r(τ) = ∑T
t=1 γt–1rt = Vπ(s0) is equivalent to the valueof the initial state Vπ(s0) according to policy πθ. Sinceknowledge of the environment and reward is gatheredthrough environmental interaction, the gradient of theperformance function∇J(θ) must be approximated by a
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sufficient number of trajectories N (Eq. (2)).
∇J(θ) ≈ 1

N

N∑
n=1

T–1∑
t=0

Gt
∇πθ(st, at)
πθ(st, at) (2)

where γ is known as the discount factor and the returns
Gt = ∑T–t–1

k=0 γkrt+k+1 = rt+1 +γrt+2 +...+γT–t–1rT are definedas the sum of discounted rewards from instant t onward.Historically used to bound the sum of expected rewardsof infinite horizon models, the discount factor γ can beinterpreted as an interest rate which prioritizes actionswith higher immediate rewards while also taking intoaccount future rewards (Kaelbling et al., 1996).

Algorithm 1: Episodic REINFORCE
· Initialize Robot, setpoint, obstacle, initial state s0and action spaceA;
· Initialize Hyperparameters (bonus and penalties,network size, number of timesteps, trajectoriesand epochs, discount factor γ and learning rate α);
· Initialize data structure to store epochs;
· Initialize parameterized action policy πθ0randomly;Generate N trajectories {τn}N

n=1 from action policy
πθ0 , where τn = S(n)

0 , A(n)
0 , R(n)0 , ..., S(n)

T–1, A(n)
T–1, R(n)

T ;
Determine returns {Gt}T–1

t=0 , where Gi = ∑T
k=0 γkri+k;Store {τ}N

n=1 in EpochBuffer(1);
for ep← 2 to MaxEpoch doApply Gradient Ascent Method on J(θ) to get πep:

θep ← θep–1 + α 1
N
∑N

n=1∑T–1
t=0 Gt

∇πθ(st,at)
πθ(st,at) ;

Generate N trajectories {τn}N
n=1 from actionpolicy πθep , where

τn = S0, A0, R0, ..., ST–1, AT–1, RT ;Determine returns {Gt}T–1
t=0 , where

Gi = ∑T
k=0 γkri+k;Store {τ}N

n=1 in EpochBuffer(ep);
end

4.2 Second Algorithm: DQN

DQN (Deep Q Network) can be seen as a generalizationof the simple Q-Learning algorithm known as Q-tables.Rather than directly mapping each state-action pair to avalue Q(s, a) and performing successive iterations on theresulting table, DQN performs the parameterization of thestate-action value function Qθ(s, a) as a weighted neuralnetwork (Mnih et al., 2013). The network is initializedarbitrarily with random weights θ, which are updatedsuccessively as state transitions (s, a, r, s′) are observedby the agent. The DQN network is trained to satisfy theBellman Equation (Eq. (3) – (Bellman, 1967)):
Qθ(st, at) = r(st, at) + γ max

a′∈A
Qθ(st+1, a′) (3)

Algorithm 2: DQN
· Initialize the robot, setpoint, obstacle, initial state

s0 and action spaceA;
· Initialize Hyperparameters (bonuses and penalties,network, number of timesteps, epochs andtransitions at Buffer, discount factor γ, learningrateα) and ε;
· Initialize epoch storage structure;
· Initialize parameterized DQN network Qθ0randomly;
for ep← 1 to MaxEpoch doInitialize state: s← s0;Fill Experience Buffer with N transitions givencurrent network Qθep and ε-Greedy method ;Sample random mini-batch of size Nbatch from

Experience Buffer;
for i← 1 to Nbatch doRead i-th transition: (s, a, r, s′, boolterm) ;

if boolterm == true then
y = r;

else
y = r + γ maxa′∈A Qθep (s′, a′);

endstore expected output q = Q(s, a) and target y;
endApplies Gradient Descent to minimize costfunction given by L(θ) = 12 (Qθ(s, a) – y)2, thatis:
θep+1 ← θep – α 1

Nbatch

∑Nbatch
i=1 ∇θ

12 (Qθ(s, a) – y)2;
Clear Experience Buffer;

end

which associates the value of a state-action pair to themaximum value of subsequent state-action pairs. DQNcan be seen as a Supervised Learning Algorithm in whichthe target is non-stationary, as it depends on the Qθ(s, a)function itself, except for terminal states, in which thetarget is simply the reward r(st, at). This is one of themajor difficulties associated with this method and causesits convergence to depend on sufficient exploration ofdifferent actions across the entire state space. However,given sufficient exploration, the algorithm is provedto converge to the optimal state-action value function
Q∗(s, a).

In order to improve numerical conditioning and allowfor faster convergence, a technique known as PrioritizedExperience Replay (Schaul et al., 2016) is implemented,where state transitions are stored in a experience bufferand sampled randomly, while terminal transitions arealways sampled. State transition tuples are defined as(s, a, r, s′, boolterm) where s is the system’s current state, ais the action taken by the agent, r the reward obtained and
s′ is the subsequent state, in addition, a Boolean variable
boolterm indicates if the state is terminal.
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5 Reward Functions
Reward function engineering is critical in reinforcementlearning applications. The reward function determinesthe quality of actions taken by the agent and influencesnot only the policies it is capable of learning but alsothe algorithm’s convergence. As a result, there is anincreasing effort in recent research to optimize rewardfunctions for different tasks.Over the test projects, three different reward functionsare implemented. In the first two test projects, agentstrained with one reward function showed significantlybetter performance than the others. As a result, the Kukaprojects focused on the implementation of this rewardfunction. The following sections detail their mathematicalimplementations, key insights and intuition.
5.1 First Reward Function: Absolute Distances

The first reward function (Eq. (4)) considered is inspiredin the potential field method for path planning of mobilerobots. The reward function depends on the euclideandistances between the end effector, the obstacle and thegoal, similarly to the reward function used in Sangiovanniet al. (2018), which also applies a distance based rewardfunction to the task of training a robotic manipulator forpositioning while avoiding obstacles.
r1(s, a) = k

(
rsetpoint(s, a) + robstacle(s, a) + c

)
+ Bgoal(s, a)
+ Pjoint boundary(s, a)
+ Pcollision(s, a)

(4)

where rsetpoint = –k1
∥∥∥psp – p′ef

∥∥∥2
robstacle = k2

∥∥∥pobs – p′ef

∥∥∥2
p′ef is the end effector’s future position after action ais taken and psp and pobs are the setpoint and obstaclepositions respectively. The remaining terms representbonuses or penalties given to the agent based on thedesired behavior: Bgoal is a bonus given when the desiredobject is reached, Pcollision is a penalty given when eitherthe table or the red obstacle is hit and Pjoint boundary isa penalty given when one of the robot’s joint’s limit isreached.
5.2 Second Reward Function: Discrete under

Approximation or Distancing

In order to correct problems observed in the first function,such as high magnitude and non-zero average value overall the possible actions at a given state, a second function istested. The second reward function (Eq. (5)) is dependenton the relative approximation or distancing between theend effector, the obstacle and the goal.

r2(s, a) = (ksrsetpoint(s, a) + korobstacle(s, a))
+ Bgoal(s, a)
+ Pjoint boundary(s, a)
+ Pcollision(s, a)

(5)

where

rsetpoint =


–1, if
∥∥∥psp – p′ef

∥∥∥2 > ∥∥∥psp – pef
∥∥∥20, if

∥∥∥psp – p′ef

∥∥∥2 = ∥∥∥psp – pef
∥∥∥21, if

∥∥∥psp – p′ef

∥∥∥2 < ∥∥∥psp – pef
∥∥∥2

robstacle =



0, if
∥∥∥pobs – p′ef

∥∥∥2 > rinfl
–1, if

∥∥∥pobs – p′ef

∥∥∥2 < ∥∥∥pobs – pef
∥∥∥20, if

∥∥∥pobs – p′ef

∥∥∥2 = ∥∥∥pobs – pef
∥∥∥21, if

∥∥∥pobs – p′ef

∥∥∥2 > ∥∥∥pobs – pef
∥∥∥2

The discrete penalties and rewards given in case ofcollision are the same as defined in r1(s, a), given in Eq. (4).Fig. 3 illustrates the normalized average reward obtainedby REINFORCE and Q-Learning agents for a 1-DOF robot(Test Project 1).
5.3 Third Reward Function: Projection of

Displacement Vector

Finally, the third reward function (Eq. (6)) is similar tothe second, but the terms rsetpoint and robstacle are no longerlimited to –1, 0 and 1, but are given by the projection of thedisplacement vector nef->ef’ in the directions that point tothe goal nef->setpoint and to the obstacle nef->obstacle.
r3(s, a) = (ksrsetpoint(s, a) + korobstacle(s, a))

+ Bgoal(s, a)
+ Pjoint boundary(s, a)
+ Pcollision(s, a)

(6)

where
rsetpoint(s, a) = (nef->ef’ • nef->setpoint

)
robstacle(s, a) =

0, if ∥∥∥pobstacle – p′ef

∥∥∥2 > rinfl–(nef->ef’ • nef->obstacle
), otherwise

and Bgoal(s, a), Pjoint boundary(s, a) and Pcollision(s, a) aredefined the same way as in previous reward functions.Fig. 4 illustrates a diagram of the third reward functionfor two different actions taken in the initial state s0. s′Aand s′B are the system’s states after the agent has takenactions aA and aB respectively. The dotted lines representthe vectors that point to the desired position and to the
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(a) Reward function comparison forREINFORCE agent.

(b) Reward function comparison forQ-Learning agent.
Figure 3: Normalized average reward per epoch obtainedby (a) REINFORCE and (b) Q-Learning agents for rewardfunctions r1 (red) and r2 (blue) on test project 1.

Figure 4: Diagram of the third reward function.
obstacle. Finally, the reward is given by the correspondingprojections.Overall, agents trained with the reward function
r3 showed better performance in comparison to those

(a) Reward function comparison forREINFORCE agent.

(b) Reward function comparison forQ-Learning agent.
Figure 5: Normalized average reward per epoch obtainedby REINFORCE (a) and Q-Learning (b) agents for rewardfunctions r2 (red) and r3 (blue) on test project 2.
trained with r2. Fig. 5 shows the average rewardper epoch obtained during training of a 2-DOF robot.The REINFORCE agent trained with reward function r3presented a significantly better performance in termsof convergence time and stability (Fig. 5a) while the Q-Learning agent showed more frequent drops in its learningcurve during epochs in which a collision with the obstacleoccurred (Fig. 5b), which is possibly due to r3’s priorityto direct paths to the goal combined with a goal-obstacleconfiguration in which a direct path is obstructed.
6 Results
From the partial results obtained during training of a 1and 2-DOF robot, agents trained with the third rewardfunction presented significantly better performance. Asa result, only r3 is implemented in the last two projects,which focus on a comparative analysis between bothclasses of algorithms. In this section, the trainingframeworks and detailed results obtained from applyingboth classes of algorithms to the Kuka test projects arepresented. The results are followed by a brief comparativeanalysis and summarized at the end of the section.A side-by-side comparison of both algorithms inincreasingly more sophisticated applications is valuable
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Table 1: Kuka KR16’s joint limits and implementedangular limits.Joint Angular Limits [θiinf
, θisup ]

A1 [–185o, 185o] [–30o, 40o]A2 [–65o, 125o] [–20o, 40o]A3 [–220o, 64o] [–30o, 50o]A4 [–350o, 350o] [–40o, 40o]A5 [–130o, 130o] [–40o, 40o]A6 [–350o, 350o] not controlled

as it allows us to focus on the algorithms’ foundations,eliminating sources of instability or non-convergence andcomparing both in identical settings. Another advantageis the possibility to exploit modular, object-orientedprogram design, since most functions are shared by thevarious test projects and can be easily adapted to otherapplications. As shown in Fig. 2, the test projects arecharacterized by the simplifications considered: The firsttwo implement 1 and 2 DOF robots, while the last twoimplement the 6-DOF KUKA KR16 robot, but with initiallyfixed and then generic configurations of goal and obstacle.
6.1 Test Project 3: KUKA KR16 - Fixed

Configuration

After comparing both the reward function and thealgorithm on robots with a reduced number of degreesof freedom, a 3-dimensional simulation and visualizationenvironment for the KUKA-KR16 robot was implementedon Matlab by loading RigidBodyTree object representationof the robot based on its urdf file and stl meshes.In this project, the agent’s task is to control the robot’sfirst five degrees of freedom to position its end effector onthe fixed goal position (green) while avoiding collisionwith a known obstacle (red) and the table, which isunknown and is only detectable through interaction.Due to overall better performance observed on agentstrained with the third reward function (Eq. (6)) on bothalgorithms, the following projects implement only r3 asthe reward function and focus on a comparative analysisbetween algorithms as well as on techniques to overcomethe dimensionality issue on real robotics applications.The State Space is now given by Eq. (7):
S = ( 5∏

i=1
Si

) xR3 xR3,
where Si = {θiinf

+ i∆θ|i = 1, ..., θisup

∆θ
}

(7)

Similarly to previous test projects, the State Spaceis the combination of possible angular positions foreach controllable rotating joint Si and all possibleCartesian positions for the goal and the obstacle in three-dimensional space R3. Table 1 indicates Kuka KR16’sjoint limits and the implemented limits give the tableworkspace.

The Action Space is: A = ∏5
i=1Ai, whereAi = {–1, 0, 1},

Figure 6: Simulation Environment developed for testprojects 3 and 4. Goal and obstacle are represented bygreen and red cubes and a random trajectory is shown inblue.
which corresponds to all possible positive, neutral andnegative increments for all joint actuators. As a result, thenumber of possible actions is 35 = 243 (Eq. (8)). Fig. 6illustrates the simulation environment.

A =



1 1 1 1 11 1 1 1 01 1 1 1 –11 1 1 0 11 1 1 0 01 1 1 0 –11 1 1 –1 11 1 1 –1 01 1 1 –1 –1... ... ... ... ...–1 –1 –1 –1 1–1 –1 –1 –1 0–1 –1 –1 –1 –1



(8)

6.1.1 Episodic REINFORCEThe algorithm’s generic formulation allowed for relativelysimple adaptation to the new project. The policy function
πθ(s, a) neural network complexity was increased in orderto allow for the abstraction of more complex policies. Athree-layer feedforward network with 104000 trainableparameters was implemented. Table 2 summarizes theproject’s hyperparameters.

Similarly to previous test projects, the directapproximation and training of the policy function
πθ(a|s) yielded a smooth, monotonically increasingaverage reward curve (Fig. 7). As opposed to valueiteration algorithms, which search for the optimalstate-action value function Qθ(s, a) and derive the optimalpolicy by taking the action of most value at each state.In order to study the agent’s increasing preferencefor optimal actions during training, the probability
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Table 2: Variables and Hyperparameters of Episodic REINFORCE implementation of Test Project 3Parameter Description Value
psetpoint Goal Position (m) (1.05, 0.45, 0.75)
pobstacle Obstacle Position (m) (1.05, –0.55, 0.75)

∆θ Minimum Joint Angle Step 1o

α Learning Rate 0.0005
Bgoal Goal Bonus 400

Pcollision Collision Penalty -400
Pjoint boundary Joint Limit Penalty -400

rinfl Obstacle Influence Radius (m) 0.50
MaxEpoch Maximum Number of Training Epochs 50

N Number of Trajectories per Epoch 30
T Maximum Number of Actions per Trajectory 70
γ Discount Factor 0.3

dim(s) State s Dimension 11
dim(a) Action a Dimension 5
size(A) Action Space A Size 243(nin, nh1, nh2, nout) πθ(a|s) Network Neurons per Layer (11, 100, 300, 243)

ks Goal Multiplicative Factor 100
ko Obstacle Multiplicative Factor 70

Figure 7: Normalized average reward per epoch obtainedby REINFORCE agent trained with reward function r3.
distribution of actions in A given the initial state wasplotted for epochs 1, 4, 8 and 12 (Fig. 8).
6.1.2 DQNDue to exponentially increasing state-action spacedimension as the number of degrees of freedom increases,a Q-table algorithm is impracticable as a result ofmemory and computation limitations. In order toovercome the dimensionality issue, the state-actionvalue function Qθ(s, a) was represented as a Multi-layerPerceptron (MLP). The algorithm’s formulation, detailedin Section 4.2, consists in applying gradient descent inorder to minimize the mean squared error between thenetwork’s current output Qθ(s, a) and the target r(s, a) +
γ maxa′∈A Qθep (s′, a′), where s′ denotes the state reachedafter action a is executed in state s. Table 3 summarizesthe algorithm-specific hyperparameters implemented.

Fig. 9 illustrates the trajectory taken by the DQN agentafter convergence and the average reward performancecurve during training.In order to analyze the agent’s behavior in cases where

(a) πθ(a|s0) in epoch 1 (b) πθ(a|s0) in epoch 4

(c) πθ(a|s0) in epoch 8 (d) πθ(a|s0) in epoch 12
Figure 8: Probability Distribution πθ(a|s0) over actionspaceA for initial state s0 during training in epochs 1, 4,8 and 12.

a direct path to the goal is blocked by an unknownobject, a wall was placed between the effector’s initialposition and the goal. Similarly to table collision, wallcollision is incorporated into the state transition functionand terminates a trajectory if the robot’s end effector issufficiently close to the wall. A negative reward of Pcollisionis given during collision and the wall’s position can onlybe learned through environmental interaction. Fig. 10illustrates the optimal trajectory found by the agent andthe corresponding learning curve during training. Asexpected, an increased number of epochs was necessaryfor the abstraction of more complex behavior, but theDQN agent was able to dodge the wall correctly with noalgorithmic changes.
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Table 3: Variables and Hyperparameters of DQN implementation on Test Project 2Parameter Description Value
α Learning Rate 0.002

MaxEpoch Maximum Number o Training Epochs 250
Ntrajs Number of Trajectories per Epoch 10

MiniBatchSize Number of Sampled Transitions for Training 200
T Maximum Number of Actions per Trajectory 70
γ Discount Factor 0.3

dim(s) State s Dimension 11
dim(a) Action a Dimension 5
size(A) Action Space A Size 243(nin, nh1, nh2, nout) πθ(a|s) Network Neurons per Layer (11, 100, 300, 243)

(a) Trajectory taken by DQN agentafter training

(b) DQN agent performance curve
Figure 9: Optimal trajectory taken by agent (a) andaverage rewards obtained per epoch during training (b) inDQN implementation on Test Project 3.

6.2 Test Project 4: KUKA KR16 - Generic
Configurations

The main advantage of adaptive learning applied to thecontrol of industrial robots is the flexibility in unexpectedscenarios, the scalability provided by training over timeand the abstraction of complex and often nonintuitivepolicies with minimal human intervention. In orderto investigate both agents’ capability of learning anefficient positioning task for objects randomly located onthe workspace, both the goal’s (green) and the knownobstacle’s (red) positions were changed randomly duringtraining. A subspaceW ⊂ R3 of the robot’s work volume,defined asW = {(x, y, z) ∈ R3|0.80 < x < 1.4, –0.90 < y <0.90, 0.80 < z < 1.00}, was chosen for the possible goal and

(a) Optimal Trajectory found by DQNagent in environment with unknownblocking obstacle

(b) Average rewards per epoch obtainedduring training
Figure 10: Optimal Trajectory (a) and learning curveduring training (b) obtained by DQN agentimplementation on variation of Test Project 3 withunknown obstacle.

obstacle positions. During testing, planar goal-obstacleconfigurations often did not require the agent to avoidthe obstacle, as a direct path to the goal was frequentlypresent. In order to test the RL agent on more challengingscenarios, a three-dimensional volume of possible goalobstacle configurations was chosen, giving the impressionthat some objects are floating.
6.2.1 Episodic REINFORCE
A REINFORCE agent with πθ(a|s) policy networkarchitecture equal to Test Project 3 was implementedand trained. However, there was no noticeable increasein performance or convergence to the optimal policy, as
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(a) Correct positioningtrajectory performed by theagent.
(b) Table collision trajectoryperformed by the agent.

(c) Average rewards per epoch duringtraining
Figure 11: Trajectories generated by the REINFORCEagent after training for different goal-obstacleconfigurations (a),(b) and learning curve (c) duringtraining.

shown in Fig. 11c. The agent’s performance presented anundesired high sensitivity to goal-obstacle configuration,performing the positioning task correctly on specificconfigurations (Fig. 11a) and incorrectly on others(Fig. 11b). Moreover, proximity between the goal andobstacle resulted in poor performance and an increasedchance of table collision.
6.2.2 DQN
6.3 Comparative Analysis of Algorithms

In order to compare both classes of algorithms, three maincriteria were analyzed: convergence rate over the testprojects, execution time and smooth increase of averagereward. The policy-iteration algorithm REINFORCEoutperformed DQN in the latter, while the value-iterationalgorithm showed better execution time and convergenceresults. Table 4 illustrates the execution time untilconvergence for both algorithms on the four test projects.DQN showed better scalability with increasing applicationcomplexity, while REINFORCE agents presented longertraining times.

(a) Trajectory performed byDQN agent in epoch 132 oftraining.
(b) Trajectory performed bytrained agent on randomgoal-obstacle configuration.

(c) Average rewards per epoch duringtraining
Figure 12: Trajectories performed by DQN agent during(a) and after training (b) and associated learning curve (c)during training.

Table 4: Average training times associated with bothagents on each test project.Project REINFORCE Q-Learning1 Degrees of Freedom (R) 6,8min 6,9 min2 Degrees of Freedom (RR) 11.7min 7.4min6 Degrees of Freedom (6R),fixed configuration 30h 16h
6 Degrees of Freedom (6R),random configuration Noconvergence 25h

7 Conclusion

The application of newly developed methods, especiallyin consolidated industries where sensitive operationsrequire that safety conditions must be met, is subject toan extensive research in simulated settings and controlledenvironments. Reinforcement Learning is a relatively newfield with promising results in control and game theory.The main contributions of this work are the evaluationof two classes of RL algorithms applied to a typicalindustrial robotics task and the development of a modularsimulation architecture that allows for simplicity infurther investigation of similar problems. We also presenta new reward function formulation based on the projectionof the end effector’s displacement, which significantlyimproved the agent’s performance on both algorithms.A comparative analysis of both classes of algorithmson increasingly complex environments also highlighted
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their main limitations and points to improve futureresearch: sensitivity to reward function, state-actionspace exponential increase in dimensions, low sampleefficiency and consequently high training time. Rewardfunction engineering is where human expert analysisis fundamental, and the dimensionality issue isoften overcome by algorithmic changes, such as thereplacement of Q-tables with DQN or by modeling theaction space A as continuous and having the policynetwork πθ(a|s) output allow for the mapping ontocontinuous actions, commonly done in algorithms suchas REINFORCE, DDPG and Actor-Critic (Sutton and Barto,2018).The non-convergent behavior obtained by theREINFORCE agent on the last project can be explainedby common limitations associated with policy iterationalgorithms in general, such as high sensitivity to learningrate and exploratory variance (Kormushev et al., 2013).DQN’s overall better performance in shorter trainingperiods is possibly due to higher frequency networkupdates and the implementation of an experience replayfrom which state transitions are randomly sampled (Lin,1993).
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