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ABsTrAcT: Traditionally, pulse processing in Positron Emission Tomography (PET) has been based
on analog or discrete circuits forming a decentralized processing system. However, there is a
convergence for digital and integrated implementations due to the characteristics of the modern
electronic devices which are real-time processing capable, such as Application-Specific Integrated
Circuit (ASIC) and Field Programmable Gate Array (FPGA) with fast Analog to Digital Converters
(ADC). However, FPGA can provide fast implementation at relatively low cost and also enables the
development of sophisticated digital pulse processing algorithms to improve energy, position and
time resolutions in PET systems. Our group has developed and evaluated one energy calculation
and three timing pick-off methods for implementation onto an FPGA-based system. For a typical
PET detector setup, our charge integration method presents energy resolution similar to previously
designed PET detectors. The best performance for timing pick-off was achieved by the Initial Rise
Interpolation (IRI) method, where a coincidence time resolution of around 440 ps is suitable for
Time of Flight (TOF) PET. Future works include embedding the proposed algorithms in a FPGA-
based data acquisition system under development by our group which will be employed in a PET
prototype.
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1 Introduction

Positron Emission Tomography (PET) [1] is a nuclear imaging modality used for in vivo evaluation of
metabolic activity. This technique is based on the administration of a certain amount of a molecule
into a living organism. This molecule, named radiopharmaceutical, is labeled with a positron-
emitting radionuclide. After losing its kinetic energy, the positron annihilates with an electron, pro-
ducing two 511 keV photons emitted in opposite directions. The PET detection system involves mul-
tiparametric acquisition and requires the determination of arrival time, position of interaction and de-
posited energy for each event. The detected photons are processed by a coincidence system, resulting
in spatial and temporal distributions of the radiopharmaceutical metabolized by the live organism.

In addition to the usual scintillator-based detectors [2, 3], new approaches in PET detectors
have been developed to improve the timing performance, such as those using the compound semi-
conductor TIBr coupled to SiPMs [4]. More recently, the digital Silicon Photomultiplier (dSiPM)
has been proposed to improve timing resolution in PET [5, 6]. However, the high Dark Current
Rates (DCR) of dSiPM devices still remain an issue to be solved [7, 8].

Traditionally, pulse processing in PET has been based on analog or discrete circuits forming
a decentralized processing system. However, there is a convergence for digital implementations
due to several favorable characteristics of the currently available electronic components. Com-
bining high sampling rate and high bit resolution Analog to Digital Converters (ADC) and Field
Programmable Gate Array (FPGA) devices provide solutions with simultaneous computing and
real-time processing capabilities [9]. Modern PET systems are also using Application-Specific
Integrated Circuit (ASIC) for photodetector readout [10, 11]. However, unlike ASIC, FPGAs are
reconfigurable allowing for a fast implementation at relatively low cost [12—14]. The centralization



of the digital processing onto a single FPGA device simplifies the electronics, since several features
can be embedded in a system consisting of processors, memories and, input/output peripherals [14].

The use of FPGA technology also enables the development of sophisticated digital pulse
processing algorithms to improve energy, position and time resolutions in PET systems [15-20],
which results in better image quality. For instance, improvements in energy and coincidence time
resolutions, as required by Time of Flight (TOF) PET system [21, 22] provides better precision
at the positioning of the annihilation event along the Line of Response (LOR), enhancing the
Signal-to-Noise Ratio (SNR) of the reconstructed image.

In PET, energy information is used to separate the photons that have not undergone scattering
and is usually obtained by measuring the charge or pulse amplitude from the photodetector. In a
digital approach, a typical implementation to calculate the energy is performed by integrating the
pulse in a determined time interval with baseline subtraction.

Analog standard timing methods can be digitally processed, including digital Leading-Edge
Discrimination (dLED) [23]. However, other methods, such as the Maximum Rise Interpolation
(MRI) [24] and the Initial Rise Interpolation (IRI) [19] are developed exclusively for digital pulse
processing and aim to achieve an optimized coincidence time resolution.

Our group has developed one energy calculation and three timing pick-off methods for im-
plementation onto an FPGA-based system. In this work, the algorithms are described and their
performances are evaluated with experimental data acquired by a high sampling rate digitizer.

2 Materials and methods

2.1 Experimental setup

Experimental data was acquired from a setup consisting of a 2>Na calibration source (395kBq)
placed between two LYSO (Proteus, U.S.A.) crystals (3 x 3 X 20 mm?) for coincidence detection at
180°, as shown in figure 1.
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Figure 1. Schematic diagram of the setup for data acquisition and pulse processing.



The distance between the crystals was 15 mm and each one was coupled to a 3 X 3 mm? SiPM
(or MPPC — Multi Pixel Photon Counter) model S1031-025P (Hamamatsu, Japan). The electric
signals from the SiPM’s were pre-amplified before being digitized by the v1720 digitizer (CAEN,
Italy) with a 12-bit resolution ADC at 250 MS/s.

The digitizer was loaded with a firmware that provides energy calculation by charge integration
and timing pick-off by using a proprietary digital pulse processing algorithm. Besides the charge and
time information, this firmware also allows the acquisition of the pulse waveform by activating the
“mixed-mode” [25]. Using the libraries provided by the digitizer manufacturer, a custom software
was developed for the acquisition of the complete pulse.

2.2 Algorithm design and evaluation

Quartus Prime Standard Edition version 16.1 (Intel, U.S.A.) was used for the algorithm design,
which was described in Very High Speed Integrated Circuits Hardware Description Language
(VHDL). The design was verified by functional simulation in ModelSim Starter Edition version
10.5b (Intel, U.S.A.). The FPGA target was an Intel Arria 10 device with 270,000 Logic Elements
(LE). The algorithm in Matlab (MathWorks, U.S.A.) was also developed using low complexity
logic to validate the results provided by the VHDL design.

2.2.1 Baseline

The baseline is the current level to which the pulse decays [26]. The baseline was calculated as the
average of the first n samples before the pulse leading edge (eq. (2.1)):

1 n-1
baseline = p Z(; S 2.1)
i

In this work, the number of samples to calculate the baseline n was set to 64 samples.

2.2.2 Energy calculation

The photodetector response to the scintillation photons is a current that flows during a period equal
to the charge collection time. The total amount of generated charge (Q) is the time integral over
the duration of the current [27]. The charge released in the photodetector is proportional to the
energy of gamma rays photons absorbed in the scintillator. In the digital approach, the charge for
each event consists of summing the digitized voltage sample values (s;) within a single integration
window and subtracting the resulting value from the baseline (eq. (2.2)):

8r
0= Z (s; — baseline) (2.2)

J=8i

where g; and g¢ denotes the first and last samples of the integration window, respectively. In this
work, the size of the integration window was set to 35 samples (i.e., gr — g; + 1 = 35). This
integration window corresponds to a time interval of 140ns due to the ADC sampling rate at
250 MS/s, which is equivalent to 4 ns per sample. Charge values for each event were calculated by
algorithms in VHDL and Matlab from the waveform acquired by the digitizer (eq. (2.2)).



The performance of the proposed energy calculation algorithm was compared against the built-
in digitizer solution. The energy spectrum of the collected photons (histogram of pulse charges)
generated by the digitizer was compared against spectra calculated by both algorithms developed in
this work. All spectra were linearly calibrated by the 511 keV photopeak, which was assumed as a
Gaussian distribution. An energy selection within a window from 356 to 670 keV was used to fit a
linear background below the photopeak. This linear fit was subtracted from the photopeak region
to fit a Gaussian function. The Full Width at Half Maximum (FWHM) was calculated based on the
Gaussian fit.

2.2.3 Timing analysis

The arrival time of each pulse was calculated by crossing the threshold (dLED) or by the crossing
time of the baseline point (MRI and IRI) with the interpolated line formed by two subsequent
samples. For all methods, the trigger is generated when a sample exceeds a threshold level.

The digitizer provides a built-in threshold-crossing method for timing based on Leading-Edge
Discrimination (LED). In this method, the arrival time f.r is stamped at the trigger sample fy
(tref = tug). The trigger sample is the first sample over the threshold level in the pulse leading edge;
i.e., tr is always a multiple of 4 ns. Figure 2 exhibits the functional block diagram of the timing
and charge calculation for each pulse.
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Figure 2. Block diagram for charge calculation (Q), trigger time stamp () and timing process (f4LEp, fRI
and tygy) for each event.

The built-in timing pick-off algorithm of the digitizer firmware presents reduced performance
for PET applications because the time values are estimated in multiples of 4 ns (from —8 ns to +8 ns).
Therefore, the built-in firmware provides a poor resolution time difference distribution, which is
not comparable to our developed algorithms. Hence, the three following described algorithms
were compared for evaluation purposes regarding Coincidence Time Resolution (CTR) and time
difference distribution.



Digital leading-edge discrimination. The LED is a widely method used in analog circuit ap-
proaches due to its simplicity. A trigger signal from a comparator output occurs when, using a
comparator, the input signal crosses a discriminator threshold level, registering the arrival time of
the pulse [23, 28]. In this threshold-crossing technique, the threshold level value must be assigned
considering the probability of triggering noise pulses and possible issues with timing jitter and time
walk [16, 28].

Noise amplitude lies within a limit of 60 peak to peak from a determined source, whereby
the total noise is the root-mean-square (rms) value of all mean-square voltages of the individual
noise sources. Low energy noise from other sources can trigger the digitizer [29]. With these
considerations, the threshold level value was set to baseline +210LSB, which corresponds to
approximately the baseline +60, which is a value low enough to acquire most of the gamma pulses,
but high enough to reduce the noise rate.

In the digital version of LED (dLED), the arrival time of the pulse is determined at the
intersection of the threshold with the linear interpolation line between the trigger sample and
previous sample (eq. (2.3)):

1qLED = fug — 1 + (threshold — y(tug — 1)) /(¥ (tref) — y(firg — 1)) (2.3)

Maximum rise interpolation. In the MRI method, the pulse timing is determined by calculating
the baseline-crossing of the maximum rise line. The maximum rise line is the linear interpolation
between two adjacent samples where the pulse rise has its maximum (eq. (2.4)):

IMRI = ttrg - (y(ttrg) - basehne) /(Y(ttrg + 1) - y(ttrg)) (2-4)

Initial rise interpolation. The IRI method is analogous to MRI, but the pulse timing is determined
by calculating the baseline-crossing of the initial rise points of signal pulse (eq. (2.5)). The slope of
the pulse at the leading edge is proportional to the influence of the sampling phase of the ADC clock
and is smaller at initial rise than maximum rise [19]. In both techniques, the threshold discriminator
was used to trigger the pulse at 7o sample.

IR = ttrg -1- (Y(ttrg - 1) - baseline) /()’(ttrg) - y(ttrg - 1)) (25)

Figure 3 shows the comparison of different timing methods for a digitized pulse.

3 Results and discussion

3.1 Acquisition of energy spectra

Figure 4 shows the 2?Na energy spectra acquired by the v1720 digitizer. The spectrum produced by
the built-in digitizer firmware was used as a reference for the spectra from the VHDL and Matlab
algorithms.

About 0.6% of the input signals computed as a pulse by the digitizer firmware were identified
by our algorithm as noise or pile-up. These event data were excluded from the statistical analysis to
avoid degradation in the energy spectrum.

Most of the discrepancies among the spectra are below 200 keV and they are due mainly to the
differences between the baseline restoration algorithms from the reference and this work.
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Figure 3. Pulse with application of dLED, MRI, IRI and the digitizer reference timing pick-off methods.
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Figure 4. (a) ’Na energy spectra of the LYSO scintillator coupled to a SiPM. Samples data were acquired
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Table 1. Values of the energy standard deviation (0-), FWHM and resolution based on a Gaussian fit at
511keV peak with better as possible chi-squared over degrees of freedom (y2/n) test.

o (keV) FWHM (keV) Resolution (%) x?/n
Reference 44,50 +0,28 104,80+0,65 20,51 +£0,13 1,89
Matlab 43,55+0,27 102,56 +0,64 20,07+0,13 1,98
VHDL 44,65 +0,28 105,14+0,66 20,58 +0,13 1,29

Table 1 shows the FWHM and energy resolution values based on a Gaussian fit at 511 keV
peak with chi-squared over degrees of freedom (y2/n) test.

The 511 keV peak presents some Compton backscatter events and other noise sources. Obtained
energy resolution values from the Matlab and VHDL algorithms indicate the accordance with the
reference.

Energy resolution values obtained with this setup are similar to a typical PET detector mod-
ule [30, 31]. As energy resolution is highly dependent on the type of detector being used, the
recent PET application works show SiPM photodetectors coupled to LYSO crystal scintillators with
energy resolution between about 14% and 22% FWHM at 511 keV [32-37].

3.2 Coincidence timing measurement

Coincidence mode acquisition was performed with a typical PET coincidence time window of
10ns [38]. DLED, IRI and MRI and timing pick-off methods were applied for each registered
event. Figure 5 exhibits the time difference distributions of the coincidence events. Distributions
were generated both in Matlab and FPGA-based algorithms.

The lower sampling frequency rate significantly affects the use of the MRI method in fast
leading edge rising [19, 39]. The use of the threshold to trigger an event causes divergent timestamp
using the MRI method with low energy pulses, as shown in figure 6.

For PET applications, timing is not substantially influenced for pulses with amplitudes near
the threshold level.

Table 2. FWHM timing resolution for different digital timing methods.

Matlab VHDL
Timing method FWHM (ps) FWHM (ps)
IRI 484 + 7 440+ 3
dLED 878 + 4 845+ 5
MRI 2098 + 15 2134 + 14

Studies using the MRI method with similar configuration showed similar FWHM values [24,
40]. In the Matlab simulation, the IRI method presented a timing resolution that was 45% better
timing resolution than the dLED method and 77% better than the MRI method. In the VHDL
design, the IRI method presented a resolution that was 48% better resolution than the dLED method
and 79% better than the MRI, as already verified in previous studies [19].
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Figure 5. Distribution of time differences in coincidence using dLED, IRT and MRI timing methods simulated
in Matlab and provided by FPGA-based algorithm in VHDL.
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4 Conclusions

Our group has developed and evaluated FPGA algorithms for digital pulse processing in PET. All
VHDL designs were successfully validated by the Matlab using low complexity algorithms. This
study indicates the feasibility of low resources consumption and real-time capable FPGA algorithms
to perform suitable energy and timing resolutions onto an FPGA platform for PET applications.

Our charge integration method presents energy resolution results in good agreement with a
commercial digitizer used as reference, which are similar to previously designed PET detectors.

IRI and dLED methods presented subnanossecond CTR and are suitable for TOF PET. The best
performance for timing pick-off was achieved by the IRI method, which presented around 440 ps
CTR, and it should be considered an alternative choice in digital implementations.

Proposed energy calculation and timing pick-off algorithms will be embedded in an under
development FPGA-based data acquisition module which will be employed in a PET detector block
prototype. The detector block will be based on a monolithic scintillator crystal coupled to a SiPM
array in a row-column summing readout scheme. All the signals from the readout will be digitized
and processed onto a single FPGA device (figure 7) and their sum will be employed for energy
calculation and timing pick-off [41]. In a complete PET system, an external clock is sent to the
FPGAs through splitters to synchronize clock and start times for each FPGA [42]. Positioning
algorithms with DOI capabilities will be considered [20, 43]. Our group has already developed a
3D positioning method [43] that produces similar results to existing works, but it does not require
calibration data, as it is based on a theoretical model which describes the signal distribution of the
optical photons collected by the photodetector array. This PET concept aims to achieve equivalent
performance to existing systems at a lower cost.

FPGA
""_._'"T"- 3D position
Positioning
8x8 |x64 | Row/Column | xi¢ xlo| | ©TTTTTTTTTT Data
SiPM > Summing > ADC > > Summation > > Host
array Readout
64— 16
Y
Energy E 7
calculation and flergy
Timing pick-off I Time stamp

Figure 7. Block diagram of the FPGA-based data acquisition module.
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