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ABSTRACT 

 

This study describes a practical method applied to nuclear reactor safety analysis (NRSA), 

based on an approach so-called best estimate plus uncertainty (BEPU). The innovative analysis 

approach involves statistical methods integrated with deterministic rules to fuel licensing code 

(FLC). The goal of NRSA is to improve safety margins in the nuclear reactor operation, which 

has partially achieved with uncertainty treatment. Previously, BEPU analysis was widely used 

to study the loss of coolant accident (LOCA), via inclusion in thermal-hydraulic codes (THC). 

The systems can measure the impact caused by uncertainties spread in core reactors with a 

coupling of THC and optimization packages. This paper shows the result of applying the 

UA/SA technique to FRAPCON, joined with DAKOTA toolkit. This integration will offer the 

probabilistic analysis coupled with empirical rules. A perfect fusion of the concepts permits 

the exploration of parametric uncertainties and calibration of physical models. We can use the 

combined utilization of FLC systems and the DAKOTA toolkit to produce sensitivity analysis. 

The first step in this approach is to identify all uncertainty sources of the physical models, the 

reactor design, and manufacturing parameters. It is subsequently used into an FLC, such as 

FRAPCON, as input parameters. The uncertainties usually distributed using the Wilks formula, 

which determines the number of samples required for unilateral tolerance. According to Wilks' 

method, it needs 59 data samples to achieve a confidence level of 95%. Results from Wilks 

formula found via Monte Carlo simulation, which applies to FLC coupled with sensitivity 

analysis. 

 

 

1. INTRODUCTION 

 

The last tendency of NRSA has promoted the integration of features of both methodologies to 

build a complete framework. Deterministic models are dominant in the U.S. Code of Federal 

Regulations, Title 10, Part 50 (10 CFR§50), Appendix K, last updated in 1988. Then it is using 

the DSA paradigm to the loss of coolant accident (LOCA) evaluations.  
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In 1996, when was introducing the Code Scaling, Applicability, and Uncertainty (CSAU) 

method. Where the concepts are in the norm (Quantifying Reactor Safety Margins Application 

of Code Scaling, Applicability, and Uncertainty). Later, THC codes were used in the licensing 

process, but it was still necessary to measure the uncertainty effects. During the service life of 

reactors, all forces are essential considering the uncertainty treatment introduced by Best-

Estimate Plus Uncertainty (BEPU).  

 

These analyses can use several statistical methods to perform procedures for all transients and 

facilities. The BEPU procedures must adequate transient scenarios, including the input 

parameter selection of uncertainty propagation over the safety criteria. This power framework 

permits compliance responses using both parametric and non-parametric uncertainty analysis 

methods. The focus of nuclear safety has been on accident scenarios for power units, especially 

the Pressurized Water Reactor (PWR). The main topic of research is on PWRs under a Large 

Break Loss of Coolant Accident (LB LOCA) and in a spent fuel storage condition. 

 

1.1. Long Irradiation Cycles 

 

The zirconium alloys exhibit oxidation, hydride, oxide spallation, degradation of features 

because of irradiation damage. However, the nuclear specialist must increase fuel discharge 

burnup, maintaining safety margins. Extended cycles could reduce fuel costs and waste 

management. Advanced material as iron-chromium-aluminum FeCrAl and ceramic silicon 

carbide (SiC) should replace zircaloys. In the last decades, because of the same drawback 

developed options such as Zirlo, M5, MDA, duplex cladding.  

 

1.2. Nuclear Licensing Process  

 

A set of norms form the guidelines that contain the descriptions used to nuclear reactor 

operations that must obey the limits endorsed. The U.S Nuclear Regulation Commission 

(USNRC) is the federal agency that must suggest safety requirements to protect the health of 

the public. Nuclear safety guidance must follow the Code of Federal Regulations (CFR) that 

contain all regulations issued by the U.S. government regarding atomic energy. The most 

comment is the (10CFR§50.46), proposed in 1974 [1]. The norms defined acceptance criteria 

for emergency core cooling systems (ECCS) in light-water reactors (LWRs). The ECCS 

contains a set of limits that formed at least five practical rules. ECCS requirements intend to 

guarantee the integrity of the reactor core in any operating conditions. 

 

After the 1990s, started replacement of unrealistic safety margins used in the license of nuclear 

reactors drove the need for using uncertainty methods. Deterministic rules, often excessive, 

inducing limits the actual capabilities of the industry to increase energy production. These rules 

established corrosion limits for cladding oxidation at < 17% of cladding thickness, also 

defining limits to hydrogen generation. The PCT value shall be below 1200°C and explored for 

loss-of-coolant accidents.  The Deterministic Safety Analysis (DSA) is a consequence of the 

rules defined in CFR §50.46, conducted under empirical methods. However, deterministic 

practices could provide unrealistic safety margins for nuclear services. The NRSA had shown 

the methods BE, and BEPU models, which are accessible in Monte-Carlo codes, also 

implemented in several THC systems, and fuel performance codes [2]. 
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The International Atomic Energy Agency (IAEA) recommends global safety standards that 

serve as a reference for protecting the civilian population and the environment. The IAEA 

specifies that the rules for nuclear operations should base on the recommendations of the BEPU 

for the licensing process. The NRC establishes a series of regulations known as the US 

Regulatory Guide (RG), which comprises strategies for creating uncertainty models in the 

licensing process. Also, it is known as the calculation of the best estimate of performing the 

central emergency cooling system (BE-ECCS) or RG-1.157. Regarding safety analysis, the 

RG-1.157 was a turning point in the safety concept followed by the nuclear industry. Several 

THCs now cover several of these recommended guidelines. Figure 1 shows the uncertainty 

quantification process. 

 

 

 
 

Figure 1:  Uncertainty quantification process used for fuel performance codes 

 

The NRC also established the code scaling, applicability, and uncertainty method, using the 

phenomena identification and rank table (PIRT). A procedure developed by the Technical 

Program Group for the USNRC in the late 1980s [3]. A group led by Westinghouse sponsored 

the NRC established CSAU method. Then, European company Areva S.A. developed the 

Gesellschaft fur Anlagen und Reaktorsicherheit (GRS) method for LOCA analysis, based on a 

non-parametric statistical approach that articulate inequality branded with a confidence level. 

Many thermal-hydraulics systems adopted BEPU models to improve safety as the Reactor 

Excursion and Leak Analysis Program (RELAP). Therefore, fuel performance codes have 

accurate safety assessments. Sensitivity analysis (SA) provides a study between the cause-and-

effect spreader inner-system and how the output can trigger all sources of input deviations [4]. 

 

The procedure described here combines the uncertainty analysis and sensitivity analysis 

(UA/SA), which can also apply to FRAPCON and other licensing codes [5]. The fuel licensing 

systems inherited features of the BEPU approach because of the use of interfaces with statistical 

tools. It can quantify the uncertainties based on the mechanical tolerances and also include the 

propagation for physical models, the method used to calculate fuel responses to different 

5431



INAC 2019, Santos, SP, Brazil. 

 

situations. Sensitivity analysis also aids in understanding the failures of accident scenarios. 

This method offers several benefits and uses a global sensitivity analysis (GSA) to predict fuel 

response. 

 

1.3. Review Sensitivity Analysis Methods 

 

Sensitivity analysis is the study of how the uncertainty of the output of a model can identify 

effects from many sources of uncertainties from the system analyzed [6]. GSA technique 

permits the measurement of the importance of the input parameters within the whole input 

space. In contrast, another type of analysis is a variance-based sensitivity analysis (VBSA). 

Variance models are derivations from GSA, including other approaches like regression analysis 

and the so-called Sobol method [7]. Complicated systems such as a nuclear reactor can use 

variance-based indices for safety analysis. The study of variance (ANOVA) model leads to the 

Sobol' indices used for independent input variables, [8]. In the 1970s, the global sensitivity 

analysis (GSA) practices used the Fourier amplitude sensitivity test (FAST). Global methods 

contain variability for all input parameters occurring at the same time. Here, sampling of the 

input parameters following models from Fourier analysis of the output can produce sensitivity 

indices for each input variable [9]. Figure 2 illustrates a block diagram of the UA/SA method. 

 

 

 
 

Figure 2:  Sensitivity analysis process applied o fuel performance codes 

 

Today, several away use computational tools to perform variance-based analysis for the first 

order. The first order indices appoint the primary effect of each model input towards the output 

for prioritizing these inputs. However, Sobol methods have adherence in the nuclear field and 

for sensitivity measures. In the beginning, sensitivity analyses used standard statistical 

purposes like scatter plots. Where scatter plot graphics displayed the influence of a variable of 

the output against each input variable.  

 

Further methods used regression analysis, where regression coefficients qualify the linear 

sensitivity of each input and correlation analysis. The next step studied used one-at-a-time 

ways, where one input variable is changed while keeping all others at a constant level. 
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Therefore, information only for that region in the input space knowledge correlated from local 

sensitivity methods.  

 

2. MATERIAL AND METHODS 

 

2.1. Reactivity Initiated Accident 

 

The reactivity initiated accident (RIA) is a transient lesser investigated than LOCA. A transient 

typified as a nuclear accident that involves a pulsed increase in reactor power. The RIA 

modeling follows the adiabatic Nordheim-Fuchs formulations (NFF), which describe an 

analytical expression. NFF comprised pulse width and shape under conditions of prompt 

criticality. The full width at half maximum (FWHM) defines the enthalpy pulse inserted during 

RIA, equation (1) exhibits the point reactor kinetics model and equation (2) expresses the 

equation for precursors. 
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where, ρ(t) is the reactivity at time t, n(t) is the time-dependent neutron density (t) the effective 

concentration of delayed neutron group i, β is the total effective delayed neutron fraction, βi is 

the effective delayed neutron fraction of group i, λi is the effective decay constant of group i, 

and Ʌ mean neutron generation time The abrupt power increase can lead to damage to the 

reactor core and fuel cladding, and in severe cases, even lead to disruption of the reactor. 

Design-basis accident (DBA)for RIA scenarios will cause a rapid increase of the reactivity 

represented as higher fuel enthalpy deposited in the fuel following vast horizons such as 

cladding failure and severe consequences as fuel melting on core reactor. Equation 3 shows a 

simple correlation for the pulse width of the fuel enthalpy inserted. The transient model using 

adiabatic NFF contain an approximation to the energy injected in the fuel during power pulse 

has dependence with the heat capacity of fuel enthalpy. The modeling used for the power added 

during pulse width from equation (4), also had the energy deposited in the fuel in equation (5). 
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where τ represents the power pulse ∆ρ is a spike of reactivity, β represents the active fraction 

of delayed neutrons, and Ʌ is the useful neutron lifetime. 
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where Pmax is the maximum power, and tmax is the time of the maximum power. 
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where E is energy inserted in the fuel mass, (∆ρ-β) represents prompt reactivity insertion, and 

Cf is the heat capacity of UO2 fuel. Figure 3 illustrates the pulse of enthalpy inserted under RIA 

conditions. 
 

 

 
 

Figure 3:  Pulse enthalpy inserted in the fuel rod and fuel assembly 

 

During a steady-state, under regular operations happen changes in the physical properties of 

the zirconium-based alloys occur. The cladding materials suffer degradations because of a 

combination of oxidation, hydride, and radiation damages. In this scenario, clad alloys could 

reach corrosion levels near deterministic limits of 17%. 

 

2.2. Initiated Accident Acceptance Criteria 

 

The new amended the §50.46c comprising guidelines about the loss of elasticity of coating 

caused by hydride effects. The acceptance criteria used for safety analyses involving thermal-

hydraulic, neutron-kinetics, also thermal-mechanic response. However, acceptance criteria 

used for RIA conditions comprised the compiled results performed during the 1970 decade. 

The first criteria produced from experiments performed in pulse reactors established on SPERT 

and TREAT programs, 1974. The conservative limit measured in testing zero or low burnup 

rods identified the failure, also setting the enthalpy limit of 280 cal/g-UO2 reevaluated to 230 

cal/g-UO2, 1981. The fuel rod failure threshold related under RIA condition; also shows 

dependencies with burnup level, clad corrosion, the peak of enthalpy inserted, and fission gas 

release (FGR) 

 

2.3. Computer Systems  

 

The USNRC promulgated the licensing procedures based on reactor kinetics codes, THC 

system, and FLCs to audit nuclear power units.  
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Regarding fuel licensing codes, the Fuel Rod Analysis Program Conservative (FRAPCON) 

displays the goal of testing the thermal-mechanical behavior of oxide fuel rods for steady-state 

analysis [10]. FRAPCON performed a cooperative task with another program, the Fuel Rod 

Analysis Program Transient (FRAPTRAN), which simulates accident conditions [11]. 

Regulation criterium considers a single fuel rod for licensing analysis in any light-water 

reactors (LWRs).  

 

Over the years, the U.S. Nuclear Regulatory Commission (NRC) developed a broad benchmark 

that proves the efficiency of fuel codes. This licensing code can predict a single fuel rod 

response to a steady-state and provide data on accident scenarios. The NRC recommended its 

own nuclear fuel rod simulation capabilities. The updated version of the code, FRAPCON-4.0, 

is the latest version of the NRC tool. 

 

Both FLCs follow on the Materials Property Library (MATPRO), also used for THC codes. 

The codes worked with a toolkit defined to optimize engineering designs, which is a tool 

developed by Sandia National Laboratory (SNL) for multi-purpose designs. The result is a 

flexible system, known as the Design Analysis Kit for Optimization and Terascale Applications 

(DAKOTA) [12]. The system is a toolkit based on high-performance computation (HPC). 

Other uses for this system are sensitivity and variance analysis, which are the basis of the 

methods presented here.  

 

The DAKOTA toolkit implements a stochastic procedure that can optimize nuclear systems 

and quantify the margins and uncertainty. The simulation process was comprising FRAPCON, 

FRAPTRAN, and DAKOTA to perform uncertainty and sensitivity analysis. 

 

2.4. Overview of Sensitivity Analysis Methods 

 

Nuclear systems deal with multiple parameters containing uncertainties, sorted according to 

the origin. There is an uncertainty classification divided into mechanical tolerances, boundary 

conditions, and risks from physical models. Changes from thermal conductivity can produce a 

large amount of variability into mechanical and thermal models, including FGR and hydraulic 

models. The probability density function (PDF) describes the relative likelihood that a random 

variable takes on a value within a range. The probability density function in the range between 

two limits a and b, in equation (6). 

 

[ ] ( )

b

P a x b f x dx

a

  =      (6) 

 

where P is a probability for support space defined between bound xmin and xmax. 

 

The PDF defines a non-negative function, such that the integral over the whole support space 

of 𝒙 is 1. The same definitions are generalizing for multivariable functions of random variables 

𝒙 = [x1, x2,  ... , x𝑛 ], in which case the PDF refers to the joint density. In the case of multivariate 

function using equation (7). 
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The sensitivity treatment must measure the effects of variations produced on each item of 

interest. Some models, such as correlation and variance analysis, are the models used to 

measure SA. The sensitivity, S, of a variable, P, represents the partial derivative of S divided 

by the partial derivative of P, shown in equation (8). 
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where x is the variable of interest. 
 

2.5. Local And Global Sensitivity Analysis 

 

In the local sensitivity analysis, the response of a model varies the sample-one inputs while 

keeping the other input data fixed. The overall sensitivity analysis considers the full range of 

the input parameter variations to account for all output uncertainty, according to the different 

sources of changes in the inputs of the model. 

 

The methods used for UA focuses on the task defined to quantify and propagate uncertainties. 

SA measures how to change the output of a model from multiple variabilities correlated with 

the input model [13], [14]. 

 

If the model does not have linear characteristics but still exhibits monotonic behavior, one could 

apply a rank transformation to the sample sets. Afterward, to find the analogy between the 

linear cases, the model can use the Spearman’s Rank Correlation Coefficient (SRCC), the 

Standard Rank Regression Coefficient (SRRC), and the Partial Rank Correlation Coefficient 

(PRCC). However, many models are non-linear and non-monotonic. Here, a deconstruction of 

the output variance can lead to helpful indices for single inputs or even subsets of data. 

 

The methods adopted are SRCC, coupled with sensitivity indices. The DAKOTA toolkit 

estimated correlations using the Pearson Product Momentum Correlation (PPMC) and SRC. 

The nonparametric statistic can identify free distributions. The correlation indexes used to 

detect the strength of a monotonic relationship were PPMC and SRCC. The formulation used 

to Pearson coefficient in equation (9), where R signifies the degree to which X and Y vary 

together, divided by the degree to which X and Y can vary separately. 

 

2cov( , )2

var( ) var( )

X YiRi X Yi
=       (9) 

 

where Ri is the Pearson coefficient of correlation, for an input Xi and Y are random variables 

of the input data and output responses, respectively.  
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The Spearman Rank Correlation Coefficient extends the PPMC measure to detect the strength 

of a monotonic relationship. The Spearman rank index measure for the ranks of the inputs and 

output methods. The model used to Spearman rank using equation (10). 

 

2cov( , )2

var( ) var( )

rnk rnkX Yi
i rnk rnkX Yi

 =       (10) 

 

where ρi is the Pearson measure for input and Xi
rnk, and Yrnk are the ranks of the inputs i and the 

outputs, respectively. 

 

The trouble with the PPMC is the linearity assumption regarding only adequately explaining 

the variance's contribution to the response variance for linear, additive functions. Both the 

Pearson and the Spearman coefficient only consider the effect of one input variable at a time 

and may not include higher-order input interaction effects, which may be necessary. 

 

2.6. Variance Decomposition Procedures 

 

The uncertainty propagation of a model is useful to assess the sensitivity of results from 

individual parameters or combinations of settings. The variance-based decomposition (VBD) 

method, developed initially by Sobol, is a higher-order method used to calculate the fraction of 

the output variance attributed to a specific input, or set of input data. The total variation of an 

output expresses a finite sum of output variances dependent on fixed input. First-order Sobol 

indices are a function of conditional variance upon a single input data using equation (11), also 

is supposing that the smoothed curve is represented by Ex~i(y|xi). 

 

( ( | ))~

( )

Vx E y xi x i iSi
V y

=      (11) 

 

 

The advantage of this decomposition is that it allows us to determine what fraction of variance 

in 𝑌 is for each contributor. The VBD model can isolate and estimate the effects of each input 

variable's interaction with other inputs; therefore, giving a much more comprehensive view of 

which outcomes are essential to variance. However, VBD has a disadvantage regarding 

decomposition, in that the integrals embedded within it become expensive to calculate, 

depending on the uncertainty method applied. 

 

2.7. Wilks Method 

 

Uncertainty and sensitivity analysis UA/SA divided into five simple steps. First, based on all 

input variables, define the statistical distribution used for each parameter into an empirical 

range. The second phase comprises the generation of samples of the input variables. The next 

step measures the spread of uncertainty for each sample in the models under consideration 

through the utilization of fuel codes. The fourth phase involves analysis of propagated 

performance uncertainty. In the last step, measure GSA using statistical correlations or variance 

analysis. 
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Wilks formulation governs a minimum sample size of wanted lower and upper tolerance limit. 

The modeling can support multivariable statistics used for BEPU applications. The order 

statistic is a nonparametric technique that defines the minimum number of samples required to 

reach the intended significance and confidence levels. The order statistic method (OSM) must 

describe an ideal free distribution, in equation. (12) defines Wilks formulation. 
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where α is the quantile level, β is the confidence level for the upper bound of the quantile, and 

N is the number of simulations. 

 

The statistical method, Latin hypercube sampling (LHS), can build robust random sampling 

[18]. The Wilks formula provides the number of examples needed to reach a confidence level 

and a probability of 95%. The Wilks formula calculates to find first-order statistics with a 

minimum of 59 cases [15-19]. The BEMUSE project studied the best distributions to adopt and 

the practical ranges of deviations[20-21]. Random generators from DAKOTA may create a 

series of the input samples using the LHS method. Fuel code implements the Monte Carlo 

(MC) simulations used for the propagation process. The SA process uses the statistical 

correlation coefficients calculated by the DAKOTA toolkit. A probability distribution can help 

build the mathematical representation of the input parameters created by the DAKOTA toolkit 

using the Latin hypercube sampling model. Table 1 shows the lowest number of trials for the 

given quantiles and confidence levels most used for the BEPU models. 

 

Table 1:  Number of trials given as a function of the quantile and confidence levels 

 

α β 1ndN1 (α, β) 2nd N2 (α, β) 3rd N3 (α, β) 4th N4 (α, β) 

90% 90% 45 77 105 132 

95% 95% 59 93 124 153 

99% 99% 90 130 165 198 

 

 

Random distributions could represent all physical tolerances of the input parameters. UA/SA 

method uses LHS models to create input sampling, where a set of samples used to perform 

Monte Carlo simulation should spread the inner system input uncertainties. 

 

 

3. DISCUSSION AND RESULTS  

 

2.2 Characterization of Fuel Rod Uncertainty 

 

The aim of the CABRI International Program (CIP) executed in 2000, comprised fourteen RIA 

experiments performed in the CABRI research reactor. Reports collected from CIP programs 

appointed follow parameters form CIP0-1 rod test. The CIP0-1 using fuel system type 

(UO2/ZIRLO). In the first phase, the fuel rod reached to 75 GWd/MTU, clad oxide thickness 

of (60-70) µm, fill gas pressure of 0.3 MPa under regular operation. In the second phase, the 
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fuel rod suffered an enthalpy inserting a pulse width of 32 ms, reach a peak of enthalpy of 389 

J/g(UO2), and does not occur failure of the fuel rod [22]. In the experiment, the cladding 

maximum hoop strain reached 05.%. Fuel codes deal with various uncertainties, such as 

mechanical tolerances and operating conditions. The CIP0-1 comprised many interest effects 

also were calculated uncertainty quantification, propagation, and sensitivity analyses. The 

practical values assigned to the coating show deviations from ± 2σ. System configurations also 

can support cladding uncertain defined to axial growth, hydrogen uptake, corrosion, and 

strengthen rates. Besides, sensitivity values set for FGR, and swelling of ( ± 2σ). Table 2 

displays the uncertainties used in the simulation. We selected the inputs of primary importance 

from FRAPCON, and FRAPTRAN follows the method of Wilks producing 59 samples, which 

compose 59 run-codes. Figure 4 illustrates the sensitivity analysis from FRAPCON and 

FRAPTRAN. 

 

Table 2.  Uncertainty input parameters used in simulation FRAPCON and FRAPTRAN  

 

Input Parameters Nominal (µ) Upper Bound (µ±σ) Lower Bound (µ±σ) 

Rod Length (mm) 1.7749 1.8104 1.7394 

Fuel Pellet diameter (mm) 8.1900 8.3538 8.0262 

Radial gap thickness (mm) 0.0825 0.0842 0.0809 

Plenum void volume (mm3) 1910 1948.2 1871.8 

Rod diameter (mm) 9.5000 9.6900 9.3100 

Pellet High (mm) 9.8300 10.0266 9.6334 

Depth of pellet dish  0.0081 0.0083 0.0080 

The radius of the pellet dish (mm) 0.2399 0.2447 0.2351 

Fuel roughness (mm) 0.0020 0.0020 0.0020 

Fuel pellet density (%) 95.7000 97.6140 93.7860 

Fuel cold work (%) 0.5000 0.5100 0.4900 

Cladding roughness (mm) 0.0005 0.0005 0.0005 

Rod gas pressure (MPa) 2.3500 2.3970 2.3030 

Fuel rod pitch (mm) 12.3000 12.5460 12.0540 

 

 

 
Figure 4:  Sensitivity analysis of cladding mechanical behavior with input parameters 
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Interest parameters observed during simulations that show the Pearson indexes for cladding 

effective plastic strain and effective cladding stress regarding input parameters. The parameters 

investigated are fuel pellet diameter (FPD), the volume of the plenum (VP), rod diameter (RD), 

dish, rough of fuel (RF), rough of cladding (RC), pitch. Energy stored in the fuel and cladding 

shows small variability for the space of samples simulated around 0.13%. The cladding outsider 

oxidation layer thickness also shows reduced variability of around 0.80%. The explanation 

about occurs because of RIA shows less than one second. Figure 5 illustrates cladding 

mechanical deformation analyzing cladding axial, hoop, and radial strains.  

 

 
 

Figure 5:  Sensitivity analyses of cladding axial, hoop, and radial strain 

 

However, several parameters used in FRAPCON can rewrite for FRAPTRAN showed in the 

table. During reactivity accidents, a few inputs variables do not have a correlation with enthalpy 

pulse inserted. Figure 6 demonstrates that SA measures form plenum pressure and average fuel 

temperatures. 

 

 

 
 

Figure 6:  Sensitivity analyses of plenum pressure and fuel average temperature; 
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4. CONCLUSION 

 

There are several LOCA experiments tested with BEPU models, but in this investigation is 

being the same concepts to RIA scenario. The collection of methods here so-caller UA/SA can 

integrate the fuel licensing code using DAKOTA toolkit. In this study, were vastly used 

FRAPCON, FRAPTRAN, and DAKOTA also coupled with fuel safety rules with statistical 

concepts to produce the results funded. The fuel rod simulated under RIA conditions combining 

the UQ and the PPMC measure SA. Uncertainty quantification based on normal distributions 

based on the mean values and standard deviations of the variables. During simulations, 

uncertainty spread from input parameters with small variations introduced to the output. As the 

number of simulations increased, output parameters showed strong tendencies to expand the 

possibilities. We performed the sampling based on the effects because of the engendering 

tolerances combined with the boundary conditions, including uncertainties from physical 

models. We used the proposed m to predict the results of the idealized fuel rod experiment. 
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