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SUMMARY 

This thesis deals with several aspects of a possible violation of 

Time Reversal Invariance in the electromagnetic interaction. 

In Chapter 2 it is shown that such a Time Reversal Invariance (T. R. I . ) 

violation contributes to low energy nuclear physics in the form of a T. R. I. 

violating electromagnetic transition operator and also as a T . R . I , violating 

two and three body potential. The T. R. I. violating transition operator is likely 

to dominate in light nuclei whereas the three body T . R . I , violating potential 

becomes more important for heavy nuclei. Two possible forms for a T .R. I. 

violating NN*y vertex are considered and the above mentioned operators 

calculated. 

In Chapter 3 T . R . I , violation is assumed to occur through the N*Ny 

vertex and again T .R . I , violating electromagnetic transition operators and 

potential' operators are calculated. 

In Chapter 4 the effect of the T. R. I. violating electromagnetic transition 

operators obtained in Chapters 2 and 3 are estimated for a light nucleus and the 

operators .stemming from the T. R. I. violating N*Ny vertex are found to be more 

important. The calculated effect is represented by an imaginary part for the 

"mixing ratio" 6 (the ratio between the reduced matrix elements of two competing 

-3 

multipoles) and is found to be of the order of 10 . 

Finally in Chapter 5 an experiment performed<at the University of Sussex 

on T-violation is analysed. It is found that if the accuracy of the experiment can 

be increased by an order of magnitude^ information of the nature on the T .R . I , violation 

will be forthcoming. 
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C H A P T E R 1 

INTRODUCTION 

1 . 1 In troduct ion 

In 1 9 6 4 C h r i s t e n s o n e t . a l . o b s e r v e d the d e c a y of a long l ived n e u t r a l 

K - m e s o n into two c h a r g e d r r - m e s o n s . T h i s h a s b e e n i n t e r p r e t e d a s a v io la t ion 

of C. P . i n v a r i a n c e o r if the C. P . T . t h e o r e m is t r u e a s a v io la t ion of T ime 

R e v e r s a l i n v a r i a n c e . S ince th is f i r s t e x p e r i m e n t m a n y m o r e e x p e r i m e n t a l 

r e s u l t s h a v e e s tab l i shed that C P i n v a r i a n c e is indeed v io la ted . T h e p r e s e n t 

day e x p e r i m e n t a l ev idence is e x p r e s s e d by the r a t i o be tween the t r a n s i t i o n 

0 + -
ampl i tudes for the d e c a y of the long l ived K - m e s o n into two p ions , M ( K -> ir ir ) 

JLi 

and M(K^ iPiP) and the c o r r e s p o n d i n g t r a n s i t i o n a m p l i t u d e s f o r the d e c a y 

of the s h o r t l ived K - m e s o n M(K 0 T+TT ) and M(K 0 7 r ° 7 r ° ) . B o t h r a t i o s 
S S 

ought t o b e z e r o if C P is c o n s e r v e d but in f a c t one h a s (Cron in ( 1 9 6 8 ) ) P a r t i c l e 

da ta Group ( 1 9 7 0 ) and Chol le t et . a l . ( 1969) ) f o r 

+ M ( K L ° - > A") + + -
V = 5 — = | T J I e ^ 

M(K -9- ir ir ) 

and 

0 0 M ( K L ° •» T ° ff°> , 0 0 , i < p ° ° 
7 7 0 0 0 = ^ ' e 

M(K IT IT ) 
o 

the v a l u e s 

I T}+ ' \41. 9 0 ± 0. 05) x 1 0 " 3 < p + "=(43 . 5 ± 5 . 1 ) ° 

I T ? 0 0 K 2 . 5 ± 0 . 3 ) x l 0 " 3 < p ° ° = ( 2 3 ± 3 2 ) ° 



-2-

Several theories have been put forward to explain this observed CP 

violation in the decay of the long lived neutral K-meson. Some of these will 

now be very briefly mentioned. 

(i) Superweak interaction (Wolfenstein (1964)). 

This theory assumes that CP violation is due to a first order effect of a 

CP violating term in the Hamiltonian with a selection rule | A Y | = 2. The coupling 
_g 

constant F of such an interaction turns out to be of the order 10 G where G is 

the coupling constant for the weak interaction. 

(ii) Milliweak Theory. 

There are several theories which assume that the CP invariance violating 
- 3 

part of the Hamiltonian has a coupling constant 10 G and therefore are called 

milliweak. Among these the theories of Glashow (1965), Oakes (1968) and Das (1968) 

are small modifications of the usual current-current theory of the weak interaction. 

(iii) Semiweak Theory. 

This theory proposed by Nishijima and Swank (1966 and 1967) is a radical 

modification of the usual current-current theory of non leptonic weak interaction. 

The coupling constant of the proposed Hamiltonian is of the order of magnitude of 

the usual weak interaction strength. However, C. P. violating processes occur only 

in third order in perturbation theory and therefore the theory accounts for the 

smallness of the observed C. P. violation. 

(iv) Electromagnetic Theory. 

This theory put forward by Bernstein et. al. (1965) and Lee (lS65a,b) assumes 

that C P . invariance is violated by the electromagnetic interaction. Since there is 
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good experimental evidence that P is conserved by the electromagnetic interaction 

these authors assume that the total electromagnetic current is composed of a 

normal part j (odd under C) and a C-even part which would produce CP violation. 

Among the proposed theories described above the assumption that CP 

invariance violation occurs in the electromagnetic interaction is more likely to 

produce a bigger effect in nuclear physics than the other proposals (for example 

| AY j = 2 effects would be quite undetectable). 

Among the possible tests in low energy nuclear physics this thesis concen­

trates on those which aim to discover a small imaginary part in the ratio between 

the reduced matrix elements of two competing multipoles in a given electromagnetic 

transition. In fact it was shown by Lloyd (1951) that if Time Reversal Invariance 

(TRI) holds then this ratio must be real to first order in the electromagnetic interaction. 

On the other hand if TRI (TRI and CP invariance are the same if the PCT theorem is 

assumed to be true) is violated in the electromagnetic interaction or in the 

nucleon-nucleon interaction a small imaginary part appears. 

The observable effects of an imaginary part on the ratio between reduced 

matrix elements of competing multipoles in a given electromagnetic transition was 

first worked out by Henley and Jacobson (1958) and in more detailed form by Lobov (1969). 

These authors show that the effect appears in the form of T. R. invariance violating 

asymetries in appropriate angular correlation and polarisation sensitive experiments. 

The reader is refered to the work of Henley (1969) for a comprehensive review of 

these effects. In this thesis only one of the possible experiments Is examined and 

is described in Chapter 4. This experiment involves the measurement of the 

angular correlation between two y-rays from an oriented ensemble of nuclei. This 
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particular experiment was chosen because it is likely to be the most sensitive 

(Hamilton (1971)) and also because it is under study experimentally in this 

university. 

1. 2 Content of the thesis 

In this section the contents of the thesis will be described. Since this 

thesis is concerned with several different features of time reversal invariance 

(T.R.I.) violation this section is intended as a guide to the contents. 

In Chapter 2 the electromagnetic current of nucleons is examined with the 

intention of constructing a part which is T.R.I, violating (or CP invariance 

violating by PCT). The matrix elements < N | K | N'> of such a current between 
A* 

nucleon states have been examined before by several authors: Bincer (1960), 

Lipshutz (1968) and Huffman (1970). From the results of the last named author 

two alternative forms for the matrix elements of K are taken. Both forms satisfy 

the properties usually required for an acceptable electromagnetic current. Parity 

conservation, hermiticity and Gauge Invariance. 

Both forms of < N | K |N'> (and indeed any possible form) vanish when both 

the initial and final nucleons are on the mass shell. This feature turns out to be 

very important since because of this it follows that K can only contribute to low 

energy nuclear physics when other nucleons are involved, i. e. as an "exchange effect", 

in the form of a two body short range transition operator. Therefore K is only 
A*' 

likely to contribute a few per cent of the total transition probability. 

Two different T.R.I, transition violating operators are derived corresponding 

to the two alternative forms for <N j K |N ; > and are subsequently expanded in multipoles. 

An estimate of the effect in nuclear physics is postponed to Chapter 4. 
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T o end Chapter 2 an est imate is made of the magnitude of the T . R . I . 

v iolat ing force between nucléons der iv ing f rom K ^ . Both two and three body potential 

operators are der ived . The two body opera tor is shown to be neg l ig ib le compared 

to the transition opera tors mentioned be fo re and the three body f o r c e s . 

In Chapter 3 the violat ion of T . R . I . is assumed to occur in the v e r t e x where 

the nucléon resonance N * (J = 3 /2 , T ^ 3 /2 , M = 1236) (that is isospin and spin 

equals 3/2 and has a mass M = 1236 M e V ) goes into a nucléon with the emiss ion of 

a y - r a y . Again two body transition operators corresponding to this mode l a r e 

der ived and expanded in mult ipoles. T w o and three body f o r c e s a r e a l so calculated. 

T h e calculation of the effect of transition operators is postponed to Chapter 4. 

In Chapter 4 the effect of the transition opera tors is examined. T h e opera tors 

de r ived in Chapter 2 are considered separately f r o m those de r ived in Chapter 3. A 

general es t imate is g iven fo r the operators de r ived in Chapter 2 and the effect is 

found to be too small to be detected with present day exper imenta l techniques. A 

18 

m o r e detailed calculation of the effect in a par t icular transit ion in F is given for 

the operators de r ived in Chapter 3. A measurable effect is found. 

A s mentioned above, al l the mode l s of T . R . I , v io la t ion t reated in this thesis 

g ive a T . R . I , v iolat ing contribution to the f o r c e between the nucléons 

in the f o r m of a three body potential. N o detai led calculation of this effect is 

presented in this thesis . I t is however shown that their effect is sma l l e r than the 

effect of the transition opera tors for light nuclei and therefore unlikely to have much 

effect on the conclusions of Chapter 4. They a re howeve r l ike ly to be the dominating 

contribution in heavy nuclei and this wi l l make the calculation of T . R . I . v iolat ing 

effects v e r y difficult for these nuclei . 
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FLnally in Chapter 5 an experiment performed by Holmes (1972) in Pt is 

192 

analysed. Because of the fact that microscopic wave function for Pt are not 

available, the experiment is analysed in terms of a phenomenological two body T . R . I . 

violating force which is assumed to include three body effects. 

First the most general form of a two body T. R. I. violating potential is 

derived. It is then noted that all terms in this potential are velocity dependent 

so that the overall Hamiltonian is not gauge invariant unless further terms are 

introduced. It is shown by an example that these terms can be very important. 

It is further shown that it is not possible, having only a two body phenomenological 

potential to write down unambiguously the complete gauge invariant Hamiltonian. 

The Siegert theorem is therefore used to calculate the contribution of these unknown 

parts to the electric multipoles and thus permits us to relate the observed effect 

to one matrix element of the chosen T. R. I . violating interaction. 

By means of an averaging procedure this matrix element is evaluated and 

so an approximate value for the upper limit of the coupling constant of the T. R . I . 

violating interaction is deduced. 

1. 3 Content of the Appendix 

A great deal of the work presented in this thesis has been separated from 

the main body and put in the appendix. About half of the appendix consists of 

detailed calculation of the results presented in the text. The other half is described 

below. 

In Appendix 4 the Siegert theorem is derived following Sachs and Austern (1951) 

as a consequence of Gauge Invariance. This theorem is usually stated as forbidding 
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the contribution of exchange effects to the electric multipoles in a given electro­

magnetic transition. This usage as a simplifying tool is examined critically and 

found to be somewhat misleading. The work by Michel! (1965) on parity violating 

potentials is used as an example in this connection. 

In recent years (see Green and Sehucan (1971) for a review) the role of nucleon 

resonances like the N*(J = 3/2, T = 3/2, M =* 1236) in nuclear physics has been 

seriously considered. Inevitably several different approaches have been proposed and 

one of these is used in Chapter 3 to calculate the effects of a possible failure of T . R . I , 

in the N*Ny vertex. In Appendix 5 the alternative approach of treating the N* 

explicitly in the nuclear wave function is outlined. This approach is compared with 

the one used in Chapter 3. 

Finally Appendix 8 presents some more complete formulae of T-violating 

angular correlations and Appendix 9 examines the problem of making an arbitrary 

potential gauge invariant. 



CHAPTER 2 

TWO SIMPLE FORMS OF A TRI VIOLATING CURRENT 

2.1 Introduction 

It is well known that because of the strong interaction the matrix element 

of the electromagnetic current between nucleons is modified by the introduction 

of form factors. In the first section of this chapter the possibility of introducing 

T. R.I . violation by use of appropriate form factors is examined. 

The results of section 2. 2 are fully relativistic and so cannot be 

used in nuclear physics. In section 2.3 a method for deriving non-relativtstic 

operators from the covariant results of section 2.2 is given. In particular it is 

found that T.R. V. terms in the electromagnetic current, can only contribute as 

an "exchange effect" and this in turn implies that the effect of these terms is 

just a few percent of the normal part of the current. 

In section 3, the methods described in section 2 is applied to two possible 

forms for the T. R. I. violating electromagnetic current introduced in section 1 and 

two body T. R. V. transition operators are calculated. Finally in section 4 two and 

three body operators, contributing to the interaction between the nucleons is derived. 

Specific calculations of the effect of the operators derived in this chapter 

are postponed until Chapter 4. 
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2. la General Considerations 

The usual form, for the matrix elements of the electromagnetic current betweei 

two nuclear states is (Drell and Zachariasen 1960) 

< P 1 | j ; - f f i - ( 0 ) | p 2 > = e ( i r p U F 1 « 2 > V l F 2 ( q 2 ) ' V q > P » ( 2 - 1 ) 

JL ¿1 

2 s 2 v 2 z z 
where F.(q ) =* F. (q ) + F. (q ) B (i = 1,2) are the usual form factors, t> 

2 2 
is the z component of the i-spinPauli matrix and q = (p -p ) . 

JL ¿5 

This is in fact the most general form assuming besides T. R. invariance, 

Parity invariance, current conservation and that the initial and final nucleons are 

on the mass shell. 

If one assumes that both T. R. and Parity invariance are violated but the 

initial and final nucleons are still on the mass shell, the matrix elements are 

complicated by the appearance of two further terms. The electric dipole moment 

and the anapole moment (Broadhurst 1971) 

<p !j e * m ' (0) |p o> = e (u | i F / q 2 ) y - i F n(qV q + F (q^)cr q y r + 

2 
+ F 5 (q ) (q^ + ^M. ) u ( P i ) ) (2.2) 

where F„ and F„ are additional form factors in the notation of Broadhurst. If one 
4 5 

assumes parity conservation (a well established fact for the electromagnetic interaction) 

then both the additional terms vanish. Therefore one can conclude that terms in 

the electromagnetic current matrix elements that violate T but conserve P can only 

appear if at least one of the nucleons is off the mass shell. 
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The most general expression for the matrix elements of the current 

satisfying only covariance and with both nucleons off the mass shell have 

been given by Bincer (1960) and Lipshutz (1967). It contains 24 terms but if 

Parity conservation is assumed then there are only 12 terms. These 12 terms 

further reduce to only six if just one of the nucleons is assumed off the mass 

shell. The twelve terms have to satisfy hermiticity and the Ward identity 

(Gauge Invar iance). This last requirement gives a complicated relationship among 

most of the twelve terms. To simplify the Ward identity Huffmann (1970) took 

only three terms and constructed a current which has both TRI normal and 

violating terms. These terms will be taken as a starting point for this Chapter 

and the reader is refered to Huffmann (1970) for details. The matrix elements 

for the T .R . I , normal current J is 

q 
(2.3) 

The matrix elements for the T . R . I , violating current K is 

(2.4) 

The notation is P (p ' + P) q = (p' _ P; and the dash in the form factors of 

<p | J | p > indicates that these are different functions from the T-normal 

2 2 s 2 v 2 form factors. The form factor F.(q ) is of course F.(q ) =» F. (q ) + F. (q ) "& . 
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2. 2 Derivation of the two body electromagnetic transition operators 

The two body transition operators will now be derived by using the S-niatrix 

method. This method has been explained in detail (Chemtob (1968), Chemtob (1969), 

Chemtob and Rho (1971) and Tadic and Fischback (1971)) and therefore will not be 

repeated here. However, in order to illuminate the calculations which follow,an 

intuitive discussion of the method will be given following the exposition of Akhiezer 

and Berestetskii (1965). 

The problem is how to derive an operator from field theory for use in non 

relativistic calculations. For simplicity a system of electrons is taken and the 

interaction between the electromagnetic field and the electron current is taken, 

of course, to be 

The first approximation to the S-matrix is then 

Integration in time gives 

The "effective transition operator" U is the defined to be 
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Finally the non-relativistic limit is taken by using the Dirac representation 

for the y matrices and separating the spinors into large and small components. 

The result is of course (Spacial Component) 

^if* 2m" J ^ r ^ L ( r x ) { [ A ( r i ) - P + P- A(Tj)] + 0. (\V x A f ^ ) ) } 0 ^ 

from which the usual operator is extracted 

V elet . * = ' 4 t A ( r 2 ) . \ +t±. A ( r , ) ] ^ (F x ? ( r i » (2. 5) 

This method has been used frequently in the past. For example, Blin-Stoyle and 

Nair (1966) used this method to extract the effective ^-operator from the most 

general on shell form of the weak current. 

If instead of electrons, nucleons are considered, then from the first term 

2 s 2 v 2 in (2.1) it follows, bearing in mind that F (q ) = F (q ) + F (q ) j , that 
JL x i Z 

Vnucl. <*> * + 4 I 1 <r i ^ l + P i ' 2 ( F ! S ^ + ^ / ( O ) % ) 

+ In C F 1 S ( 0 ) + F 1 V (0)*z ^ cr • B ( r x ) (2. 6) 

Consider now the problem of using this operator to calculate say Bremstralung 

due to the collision of two nucleons. 

Before solving this problem it is convenient first to solve the problem of 

elastic scattering of two nucleons. In nuclear physics this is done by finding the 
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scattering solutions of the Hamiltonian 

2 

i=l 

P. 

2m + U 12> (2.7) 

The operator U(r ) should be obtained from field theory by reducing non 

relativistically the matrix element U ̂  obtained from the diagram of fig. 1, by 

means of 

S. f a - 2 7T i 6 ( Energ. ) U 

The diagram is considered as a pole diagram and therefore U.^ is the 

one pion exchange potential (see e. g. BerestetskiLaadAhkiezer 1965 p509) 

Fig. 1 

The non relativistic potential U( r is represented diagramatically by Fig. 2 

Fig. 2 
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Now calling 0^ and 0 . the scattering solution of (7) the relevant 

matrix element for Bremstralung is (Goldberger and Watson 1964 pp. 202-209) 

This is equivalent to calculating the graphs in old fashioned pertubation theory 

of Fig. 3 below 

Fig. 3 

IB this however a complete solution? If the Bremstralung calculation were to 

be carried out by old fashioned pertubation theory in a pure field theoretical 

framework there would be many more graphs not included in the procedure just 

described. For example the graphs of Fig. 4 

s 
0 

* 

• 

Fig. 4 
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These graphs constitute what are called exchange effects. The usual 

way to deal with them is to extract, in the non relativistic limit, an equivalent 

transition operator for each of them. 

Now if the procedure leading to j (A) in equation (6) is applied to a 

vertex like the ones in equation (4) that vanish when both nucleons are on the 

mass shell, it is easy to see that one would get zero in the non relativistic limit. 

The conclusion is that there is no one body T.R. V. transition operator. It is 

therefore necessary to consider exchange graphs from which one can then extract 

two body T. R. V. transition operators. Because of the short range two body 

nature of these operators their effect is expected to be just a few percent of the 

usual one body operators. So it seems justified to expect only small effects 

from these vertices in nuclear physics as predicted by Bernstein et. al. (1965). 

2. 3 Calculation of the two body T.R. V. transition operators 

2.3.1 The Lee Vertex 

In this section the non relativistic transition operators corresponding to 

the first term of equation 2.4 will be calculated. A vertex of this type has the 

theoretical appeal that it arises naturally (Huffmann 1970) from a more fundamental 

theory of T . R . I , violation such as the theory by Lee (1965-b) of T . R . I , violating "a" 

particles. To stress this point and also for the sake of notational simplicity the 

/ 2 ' s 2 
notation used in equation 2. 4 will be modified. The form factor F^(q ) =? F^ (q ) + 

jy g ' 2 's 2 ' v 2 
(q ) % b e called F (q ) = F (q ) + F (q ) Z and all the operators 

arising from this vertex will have a sufix "Lee" so the first term of the equation 2. 4 is 
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wrttten 

(2.8) 

The matrix elements corresponding to the graphs of Fig. 5 are calculated 

by applying the usual Feynman rules v 

Following Tadic and Fischbach (1972) the calculation is carried out from the 

outset in co-ordinate space. Alternatively one could (Chemtob and Rho - 1971) 

carry out all the calculations in momentum space and transform back to co-ordinate 

space at the end of the calculation. 

So the matrix element given by equation 2. 8 is written in co-ordinate space. 

By using 

Fig. 5 

P 1 ^ P ^ b v \ { X l ) ~ ' l V l \ 
i k ^ A ( x 1 ) 
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there results 

<tf | j„- A | p > =* - F 
a A a A 

P M 

/ 2 

The form factor F

L e e ( 9 ) is of course not known and was approximated by its value 

at q 2 = 0 . 
Using as interaction between the pions and the nucleons the form 

JL T = i f i/ji 
x = i f 0(x1) y 5-5 lp(x)- 0 (x) 

the matrix element corresponding to the graphs of Fig. 5 can be written as follows 

^ = ^Jlf l \ d 4 ? i o d 4 j i o 2 3 i V>> (-4:+4 w-s «x2>3 
5 A 3A 

p a_ 3x_ dx, 1/u lp 

lp 

* (x 2 -x 3 ) » w^O^i (2. 9) 

and 

\ l p l p / 

3 A d A 
P M 

Sxn 3x, 1/x lp 
(2.10) 

The isospin factors have been written outside the wave functions for the sake of 

notational simplicity. Of course they should be written inside the brackets in an 

obvious manner. 
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After the manipulation described in Appendix'2-A, the following 

T. R. I. violating two body transit ion operator is extracted 

f V v 

V T R ^ _ L e e _ 
Lee m 

where E ( r , ) is the e l ec t r i c field and ^ ( r „) - - ~ -, ^—r^+-—-—- e ~ ^ r l ~ r 2 
1 1 2 ' 4 T T j r ^ r ^ l ^ - ^ j S 

The transition operator of equation (2 .11) can now be expanded in multipoles by the 

procedure described in Appendix III . The contribution to the e l e c t r i c multipoles i s 

T R V fVV 
\ L e e 

(EL) « 
Lee m 

f f ) t [ L ( 2 L + 1 ) ] * £ % ^ z J - ( - ! ^ ) 

| a . . c r . R I : ' ' 1 [ Y T - ( R . . ) © Y . ( r . . ) ] ^ - S [ 5 ( 2 L + 1 # | ^ 2 H R ^ 1 

3 l ] ij L - l x if** V l] M Li L J j l L - 1 1| ij 

^ L - l ^ i j ) ® Y 1 ( r . . ) I ^ ^ Q C C X ^ C T . ] (2) 1 
M 

i<3 
$ f ® * d b F . . V r . . J 

[ Y (R ) ® Y (r ) ] ( l / ) @ [ a ® a ] ( 

X J 1 J X l j I j 

r 2 - i (2L + 1) L 

J M 1 6 T T 
L - l l L f 
1 L 1 ( 

( L ) * 
M 

(2 .12) 

(2 .13) 
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It should be noted at this point that the transition operator of equation (2.11) 

is exactly the same (apart from constants) as the one obtained by Clement and 

Heller (1971), although they use a quite different approach. One can in fact at this 

stage take over almost all the conclusions of this work as far as the consequences 

of this particular transition operator are concerned. These conclusions together 

with an analysis of the implications of the transition operators to be derived in the 

next chapter will be given in Chapter 4. 

To finish this section two further points will now be remarked upon. The 

first one is concerned with the Siegert theorem. One might think that the Siegert 

theorem, which prohibits exchange effects in the electric multipoles is violated 

by a contribution such as the operator in equation (2.12). The Siegert theorem is 

discussed in Appendix 4 where it is shown that although these exchange contributions 

are small they do not vanish identically. The second point is much more important 

and concerns the possible effects of two and three body T.R. V. potentials, due to 

the vertex we have been discussing. This matter will be discussed in the fourth section 

of this chapter. 

2.3-2 The Lipshutz vertex 

In this subsection the transition operators arising from the second term of 

equation 2.-4 will be calculated. A vertex of this type has been discussed by 

Lipshutz (1967) in his analysis of possible T . R . I , violating effects in proton Compton 

scattering. The notation used in equation 2. 4 will therefore be modified to stress 

this point. The form factor F* (q^) ~ F * S ( q 2 ) + F* V (q^ )^ will be called 
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F L i p ^ ^ ~ F L l p ^ 2 ^ + ^ L i p ^ ^ %23iXl<^ a ^ ^ e ° P e r a t o r s arising from this 

vertex will have a sufix "Lip" . So the second term of equation 2. 4 is written 

<pli <y o ) Li P

| p > a ^ F L i P

( q 2 )
 ( p ' 2- p 2 ) vsJy (2-14) 

Using the same procedure described in 3.1 the matrix elements corresponding 

to the graphs of Fig. 5 can be written 

\~^r) [ f o 3 » 5 * < X 3» ] C FLlp + F ' L 

d A ( X ) \ (1) 

V W [ « x 3 W \ ^ F L i p + Fwp\ ] <2-16> 

(2.15) 

After the manipulations outlined in Appendix 2-B, one can extract from the 

matrix elements (14) and (15) the following leading term. 

+ lm 1 ^ l " ^ 1 ^ 1 » Q2 < ?

2 " 1 ? 1 ) ^ + V f V ^ l ^ l ' X P l ^ 

CFTS- F T V ^ + (2 1) + 
Lip U) (2) Lip z 
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(2.17) 

Again by using the techniques described in Appendix 3 it is easy to expand the 

operators of equation (2.17) in multipoles. However, no further use will be made 

of the operators in equation 2.17 in this thesis- This is for two reasons. Firstly 

because there is no detailed theory that predicts matrix elements of the form (2.14) 

and secondly because all the operators are seen to depend on p^, that is,velocity 

dependent and therefore their effect is expected to be small compared with the operator 

given by equation 2. 2. Since no use will be made of 2.17 the very lengthy expressions 

for the multipole operators will be omitted. 

2. 4 Two and three body operators 

In this section the possibility of two and three body T. R. V. forces arising 

from T . R . I , violation in the electro-magnetic interaction is discussed. A calculation 

of two body forces is given in a paper by Huffmann (1970). 

Two body forces arise from a large set of graphs a selection of which is 

given below in Fig. 6. 

(a) (b) (c) 
Fig. 6 
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In those graphs the bubble vertex represents the T.R. V. vertex and the 

point on the other end of the virtual photon is the normal electromagnetic vertex. 

Because of the extra e in this normal vertex, it is possible at least as a first 

approximation to assume their effect to be small compared with the effect of the 

transition operators derived earlier in this chapter. 

The three body potential arises from the graphs of Fig. 7 

Fig. 7. . 

To derive the three body potential from the graphs the method of Clement 

and Heller (1971) will be followed. Using this method it is trivial to derive the three 

body operators from the transition operators already presented. 

Firstly the case where the bubble in Fig. 7 represents the Lee vertex given 

by equation 2. 8 will be considered. The three body operator is obtained from the 
T E.V 

transition operator V ' (E) in equation 2.11 by replacing E (r ) by 

The right hand side of equation 2.18 is of course the electric field E produced by 

the third nucléon in the position of the first one. By doing this replacement there 

re su\ts 

(a) (b) 

(2.18) 
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f V V t-T 
P T . R . V . , 4 L e e e „ v z t 1 3 

-I- o 

V (r r r ) = • 
L e e * 1 2 3' m 

+ (1 - » 2) (2 .19) 

In the case where the bubble in F i g . 7 represents the Lipshutz v e r t e x g iven 

-> 

by equation 2 .14 , the three body opera tors a re obtained by replacing B ( r ^ ) in equation 

2.17 by 

B r ) = —• L 3 , ̂  ^ , r - r - p. i „ . (2. 20) 

where 

^ V V ~ * V V * ( 3 ) ( 2 - 2 1 > 

Equation 2.20 g i v e s the magnetic f ie ld produced by the third nucléon in the posi t ion 

of the f i rs t . 

By doing the rep lacement indicated above there resul ts 

V T . R V . , , af2
 r - / / V ^ i ' f y % , , 

2Î 2 . r £- /l M V ( V * 3 > ,-. % 
+ e l " " 
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v<v^12> ^ 
Lip 

- 2 
4m 

6 K V1 "vW <?1"r3>" W ' <?2""l)ít<ri2) 

* ( l a ) X Í ( 2 ) ) z + ( 1 ~ > 2 ) <2' 22) 

As is clear from oquation (2.19) and (2. 22) the part of the three body potential 

connecting the third nucleón is a long range one. (This is obvious from the fact 

that the exchanged photon in the left hand side of each graph in Fig. 7 is a massless 

particle). This implies that its matrix elements between states diagonal with 

respect to A-2 nucleón orbitals (Clement and Heller, 1971) will have a factor Ze 

instead of the factor e for the two body potential. Therefore for heavy nuclei 

(and therefore large Z ) it is perhaps fair to expect that the three body potentials 

will be the dominating effect of the T. R. I. violating vertex. 

This is unfortunate since calculations with three body potentials are com­

plicated. However as explained in Clement (1971), it is possible to replace, in 

certain circumstances a three body potential by a two body equivalent potential 
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although of course this involves some approximation. We shall return to this 

192 

subject in chapter V where the case of a heavy nucleus (Pt ) is treated. 

In chapter IV attention will be focused on light nuclei where the effect of 

three body potential is small compared with the effect of the transition operators 

presented earlier in this chapter. Befor e this however, in the following chapter i 

another possible mechanism of T . R . I . violation is examined along the same lines 

as the analyses presented in this chapter. 
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CHAPTER 3 

THE N*Ny TRI VIOLATING VERTEX 

3.1 Introduction 

In recent years much attention has been paid to the role of nucleon 

resonances in contributing to the magnetic moment of nuclei and to the /3-decay 

3 3 

Gamow Teller matrix element. It has also been found that the N*(J=~ T=— M=1236) 

resonance is an important factor in possibly removing the need for a hypothetical 

(Mneson in the one-boson exchange potential (see Green and Schucan 

(1971) for a survey). 

Much earlier Barshay (1966) had suggested that the NN*y vertex might 

violate T .R. I , invariance. He calculated the consequences of such an assumption 

on detailed balance for the reactions y + d ~> n + p and n + p ->y + d. 

In this chapter, the possible effects of T . R . I , violation in the NN*y vertex 

on y-transitions in nuclei will be considered. In the approach used in this chapter the 

N* resonance contributes to the effect only as an intermediate state in the Feynman 

Graphs. In Appendix 5 however a different method of calculation is outlined. In this 

alternative approach the N* is introduced explicitly in the nuclear wave function. 

Also in Appendix 5 the two approaches are compared although no detailed calculation 

is presented. 
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3. 2 Effective Interaction 

3 3 
The N*(J « — T a — M = 1236) is a nucléon resonance with both spin and 

ci A 
3 

isospin — and a mass of M a 1236 MeV. The Rarita Schwinger (1941) formalism 

will be used to describe the N * . The resonance has four charged states with 

charge 2e, e, 0 and -e . T o describe the i-spin, column vectors # are 
A. 

introduced for the isobar. The corresponding spinor for the nucléon is denoted 

4i, thus 
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and 0 is the pion field. 
a 

The interaction (2) conserves charge and is the one usually adopted 

(e. g. Salin - 1963) . 

The NN*y ver tex is taken to be (Salin - 1963 and Gourdin - 1966) 

NN*y = * — <!> € y Y 0 F , - — 0 € * y y F 
m A pi 5 Apt m r > 5 A Api 

where F. = 3 A - 3 A, is the electromagnetic tensor and c i s a ma t r ix given 
Apt A pt pi A 

below. 

T . R . I , is violated if e is complex and so the T . R . I , violating ver tex is taken 

to be 

/ T. .R. V. 
NN*y m 

0 0 

c - e* 0 
P P 

V 
0 V N 
0 - 0 

F —— 
Api m 

0 ° f t 0 1 

(3 .4 ) 

and the normal t ime r eve r sa l invariant part is taken to be 

NORMA^i 
NN*y m 

0 0 

0 0 

F 1 
Apt m 

fO € + € 0 
P P 

4 * KVA 
0 0 °/ M 

F . 
Apt 

(3 .5) 

With these interactions it would appear to be an easy mat te r to calculate the diagrams 

of F ig . 8 below. In this figure the line 5 represen ts the isobar and the ver tex 

is taken to be T . R . I , violating i. e. given-by equation (3. 4) 
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(a) (b) 

Fig. 8 

The only difficulty is that normal dependent terms in the Hamiltonian do not 

cancel exactly with the terms coming from boson contractions (Lurie - 1968). 

This is a difficult matter the solution of which has been given by Takahashi-

Umezawa (1953). Their result is that one should (wrongly) assume that H = 

and use the common Feynman rules with the following propagator for the N* 

[IV 2 ) = s \ v V W - ^ Ĉ  Vvy+(^ô"Mv^ô4(xrx2) 

where 

and 

s „ B - ( y â - M) [ô - l y y + i , ( Y Ô - Y a ) - -1- s a ] \).V u v 3 M 3M p. v V ¡1 3 M 2 p, v 

( 2 T T ) 4 l 

ikx 

k •+. M 2 - ie 

(3.6) 

(3.7) 
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Now using the usual Feynman rules one gets for the matrix element 

of Fig. s -a 

I ^ ^ x / x / x ^ ffiK1)y(,T5sXp(x1-x2) i ^ W y l F ««„) 

I X . 
2p 

[ 0 ( x 3 ) ^ ( 2 ) Y 5 0 ( x 3 ) ] (3. 8) 

where 

a) (1) 
(3.9) 

The suffices (1) and (2) refer to particles (1) and (2) respectively. The matrix 

element of can be written down but* it is easily verified that the operators coming 

from JVT. will be the Hermitian Conjugates of the ones coming from M^.. This was 

also the case for the operators derived in Chapter 2. 

The i-spin dependence can be further simplified as shown in Appendix 6. 

The results for the normal and T . R . I , violating (T.R. V . ) cases are given below. 

; 5

< 1 ) « ( 2 , ) z • 

1 * * . (2) 
^3 v N N p p ' *°z (3.10a) 

^( ' 1 )- t (2)>NORM T 2 0 ^'"Hv W + p VV W<*W* S<2>)- + 

1 * * (2) (3.10b) 
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Obviously if e and are real then the T . R . I , violating term vanishes. 

3 3 
Substituting the N*(J = — T — M - 1236) nucleon resonance propagator 

given by equation (3. 6)infoequation (3. 7) the non-relativistic transition operator 

corresponding to the graphs of Fig. 8 are obtained. However , because 

3 3 

the N*(J= — T = s — M = 1236) propagator is so complicated the whole calculation 

is rather long and the transition operator includes very many terms. To present 

the results in an orderly fashion it is convenient to divide the propagator into six 

parts as follows. 

= X + Y + Z + U + V + K F [IV 
where 

z = ^ * a hi
 ( r

MVvV V x ) <3-llc> 
U s , , JL y r 5 4

( x ) (3. l i d ) 
3M^ * V 

V * + ( y - a - M ) — 3 9 A (x) (3. l i e ) 
3M 2 Af V T 

K « — „ [ (yi a - v a ) + y a y ( l r j 6 4 ( X ) (3. l i f ) 
3M 

Among the transition operators listed in the Appendix 2rC only the leading ones in 

the static limit are taken, that is, only the operators in the lowest order in ( ~ ) are 

taken. On this basis the terms stemming from (3.11c) and (3. l i e ) are all neglected. 
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The transition operators from the part of the propagator given by (3.11a) are 

larger than the transition operators from the other parts (equations 3. l i b , 3. l i d and 

M 
3. l l f ) . The transition operators from 3.11a have a factor —— . The corresponding 

M - m 
factors in the operators deriving from 3.11b, 3.11c and 3. l l f are respectively 

• m , ~ and -j— . Therefore the terms arising from 3.11c and 3. l l f 
M - m \ / 

can be neglected since they are of the order of 10 smaller than the terms arising 

from 3.11a. 

In the final result given below the operators stemming from 3.11a and 3. l i b 

combine term by term so that the overall factor is 

M m 1 
,J2 2 , ,2 2 ~ M - m M - m M - m 

The resulting transition operators are given in the form 

W = W1 +W 

They have been separated according to whether the isospin space part is itself 

odd under time reversal or not. Thus has ("|.^xl£»01) which is T . R . I , violating. 

wi<"M °" 2 s <ri>-?i x ^ < r i 2 > $ T »OVVVVVV 
jL'.(M-m)2m * v ' v 

-> —» 
2 * * w (2), 1 Gf(-i) =* . -» r* ~* , ri""X2 , 

^ W W ]
 + 3 ^ B ( r i ) ' C T i x ( r r V v i r v ? - | K<tvr

2l> 
w * * y, (M-m)2m 1 1 2 1 

2 * * 2 * * (2) 
T 2 o W {WW + y f ( W W V ] + ( 1 2 ) ( 3- 1 2 ) 
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(3.13) 

By using the techniques described in Appendix 3, the transition potentials 

are expanded in multipoles. The results are listed below. The electric-multipole 

stemming from W^fB) is written W ^ E L ) and analogously the magnetic L multipole 

is written W (ML). 

u(M-icn)2m ^ ^ i < i * ' J J J M(M-m)2m ' ^ r i < j \ / l J " l J J M 

i i*. 1 Gf • 2 ' * * L K ^ r f " r J ) 

(I J~-6 #<r..) + 7 z | i (<KT-<T*+e ) S R . L , 1 3 ' 
z 2 1 J 3 u n v r - n W ^ ^ N ^ P P ' U Ir ; -r! ju(M-m)2m " i<j J 1 i j 

. * L 
[ Y T (R..)®{(>. x(r .~r .)]o\ . (v.-v.)^ + [a. x ( £ - r . ) ] a . - (r .-r .)* 1 } ] + L i] i i j j i j z 3 i j i i j ' z J

M 

1 Gf ? * * / T \ * T K < ^ ; ~ ^ l ) 

£ l ( i - -< T -S> K ( L 7 I ) = R i J -J^t~ ^*~> 
* L 

[ Y T (R..)#{ [ a . x (r.-r.)]a.- (r.-r.)+ [a.x(r.-r.)]a- (r.-r.)} 1 (3.14) 
L 13 1 1 3 3 1 3 3 1 3 1 1 3 M 

* L 

Z 3 (M-m)2m 2M v " r " " V * / i<j 

„ L r (0 (j), 2 Gf(-) i , * * . _ 

(sif S < . R i ^ L ( R i j ) ® i [ ( ? r t j ) x ( a . - V ] x ( ? ^ . ) ) ] * L | M „«x5«)); 

(3.15) 
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Analogously the magnetic multipoles are 

" I * ™ ' " 2 , M „ 2 JS ' . W W [ < 2 L + 1 > L J " = R i ) ^ W W ? 

(& j - ^ l ) ^ r . . ) + (-)l — j f i (CT-CT-€*+€ ) [ (2L+l )L j S R . L _ 1 [Y_ , ( R . . ) ® z z li 3 . „ 2(3 N rT p p L _ li L L - l ij J n(M-m)2m ' i<j 

i i * L K ( | r . - r | ) 
{ [ a . x (r.-r.)]o;«(r.-r.)V + [a.x(r.-r.)]o-.-(r.-r.)^ } 1 , „ J , + 

l l ] V 1 3 z 3 l ] J l l ] ' Z T I 

+ 1 ~ * A + C _ e v r ) [ L ( 2 L + l ) ] ^ E R L A Y

T ,(R..)®{[a.x(r.-r.)]a..(r.-3" 
% ( M - m ) 2 m 2 ^ P P ^ N i<j 1 3 W 1 3 1 1 3 J 1 \ 

- -« -> * L K( | f . - r |) 
+ [ a . x (r.-r.jla.Kr.-r.) } ̂  T 2 0 rt(1)f % ) — — ( 3 . l 6 ) 

1 i 31 

^(M-m)2m 

[ Y L _ l ( R . )f^(r ) fr",^) +<-)f °f

 2 ^ V V W 
J J J /u(M-m)2m ¥ ^ 

[ L ( 2 L + 1 ) ] * S | ? . - ? . | K d ? . - ? . ! ) ^ ' 1 [ Y . 1 ( R . . ) % - a ) ] L * x # ) + 
K j 1 3 1 3 1 13 L - l 13 3 1 M 7 1 

+ ? „ , „ 2 # V ! P - W [ M ] t Y I * l < V * { , V r j ) X 

(M-m)2m /u v ^ i<3 

K ( | r . - r . | ) 
[ (r.-r.) x (a. - a.)} ] L x ^ ^ (3.17) 

1 3 J M ^ . - f . l 
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The effect of the transition operators will be given in Chapter 4. In the 

next section of this chapter the three body T .R . I , violating potentials arising from 

the NN*y vertex will be briefly examined. 

3. 3 Two and three body T. R. I. violating forces 

In this section it will be shown that the T .R . I , violation in the NN*y 

vertex also contributes to low energy nuclear physics in the form of two and three 

body T. R. I. violating potentials between the nucléons. 

The contribution in the form of a two body T .R . I , violating potential stems 

from a set of graphs a few of which are shown in Fig. 9. 

(a) (b) (c) 

Fig. 9 

The wavy line in each graph represents a virtual photon. The NNy vertex in 

the right hand side of each graph is taken to be the normal electromagnetic vertex. 

This extra photon vertex contributes an extra small factor e in addition to the small 

N*Ny T.R. I , violating vertex. Therefore the effect of the two body T.R. I. violating 

potential is expected to be small with respect to the T .R. I , violating transition 

operators already derived. 
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The three body T. R. I. violating potential arises from the graphs of Fig. 10, 

below 

Fig. 10 

As already explained in section 2. 4 it is easy to calculate the three body 

potential from the transition operators given by equation 3.12 and 3.13, by using the 

method given by Clement (1971). This method consists of replacing B(r^ in W^(B) 

and W (B) (equations 3.12 and 3.13) by the magnetic field produced by the third 

nucleon in the position of the first, viz 

1 m (r- • r0-) - ¡1 
1 1 3> 1 1 31 

where 

" " I W ~f W ^ ( 3 ) 

(3.18) 

(3.19) 
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The resulting formulae however are very complicated and therefore will 

not be written down here. Note however that the part of the three body potential 

connecting the third nucleón is a long range one due to the virtual photon shown in 

the left hand side of the graphs of Fig. 10. As already explained in section 2. 4 

this implies that its matrix elements between states diagonal with respect to A-2 

nucleons orbitals will have an extra factor Ze due to the normal electromagnetic 

vertex. Since for heavy nuclei 2, can be very large the effect of the three body 

potential for these nuclei is expected to be larger than the effect of the transition 

operators derived in section 3. 2. 

In the next chapter the effect of the transition operators derived in Chapter 2 

and in this chapter will be estimated. Because of the effect of the three body operators 

discussed above, the calculations are confined to the light nuclei. 
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CHAPTER 4 

ESTIMATE OF THE TR.VTRANSITION OPERATORS 
IN LIGHT NUCLEI 

4.1 Introduction 

In this chapter attention will be devoted to the experimental consequences 

of the T. R. I . violating transition operators derived in Chapters 2 and 3. In the 

next section the experimental method to detect a possible failure of T . R . I , which 

has been used in this University will be discussed. This method is based on a 

theorem due to Lloyd (1951) and presented below. 

Consider a "mixed y-transition" between two nuclear levels, that is , a 

transition such that both the electric multipole operators E(L+1) and the magnetic 

multipole operator M ( L ) contribute significantly. One can define the reduced 

matrix elements of the transition operators by the Wigner-Ekhart theorem (see 

Brink and Satchler (1968) pp 56). For example 

< 0 f l E(L + 1 ) | 0>= ( - ) 2 L < E . m . L M | l f m f > < 0 f | | E ( L + 1 ) | | 0. > 

where I and m refer to the spin and its third component of the state indicated. 

The result given by Lloyd is that if T. R. I . holds then the ratio between 

the reduced matrix elements of the competing multipoles is real. Thus, if 

T . R . I , holds the imaginary part of the "mixing ratio" 6" vanishes ( Im 6 « 0) , 

where 6 is defined as* 

<%|| E<L+1)\\${> 
" < ! | ) f | | M ( L ) | | ! | | > 

This definition is in accordance with the convention of Lobov (1969) and Frauenfelder 

and Steffen (1965). 
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Conversely (Lobov - 1969) if T. R. I. is violated then Im M 0. Both 

statements however ignore final state interaction effects. This point is taken 

up later in this chapter. 

The observable effects of an imaginary part in 6 were first worked out 

by Henley and Jacobson (1958). Their analysis is based on the result that the 

expectation value in the final state of an operator Q ^ with respect to T . R . I , 

(that is TQT 1 3 - Q) vanishes if T . R . I , holds. This result is valid if the decay 

is weak (in the sense that first order pertubation theory is adequate) and if final 

state interactions can be neglected (see Sakurai (1964) for a discussion). 

Table 1 below, taken from the work by Henley and Jacobson (1958) presents 

in the second column a list of T. R. I. violating quantities which can be measured 

in an electromagnetic transition from a nuclear level A (spin I ) to a nuclear 

level B(spin I ) . The quantities K, £ and c are the momentum, the circular 13 

polarisation and the linear polarisation respectively of the emitted y-ray. 

Degree of orientation 
y-ray polarisation Quantity measured Q.^ 

None (K-1 ) (K-1 x l ) . 1 2 
B B A 

^ I A ) ( K - I A X I B ) 2 1 

Circular (K- S) (K. I x I B > 1 1 

Linear (K.I x t) (K-I ) (T-I ) 

TABLE 1 

2 
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The first column indicates whether y-ray polarisation measurements 

are necessary and where they are which kind of measurements (circular or linear) 

is required. 

In order to understand the meajn^'mg of the third column the concept 

of "degree of orientation1 is introduced below. Other concepts to be used in the next 

section will also be discussed here. 

Consider an assembly of identical nuclei subjected to a strong magnetic 

field in a certain direction and at a very low temperature. Due to the interaction 

of the magnetic moment of the nucleus with the external magnetic field the assembly 

becomes "oriented", that is, the probability of finding a nucleus of the assembly 

in a state | Im > (assume for example that the quantisation axis is in the direction 

of the magnetic field) varies with m. 

Consider now the density matrix of this assembly p =* £ | I m > a <Im | and 
m 

its matrix elements <Im | p | l m ' > . One can expand <Im | p | Im'> in terms of the 

(k) 
"statistical tensors" R introduced by Fano (1951). 

< I m | p | l m ' > = S ( - ) I - m < I m I - m ' | k q > (4.1) 
k,q q 

or 

=» 2 ( - ) X ~ m < I m I - m'i kq><Im| p | I m ' > (4.2) 

In the representation chosen above <Im) p) Im'> is diagonal 

( <Im| pi Im'> » a 6 , ) and therefore only tensors with q = 0 survive, viz \ m mm" J x 

= E ( - ) I _ m < m I - m I k 0 > a 
0 m ' 
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The "degree of orientation" of an assembly of nuclei is Q, if in equation 4.1 the 

greatest value of k is Q . 

Returning now to Table 1, the degree of orientation shown in the third and 

fourth columns gives the minimum degree of orientation required for the statesA and 

B respectively so that the expectation value,for the assembly, of the corresponding 

T.R.I , violating terms do not vanish. 

In the next section the experimental method used in this University to 

search for a possible failure in T. R. I. will be explained in detail. It aims to 
—i> —> 

detect the first T . R . I , violating term shown in Table 1, namely (K -I ) (K *I x I ) . 
1 13 1 -B A 

The degree of orientation required for the initial state A is Q = 1. This is 
A. 

obtained by subjecting the nuclei to a strong magnetic field in a certain direction 

(taken for convenience as the z-axis) at very low temperatures. The measurement 

of the orientation Q of the state B is carried out by detecting a second y-ray n 

emitted when the nucleus decays from the state B to a third state C (see Fig. 11) . 

This is effected via a measurements of the direction k of the second y-ray through 
—» 

an implicit correlation involving (K • I ) . The overall quantity measured is 
—•> —=> 

therefore obtained from (K • I_)(K. • I x I . ) by replacing ] _ , by K and is (K • K ) 
1 13 1 13 A 13 A x A 

(K • K x S) where S is a unit vector in the direction of the assembly expectation 

value of the angular momentum of the state A , that is, < * A > • This will be seen 

in detail in the next section. 

4. 2 Angular correlation from oriented nuclei 

In this section it is shown in detail that examination of the angular distribution 

of y-rays emitted from an oriented assembly of nuclei can be used to detect a violation 

of T.R.I . Of course as mentioned earlier there is always the possible effect of final 
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state interactions that simulates the effect of T . R . I , violation. This will be 

considered briefly in the last section of this chapter. 

Consider two y-rays emitted in succession and with no perturbation of the 

intermediate state as shown in Fig. 11 and consider the probability W ( l , 2 ) of 

detecting photon y in detector 1 in coincidence with photon y in detector 2 as 

in Fig. 12. The assembly of nuclei is considered to be oriented by a strong 

magnetic field B also shown in Fig. 12. 

x 
Fig. 12 

The function W ( l , 2 ) is called the angular correlation function and can be 

decomposed as follows, 

W ( l , 2 ) = W ( 0 ) (1,2) + W ( 1 ) ( l , 2 ) + + W ( £ ) ( 1 , 2 ) (4.3) 

0 ^ Jt s 21. 
i 
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where each term W ^ ( l , 2 ) is proportional to the corresponding statistical 

tensor R

0 ^ -

Lobov (1969) has obtained expression for v / % 1 , 2 ) W^"V,2) i*1 the case of 

y and y being mixed transitions of multipolarities M(L ), E(L + 1) and M(L ), 

JL Ci 1 1 2 
E(L + 1) respectively, in terms of the reduced matrix elements already defined. 

Li 

V$0) = S tk(1^1^1.1)4-2 Re 6(1) F k ( L 1 L l + l I.I) + | Ô (1) | 2 F ^ + l 1^+11.1)} 
k(even) 

{ F k ( L 2 L 2 I f I ) - 2 Re 6 (2) F ^ L ^ + l ïf) + |6 (2) f F ^ + l 1^+1 1 f)} P^cos 8^) 

(4.4) 

„ "L ,2, = ^ k W f ^ 2 R e (Ô <2» ̂ « W 1 V> ^ ( 2 ) | 2 

(1+pJ )(1+P2| ) k 

F k < L ! i L 2 + 1 V ) } 

—y s - [ v ^ I m ô ( 1 ) - ^ y -
2 k+1 
k(k+l) 

(4 .5 ) 

In the two formulae above S, m and m are the directions of the magnetic field 

and the directions of photons (1) and (2) respectively. The coefficients are 

i f + i - i 
F k (L l ! If) ~ (-) f .[(2L+1)(2L'+1) (21+1) (2k+l)]* ( ^ _^ ^ * } 

JL-1 
F l k ( L l L l + 1 1 V s * ( _ ) [(2L 1+1)(2(L 1+1)+1)(2I+1)(2I.+1)]B<L 11L 1+1-11 k0> 

I. I . 1 

l i 
L 1 Lj+l k ' 

I I K' 



- 4 3 -

In equations (4. 4) and (4. 5) the angle between the directions m and m is denoted 
1 2 

by 9 and P (cos 0 1 ) is a Legendre Polynomial. 

The constant P in equation (4. 5) is related to the statist ical tensor R ^ by 

The t e r m s W (1 ,2 ) for an arb i trary £ can also be easily obtained (see Appendix 8 

and Coutinho and Ridley (1972)) but these more general t e r m s a r e not needed here 

nor for the experimental analysis given in this thesis (Chapter 5) . This is because 

the method of orienting the assembly of nuclei by applying a strong magnetic field 

(8) 

at low temperatures produces negligible R for S. greater than £ =a 1 (Siegbahm - 1965) . 

F r o m equation (4. 5) we see that the effect of T violation manifests itself through the 

first transition of the cascade. (Therefore it is essential that the first transition 

be of mixed multipolarity). The effect is seen to be proportional to E defined below. 

The proportionality constant consists of some geometrical factor plus some nuclear 

factors refering to the second transition only. 

1 . 
E = ' i + | a < i ) | 2 I K l 6 ( 1 , < 4 - 6 ) 

In the next two sections -Im 6 (1) will be calculated for the transition operators 

derived in Chapters 2 and 3. It is therefore convenient to re late I m 6 (1) to the 

matrix elements of a general T . R . I , violating transition operator. 

The majority of mixed transitions met with in nuclear y decay a r e mixtures of 

TRV 

a magnetic M(L) and e lectr ic E ( L + 1) multipoles. In what follows E (L + 1) and 

TRV 
are the e l ec tr ic (L + 1) and magnetic (L) multipoles stemming from a T . R . I . 
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violating transition operator. The electric (L + 1) and magnetic (L) T . R . I . 

_,NOR , ..NOR . conserving operators are and M ^ respectively. 

From the def tuition of the mixing ratio (first equation in this chapter) it 

follows that 6 (1) is given by 

^ I I M ^ I I ^ I I M ^ I I V 

< I | | E N 0 R | | I > < I | | E N ° H | | I > 

" < I | | M ^ R | | I > + <l||M™R||l.> 

/ 

<xiic,» i .»" < i" i-r |M 

where <I 11 E ^ R Y V 111> and <I II M T * \ V I k. > are imaginary relative to <I I | E ^ ° R , I [ l > ( L + l ) " I 1 (L) I r i 1 ( L + l ) " i 

or < l | | M ^ R | | I. >. Therefore the imaginary parts of 6 (1) ( I m 6 (1)) is 
(1J) I 

I . T , ( „ T R V | f r ^ 
<I||E(L-M)I^> 
< H | E (

N - | | I : > <I II < 
OR 

(L) 

( 4 . 7 ) 

where ^ ( 1 ) = i s t h e r e a l p a r t ^ e ô ^ o f 6 ^ H e n c e ( 4 - 6 ) becomes 
< H l M — H i , : 

E - H ) 6

N ( 1 ) 
l+l0(1) | 2 

< I l ' E ( L +

V l ) " I i > 

< I ! ! M N L O R | | I . > 
(4 . 8 ) 

From equation (4 . 8 ) it follows that the best experimental situation is one 

in which the transition under study has | 5 (1) | ̂ 1 . Also from equation (4. 8 ) it is 

seen that the effect depends on the ratio between the T . R . I , violating multipoles and 
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the corresponding normal ones. This is useful since it implies that it is 

possible to use any one of the many definitions of multipole operators found 

in the literature (see Brink and Rose (1967) for a review)tocalculate these ratios 

without worring about phase and normalisation problems. One must however take 

note of these conventions when using values of 6 from experimental data. 

In the next section the value for E in equation (4. 8) will be calculated for 

the case in which the T . R . I , violating transition operator is derived from the Lee 

vertex discussed in Chapter 2. 

4. 3 Consequences of the Lee Vertex 

In this section the possible effects of the operators derived tn Chapter 2 

(Equations 2.12 and 2.13) will be considered. 

Full advantage will be taken of the fact that these operators have the same 

form as the one derived by Clement and Heller (1971). 

J V 

In equations (2.11), (2.12) and (2.13) the value of F L e e ( 0 ) is not known. 

For the purposes of this section we take 

'V e 
F L e e < ° > = — < 4 ' : 

m 

This value obtained on purely dimensional grounds is usually referred to in the 

literature as a "maximal value" for the form factor (see Clement (1971) and 

Huffman (1970) for example). 

Now a close look at equations (2.12) and (2.13) will reveal that all the 
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multipole operators are such that as with the usual multipole operatore an 

additional factor K R Q (where R Q is the nuclear radius) is introduced when there 

is a unit increase in multipolarity. Thus to compare to the normal transition 

operators, it is sufficient to consider the ratio of the lowest multipole operators. 

This fact together with equation (4. 8) shows that to obtain an order of 

magnitude estimate of the effect it is sufficient to estimate the ratio between the 

matrix element of the T . R . I , violating electric and magnetic dipole operators and 

the corresponding matrix elements of the normal transition operators. 

T R V As was remarked before the transition operators V , obtained in Lee 

Chapter 2 have the same form as the operators obtained by Clement and Heller (1971) 

who make an equivalent comparison (see equation (4) in this paper and compare with 

equation (2.11 ) in this thesis). 

Allowing for the difference in proportionality constant, the following 

estimates are obtained for the different matrix elements. 

<(E-1). 
2 e ^ 

Lee 

<(M-1) T R V 
Lee 

26^ 

<(E-1). NORM > « e R .0 

< (M- 1). NORM 
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where R Q is the nuclear radius, K is the energy of the y-ray, p. is the mass of 

the pion and m the mass of the nucleon. 

With these estimates the ratios necessary to evaluate expression (4. 8) can 

be calculated. The results are 

<(&1£V > 

= L 1 ' 2 5 x l Q ( 4 - 1 0 ) 

< ( M . 1 ) T

T R V > 

<(M.1)> > = 1 7 * 2 5 X 1 0 ( E v t o M e V ) ( 4 a i ) 

K ;NOR T 

With these figures it is possible to make an estimate of the effect given 

by equation (4. 7). We have taking 6 ^ 1 and E « 1 MeV 
T 

6 N H i Q ^ x ^ < ' i i "™ v m t > 10~5 (4.12) 

This value of E ismich tcosmall to be detected at present, even allowing an 

extra factor of 10 to allow for the crudity of the estimates. 

No estimate for the transition operators stemming from the Lipshutz vertex 

will be given. This is because as remarked already in Chapter 2 all the transition 

operators resulting from the Lipshutz vertex have a factor ) and therefore 

their effect is expected to be even smaller than the effect of the Lee vertex. 
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In the next section the effect of the transition operator stemming from a 

possible T . R . I , violation in the N*Ny vertex will be given. 

4. 4 Consequences of T . R. I . violation in the N*N-y vertex 

4. 4.1 Introduction 

This section sets out to obtain a realistic estimate of the effect of the 

T R V 

transition operator V

N * N C 6 ) stemming from a T . R . I , violation in the N*Ny 

vertex. This transition operator (eq. 3.12 and 3.13)was obtained in Chapter 3 and 

expanded in electric and magnetic multipoles (eq. Stf.6 and 3.17). 

Before proceeding with the more detailed calculation it is worth noting 
T R V that the effect of the electric multipoles stemming from (B) are negligible N*JNy 

compared with the effect of the magnetic multipoles so that the following relation 

holds. 

T R V T R V 
< M N * N T > ^ <W»» 

NOR . _NOR 
< M (L)> < E ( L + l ) > 

To see this an estimate using the method of Clement (1971) will be made for one 

T R V term only of the transition operator V T . „ (B) noting that all terms have the same N*Ny 

order of magnitude. First ly, inspection of equation s (3.16) and (3.17) reveals that 

all the multipole operators are such that an additional factor K R^ (where R^ is 

the nuclear radius) is introduced when there is a unit increase in multipolarity. 

Thus to compare to the normal transition operators, it is sufficient to consider the 

lowest multipoles. 
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The first term of the transition operator in equation (2.13) is 

This, expanded in multipoles gives 

* * (i) (i) 

(M-m)2m p. i<] J 

(L)* (i) , m 

On comparing the two operators ( W ^ (EL) and wf^ (ML)) with the corresponding 

ones resulting from the special scalar meson vertex of Clement (1971) it will be noted 

that they have the same form. Therefore, by using the estimates given by Clement 

(1971) we have 

TRV 

„ NOR a — 3 ( 4 ' 1 4 ) 

< ( E - 1 ) > ( M R Q ) 

and 

TRV 
a (4.15) 

< ( E . l ) N O R > ( M R 0 ) 3 
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Since m » Kthe inequality (4.13) is justified and therefore the equation (4. 8) 

reduces to 

1+ |6 | 2 

(4.16) 

In the remainder of this section a more realistic estimate of the effect of 

18 

the transition operator V _ _ . ( B ) will be given. A particular transition in F 

has been selected for the following reasons. Firstly because this is a transition 

in a light nucleus and so the effect of the three body potential is minimised. 

Secondly because this is a "simple" nucleus from the shell model point of view 

(the wave functions of certain levels are essentially a closed core with neutrons and 

protons filling completely the Yi~ 0 s and p shells and the two remaining particles in 

the n - 1 s = 0 or n= Od shells). The chosen transition is from the (J =* 2 T - 1 E=3.o6 ) 

to the (J = 3 T a 0 E = ofW levels. This choice considerably simplifies the problem 

because the change A T = 1 in isospin and the two particle nature of the levels implies 

that only the operators which are antisymmetric in isospin coordinates contributes. 
18 

The nucleus F has been studied both experimentally (see for example 

Warburton et. al. (1967) and references therein) and theoretically (Kuo and Brown 

(1966)). An earlier theoretical study of this nucleus was made by Elliott and 

Flowers (1955) and the wave functions given in this work will be used for the present 

calculation. 
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4 T - / 

J--3 T = o 

J= < T -o 

Fig. 13 

• 18 

The level scheme of F is given in Fig. 13 above and the wave 

functions for the levels indicated are given in the L -S coupling representation 

in an obvious notation as follows 

0 (T » 0, J = 1) = 0. 82 ( d 2 ) 1 3 S - 0. 07 ( d 2 ) 1 3 D + 0.16 (d 2 ) n p + 0. 02 (ds) 1 3 D 

0 1 0 9 1 * ^ 9 1 1 "I *3 

0 (T = O, J = 3) = - 0. 59 (d ) D + 0 . 03 (d ) G - 0.12 (d ) F + 0. 79 (sd) D 

2 SI ? S3 2 SI 0 (T = 1, J =» 0) - 0. 84 (d ) S - 0. 38 (d ) P + 0. 39 (s ) S 

9 01 o 00 o 00 0-1 

4> (T = 1, J = 2) = 0. 65 (d ) D + 0. 33 (d ) P - 0. 20 (d ) F - 0. 61 (sd) D 

33 
+ 0.22 (sd) D', 
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4.4.2 Operators 

Given the details of the last subsection it is easy to extract from those 

operators in equation 3.16 and 3.17 the ones that contribute by using simple . 

techniques of angular momentum algebra, as explained in Appendix 7. The 

relevant operators are all antisymmetric in isospin space. The operator 

W ^ M L ) given by equation (3.16) contributes with 

W (M-1) => W ^ a ) (M-1) + (M-1) + W * C ) (M-1) 

where 

1 . „ 2 t/3 N N p p 4ir . ^. i ] M z zf y v i i ' /i(M-m)2m i<j J 

( b ) ^ 1 _Gf 

/i(M-m)2m 

ju(M-m)2m i<j J 

( 4 - ^ I V r . | K ( | r . - r . | ) 

S (-1) { [ a . ® a ] ^ Y (r ( r f G ) ) | r - r | K ( | r - r | ) 
i<j J j 

Analogously the operator W (ML) given by equation (3.17), can be written 

W J M - 1 ) =» W a ) ( M - 1 ) + 1) + W^ C )(M. 1) + W 0

d ) (M-1) 
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where 

(M-m)2m L < J 

Wf >(M. 1, -. W | °J , i <fo-Vtf £ )* = . l ^ j l K d ^ |, 
(M-m)2m p. . * v i<j J J 

u 1 j J M z 

H(M-m)2m i<j 
wiC) (M-l)= (-)--• ° f 

(a-a)ti xx.) 1 r.-T. | K(|rt-"r. |) 

w f (M • 1> - (-) f ° f

 2 Js * 5 I ( £ - « p - ^ y W (1111,21) (J J 2J B 
^(M~m)2m ^ ^ v i<j 

[ Y 2 ( r . j ) e > ( a - a ) ^ f.-r. | ) (I. x* . ) z 

At this stage two points should be noted. Firstly, that the operators listed 

above are only the leading ones (see Chapter 3 and Appendix 2. c). Secondly, that 

due to the radial dependence of the operators their matrix elements would diverge 

if it were not for short range correlations. These can be taken into account by 

introducing a hard core r and by performing the radial integral from this value „ 
c 
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ThLs introduces an uncertainty into the calculations and it was therefore decided 

to simplify the whole calculation by using an approximate procedure due to 

(a) 

(Maqueda and Blin-Stoyle - 1967). This procedure will now be explained for (M-1). 

The results of similar calculations for the remaining operators W | ^ \ M - 1), W ^ ( M « 1) 

and V^ ( a ) (M-1) to W^ d ) (M-1) will be quoted. Firs t , write w| a ) (M-1) 

W < a ) ( M . l ) - G f ^ l (WW ( _3.)* s M f f ) * l T T U ^ R ) 

(4.17) 

where 
-ur 

e . ft 0* r..) =< ~ ( —+-T7) 
ij 47r jur /u^r4 jur 

The method consists of using instead of the operator (14) the long range one 
* * 

U ^ ( M - l ) - —4- ^ ^ ( # F L ( a . x a £ « j x ^ (4.18) 
1 v ' /u(M-m)m 2m MTT' J .<J 1 J ^ ^ 

where F is defined as co 

•f.. * • • :; 
r „Mia..) 4TT (JUT ) d(pr) 

F a _ _ c ^ 1 . (4> 1 9 ) 

3 ^ R 0 ) 

(a) 
The operator (M.l) can be considered as the first term of a "multipole" 

(a) 
expansion of the operatore (M-1). By doing this we get the following operators 

U ( M - 1 ) - U ( A ) ( M - 1 ) + W ( B ) ( M - 1 ) + W ( C ) ( M - 1 ) + W ( D ) ( M - 1 ) 
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U ( A ) ( M - l ) s G . ( 7 - f E ( a . x a . )* 1

T - x l ) 
v ' A 47r ' . . i i ' M v ,*z fez 

i<3 

K j 

U ^ ( M . l ) = G D E x i ) [ Y $ )0 (a . - a ) ] £ 

The calculation of the reduced matrix elements of the operators above was 

performed by using the techniques of angular momentum algebra. We have for 

(A) 
example that the matrix elements of U (M. 1) is, using standard notation, 

< n l W 2 * S 1 S 2 ^ * 1 * 1 1 M T II U ( A ) ( M- ^IK W ^ S l 8 2 ^ 1 * 2 = 

i G A < l ^ 2 T M T j ( f c ^ -g (

z

2 ) ) j ̂  ^ T # M T > { 3(2J'+ 1) } * 
J j ' 1 

A X 0 

S S ' l 

* » X X ¿3 ¿4 X 1 

It was found that the last two operators have matrix elements which are one 

order of magnitude smaller than the first two, because the small values of the reduced 

matrix elements <n 1̂  n 1 X_ [ | Y ( r . . ) ||n l ' n ' V ~k'> they contain. So they were 

neglected. 
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T h e v a l u e s of G„ and G „ a r e 
A B 

A 2 m 

and 
* * 

G = - 0. 03 P ^ 
B 2 m 

In c a l c u l a t i n g t h i s n u m b e r t h e f o l l o w i n g v a l u e s h a v e b e e n t a k e n f r o m 

G o u r d i n ( 1 9 6 6 ) . 

G = 2 . 07 f - 1 3 M = 1 2 3 6 M e V m = 9 3 8 M e V ju = 1 3 8 M e V 

4 . 4 . 3 R e s u l t s 
T h e f o l l o w i n g r e s u l t s a r e o b t a i n e d : 

<J = 3 T = o | | VT ; ( M ' 1 ) | |J = 2 T = 1 > = (-.) i 3 , 3 8 x 0 . 0 1 3 P P ^ tf-)^ 

* * 

2 m v 4 T T 

< J = 3 T a 0 | | WK '(M.l) \ | J - 2 T = 1 > = ( - ) i 2 , 2 9 x 0 , 0 3 V ^ m @ 

T h e n o r m a l o p e r a t o r t o b e u s e d m u s t h a v e t h e s a m e c o n v e n t i o n s a s f a r a s 

p h a s e s and n o r m a l i s a t i o n i s c o n c e r n e d a s t h e T R I v i o l a t i n g o n e s . A s e x p l a i n e d in 

A p p e n d i x 3 t h e M - 1 n o r m a l o p e r a t o r i s 

„ , „ v N O R , 3 - § 1 _ r e , , r l , x . 1 , 4 ( i ) y -» 7 * 1 
v ; y4ir ' 2 m . 2 v z' i L 2 y n * p 2 p fcz -1 i M 
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and the relevant matrix element is found to be 

< J = 3 T = S 0 | | M N O R ( 1 ) | | J = 2 T = 1> A * 5.26 

Therefore 

< I | | ( M - l ) N 0 R j | l . > 

A "maximal" estimate is of course 

i(ep-€p-€^.+€^) = e and therefore 

•<ii(^gyM> 
(-i) ^ - ( - ) 4 . 5 x 1 0 

< M (M- l ) N O R I |> 

This is a relatively large number and the result is therefore very encouraging. 

However, for this particular transition 6 « 0,06 and therefore 

E - (-) N 

TRV 
< | J M ( 1 ) | | > 

M ( i f O R ! ^ 
= 2,7 x 10 

-4 

This number is a little outside experimental possibility at present, but not far 

enough to preclude the experimental investigation in a few years time. 
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4 . 5 F i n a l S t a t e I n t e r a c t i o n 

A s w a s e m p h a s i s e d in t h e f i r s t s e c t i o n of t h i s c h a p t e r L l o y d ' s t h e o r e m i s 

v a l i d o n l y a s f a r a s t h e e l e c t r o m a g n e t i c i n t e r a c t i o n c a n b e t r e a t e d in f i r s t o r d e r 

p e r t u r b a t i o n t h e o r y . If h i g h o r d e r r a d i a t i v e c o r r e c t i o n s and f i n a l s t a t e i n t e r a c t i o n s 

a r e t a k e n in to a c c o u n t a p h a s e rj a p p e a r s in t h e " m i x i n g r a t i o " 6 = ¡6 | e w h i c h 

h a s n o t h i n g t o d o w i t h T . R . I . v i o l a t i o n . 

T h e m a g n i t u d e of t h i s " s p o i l i n g " s p h a s e h a s b e e n s t u d i e d b y s e v e r a l a u t h o r s 

( s e e H e n l e y and J a c o b s o n (1966) and H a n n o n a n d T r a m m e l l (1968) f o r e x a m p l e ) . 

T h i s e f f e c t m a k e s it p o s s i b l e f o r a T . R . I . odd o p e r a t o r Q t o h a v e n o n z e r o e x p e c t a t i o n 

v a l u e e v e n if n o T . R . I , v i o l a t i o n o c c u r s ( s e e S a k u r a i (1964) f o r a d i s c u s s i o n ) . 

T h e i m p o r t a n t f a c t a b o u t t h i s " s p o i l i n g " p h a s e i s that it c a n b e c a l c u l a t e d a t 

l e a s t in p r i n c i p l e and t h e r e f o r e i t s e f f e c t s c a n b e s u b t r a c t e d out f r o m p o s s i b l e T R I -

v i o l a t i n g e f f e c t s . 

T h e p h a s e s i n t r o d u c e d b y r a d i a t i v e c o r r e c t i o n s w e r e f i r s t c a l c u l a t e d b y H e n l e y and 

J a c o b s o n ( 1 9 6 6 ) . T h e c o n t r i b u t i n g p h y s i c a l p r o c e s s e s a r e s h o w n in the g r a p h s of 

"6 
F i g . 1 4 b e l o w , a n d t h e " s p o i l i n g " p h a s e i n t r o d u c e d w e r e f o u n d t o b e r o u g h l y 1 0 a n d 

(a) (b) 

F i g . 1 4 

t h e r e f o r e n e g l i g i b l e . 
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The effect of the interaction with atomic e lec t rons was calculated by 

Hannon and T r a m m e l (1968) and found to be important. T h e most important 

p roces s is shown in F i g . 15 where in the intermediate state one atomic e lec t ron 

is in an exci ted state leaving a hole as represented by the dashed loop 

F i g . 15 

T h e contribution to 77 due to the graph of F i g . 15 where the e lec t ron-hole 

pai r occurs in a par t icular e lec t ron shell was found to be proport ional to the 

internal convers ion coeff icient (Rose - 1958) of this shel l . Since the internal 

convers ion coefficient decreases with energy the effect is expected to be sma l l e r f o r 

high energy transition. 

The magnitude of 77 was calculated by Hannon and T r a m m e l (1968) fo r two 

99 

low energy Mossbauer transit ions (the 90 k e V transition in Ru and the 73 keV 

193 
transition in I r ) . T h e calculated values a re 

- 3 

rj(Ru) =» - 6,5 x 10 

- 3 

rj ( I r ) « 0. 9 x 10 

These values are seen to be of the same o rde r of magnitude as the expected values 

from a possible T . R . I . violat ion. We must however r e m e m b e r that those values a re 

for v e r y low energy transit ions. F o r transit ions with energy around 1 M e V the values 

of 77 should be at least one order of magnitude smal le r . 
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4 .6 Conclusions 

In this chapter thé effects of the transition operators obtained in Chapter 2 and 

3 have been calculated for a light nucleus where the effects of three body operators 

are minimised. Three models of TRI violation have been considered but only a 

"maximal" violation in the N*Ny vertex was found to contribute significantly to an 

imaginary part of ô , namely. 

ô = (Re ô ) x 1 0 ~ 3 

The effects of final state interactions were also considered qualitatively and 

also found to contribute an imaginary part to à , we shall call . For transitions 

with an energy of about 1 MeV the value of $ is approximately 
FSI 

fiL„ « ! ô I x 1 0 " 4 

In the next chapter an experiment performed at the University of Sussex in 

Pt will be analysed. 
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CHAPTER 5 
1 9? 

ANALYSIS OF AN EXPERIMENT IN Pt 

5.1 Introduction 

A recent experiment at the University of Sussex (Holmes et. al. (1972)) 

has used the angular correlation techniques described in section 5. 2 and the 

object of this chapter is to attempt a theoretical interpretation of the experimental 

results. For experimental reasons described in the paper by Holmes et. al. (1972) 

192 
the nucleus chosen was Pt the level scheme of which is given in Fig. 16 below. 

E - 2 + M : 

E- 2 

E - 2 
-AZ. 

2 + A 

71 
E - 2 + M - 1 

- 2 + B 

* 2 
o 1 

Fig. 16 

Because the energy differences between y and •)/ and between y ' and y 

are small the two cascades shown in Fig. 13 are detected simultaneously. From 

y' yy 

now on we shall denote the quantities referring to the cascade 0 2 ^ $ 
3 2 B 0 

a prime. For example we write 
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0 = 
< V B I I E ' 2 " V > 

and 6 = 

< 0 2 + b I | M . I | | ^ + > < 0 2 + a I | M - I | | 0 3 + > 

The experimental result (see formula 4 in Chapter 4) is 

1 sen 77'+ 0,19 sen 771 < 4 x 10 
-3 

(5.1) 

where sen 77' = and analogously for sen 77. 

It is the specific aim of this chapter to interpret this experiment in terms 

of a Phenomenological two body T. R. V. potential. If the violation does derive 

from the electromagnetic interaction, we have seen in Chapters2 and 3 that in heavy 

nuclei the effect is more likely to appear in the form of a three body T. R. I . 

violating potential. However, as stated there, such a three body potential can be 

simulated by an effective two-body potential. 

The most general two body T. R. I . violating but parity conserving potential 

has been given by (Herczeg - 1965) and it should be noted that all the terms in this 

potential are momentum dependent. The simplest terms arising and to which the 

remainder of this discussion is restricted are given below. 

+ \ ( r

1 9 ) ( > m + ^ , 9 J } - [ a + b ° n s CT/o\ 3 + Hermitian Conjugate (5.2) 

i v. - (V?2>- < P l ^ 2 ) U l ( r i 2 } + h 2 ( r ! 2 ) V \) + h 3 ( r i 2 ) X ( l ) ^ ( 2 Z ) + 
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In (2) the h (r ) to h (r ) are arbitrary functions of r = | r - r | . The fact 
X X ^ j 4c JLA X J U X £j 

that the potential is momentum dependent implies that as it stands it is not 

gauge invariant and the consequences of this will be discussed in the next section. 

5.2 Gauge Invariance Requirements 

For well known reasons, in nuclear physics one uses the Coulomb Gauge, 

where the electromagnetic vector potential A*" satisfies^-A* = 0. By gauge 

invariance we mean that everything should be unchanged if one makes the transformation^ 

A* —^ "A + W G where G is an arbitrary function. More precisely we require that given 

an arbitrary G there exists g such that 

H+<#(A* + V7G) = e + l g { H e l S (5.3) 

In Appendix 4 it is demonstrated that for the case of a system of point particles, g 

is required to have the form 

g = S G ( r ) | ( 1 +t> (5.4) 

This gauge invariance requirement has powerful consequences for nuclear physics. 

The so called Siegert Theorem (Siegert (1937)) is one such and it is examined in 

detail in Appendix 4. 

Here we note that gauge invariance requires that the total Hamiltontan of 

the system has the form 
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(A) (5.5) 

In this expression H Q is the usual strong Hamiltonian, V . is the T. R. V. two 

body operator, J¥ (A) is the usual electromagnetic interaction and (A) Ls 
u t. v. 

a two body T. R. V. interaction between the electromagnetic field and the nucleons. 

V̂ ""* (A) has to be introduced so that the total Hamiltonian H ,̂ given by (5. 5) is 

gauge invariant. 

The importance of Y (A) will now be illustrated with an exanple. Assume 
t. v. 

that 

V r > (p*. -%) h. (\r.-v. | ) + h. c. 
t. V 

(#j) 

In 
• 5 S -

t.-v. 
p. —> p. - — (1 + ~& ) A(r.) so weTrave-i i 2 z i 

V t v (A) = - 2 e G S (A (r.) | (1 - t (r ) | (1 ( r p r ^ ^ ^ T t f r -

Now it is easy to verify the following two remarkable equations 

V t v ^ S ) V (5. 6) 

V (A) - i [ S ; # Q ( A ) ] 
t.v 

where 

(5. 7) 

H f t = S -—- + L V(r. . ) 0 . 2m ' r f 

file:///r.-v
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and 

with 

y.. ~ (M + /i ) - - /i ) X ( l ) and B = W x A 1 n p n p 0 z 

and finally 

S = G S 2m H ( I f 7 . - ? : ! ) where = - r (r) 
i ^ j 3 r 

Because of equs. (5. 6) and (5. 7) the T-violating effect stemming from 

cancels in first order with the effect stemming f r o m ^ V ^ (it) as shown below. 
t. v. 

Let 0. denote eigenstates of H = H„ + V, ' and 0, the corresponding 
K 0 t. v. k 

eigenstates of H Then the matrix element between two states ii>. and ib„ of the 
0 r t f 

total electromagnetic operator can be written 

M f. = <0 f|^o(AV)+V^ ( A ) | 0 . > = , < 0 f l # o ( l ) | ! i i > + < ! / ) f | ^ v (A) |0 .> 
t. v. 

iS 
Writing 0 .̂ = e 0 ^ , the first term in the preceding equation becomes 

<0 f I ^AU i > = < 0 f | e " L S ^ ( A ) e l S | 0 . > = r < 0 f 1)^(^)10.> - < 0 f | £ [S,^(l)] \0> 

~ < 0 f l ^ ( A ) [ 0> -«^\Y^y (A) \fi> because of (5. 7) and the second term to 

first order in (G) is 

<i>f\V > = < 0 f ] e - i s V ^ ( t ) e i S ] 0 . > S < 0 f | V ^ ( A ) | 0 . > 
t. v. t. v. t. v. 1 
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so that M„. becomes 
fi 

=• < 0 f A) + V v (A) I 0. > « < 0 f (A) ¡0 > to first order in G 

and therefore there is no T-violating effect in the matrix element. 

This example shows how important V (A) can be and therefore we next 

examine the possibility of determining V (A) given solely a phenomenological 

. The cancellation we have seen only happens if equations (5. 6) and (5. 7) 

are both satisfied. This only occurs for a T. R. I . violating potential of the type 

given in equation (5. 2) if either h_ = h_ = h - b = 0 or the strong potential V in H A 

c 6 4 0 

has no spin or isospin exchange terms. 

The general problem of constructing a gauge invariant combination V + 
t. v. 

(A) from a given V is trivial when V, does not contain an isospin 
t. v. t. v. t. v. 

. — > _̂ ^ 

exchange term. In this case the gauge invariant replacement p —* p - e J\ ~ (1 +"6 ) 

leads directly to*Y^" (/t). The general case was dealt with by Sachs (1948) who 

first expressed the charge exchange interaction in terms of the space exchange 

operator p in the Wheeler (1936) representation and then made the gauge invariant 
-> ~* "* 1 z 

replacement p—? p - e A — (1 + z ) . A simpler and slighly more general procedure 
is explained in Appendix IX. However as shown there the terms (A) are 

t. v. 

not uniquely determined,Parts of it are found to depend on functions W ( r . r . ; / \ ) of 

A such that 

IF (r. r . \V G) « G (r . ) - G(r.) 
i ] i j' 

This is also true for the procedure given by Sachs (1948) mentioned above (see 

Bohr and Motelson (1969) page 392 for example). In fact the only way of obtaining 
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(A) uniquely is by going back to a field theoretical basis using Feynman 

Graphs from which V itself has been extracted (see Appendix 9). This clearly 

cannot be done for a phenômenological potential ^ . Progress can however still 

be made as shown in the next section. 

5. 3 Use of Siegert Theorem 

As was remarked in the last section (and in detail in Appendix 9) the 

—> 

terms ^ (A) cannot be uniquely determined from ^ and there are generally 

terms which depend upon arbitrary functions $~ (r. , rj> A )• 

One could however argue, that in a phenomenological treatment a simple form 

for f ( r . « r. could be chosen and the calculations carried out. This would indeed 
192 

be the casé, if it were not for the fact that for the nucleus Pt being considered 

particle wave functions for the levels are not available. (There are however good 

collective model wave functions)- * ' ) ' . ) : ] ' 

However some progress can be made. Thus use can be made of the Siegert 

Theorem (see Appendix 4) which states that the electric multipoles resulting from 

the expansion in multipoles of < $ . ( A ) +VT (A) can be written as 

E(L) + E 
t. v. (L) l E H 0 + V t . v . ' D L ^ (5. 8) 

where 

where x. and K is the energy difference between the two levels. 
L (2L-1)!! 
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Using the Siegert Theorem one obtains the following expression for the 

electric multipole matrix element. 

< 0 f l ,E(L) + E t - V > ( L ) | 0 . > = ( ! f - f . ) < 0 f | D L ( K ) | 0 . > (5.11) 

where £ ^ and £ ^ are the eigenvalues of the total Hamiltonian H T = + 

corresponding to 0^ and 0 . If we now expand the 0's in terms of the eigenstates 

0 of the unperturbed Hamiltonian one has 

<0 |D(«)|0 > < 0 |v. | J 

< 0 f | E(L) + E t v (L) | 0. > = £ f - I.) [ <0 f tyK)| 0 t > + S E

M _ E ^ ' ' 
\& i i M 

< 0 f | v |0 > <0jD(K)!0 > 

+ S f E - E ] ( 5 - 1 2 ) 

j U ^ f f /Lt 

Note that it is not claimed that E^ ^ (L) has no effect. This c la im, usually 

found in the literature is based on the fact that one can calculate the effect without 

knowing the form of E^ ^ (L) and is clearly misleading (see Appendix 4). 

Since there is no Siegert Theorem for magnetic multipoles we have 

< 0 . | M ( L ) | 0 > < 0 | V . | 0 . 
f 1

 1 JU
 1 t. V . I < 0 f | M ( L ) + M t v (L) | 0.> = <0 | M ( L ) | 0 > + S 

, . E . - E 

< 0 f l V . |0 > <0 |M(L) |0 > 
+ E E - E + < 0 f l M

t v ( L ) | 0 i > (5-13) 
/t* f i . 
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The "mixing ratio" 5 can then be written 

< 0 | | E(L+1) + E (L+1)||0 > (e) (m)l 
ö = ^ „ L- = 6 + 6 i t ( ) - 6 i c ( } =6 e

 ( L + 1 e L 
< 0 | | M(L)+M (L) || 0. > 0 0 X+l o X 0 

= I 5 i e 1 7 7 (5.14) 

where 

< ^ | | E ( L + l ) | | 0 i > 

and 

• (e) 
l X + l = [ < 0 f l | D L + 1 ( k ) | | gj>] 

-1 i < 0 f 11 D L + 1 ( k ) ' 1 0 - > < 0 " 1 1 V + « ' 1 0 ' > 

ju M t. v ." i 

[ / i ^ i E. - E 

+ L 
< 0 f ' V t . v . ' 0

M

> < 0 , H D L - M ^ " 0 L > 
E - - E 

f p. 

(5.15) 

i * L

( m ) = [ < 0 f ! \M(L)\\0i>T1 
< 0 f | | M ( L ) | | ^ > < 0 A t l V t v j 0 , > 

2̂  ~ ~ 1 + 
r . E. - E 

1 1 M 

<0 f l v k f > < 0 „ | | M ( L ) | | 0 > 

/ i ? s f f M 
(5.16) 

5. 4 Calculation for Pt 

Using (15) and (16) derived in the previous section it is now possible to 

calculate sen 7 7 and sen rf needed for use in the experimental result (1). First of 

all the sums in (15) and (16) will be replaced by just one term resulting from the initial 
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admixture of levels 0 O+ A and 0 „+,-.. This is probably a good approximation because 

of the small energy denominator ( AE 300 kev) and the fact that there seem to be 

no other nearby states having the same spins and parities as the states involved in 

the two transitions. The result is 

1 £ , e ) « w i i p 2 ^ ) H y > < y A ' v t . T . ' V B > 

1 € 2 ( T i ' < % + A | | D ( K 1 ) | U 3 + > A 

. < M ) , , I I M W I i y > < y A i v t . v . i V B > , < V A i i M t . v . ( i > i i y > 

t e, ( r , ) s r : 1 , • , , : T 1 "1 < 0 2 + A l |M(1 ) | |03+> A < 0 2 + A l |M(1)1 | 0 3 + > 

and analogously a similar expression for y transition. Using now the transition 

probability (Brink and Rose (1967)) 

P ^ 1 ) = 3 4 K 1 

! < 0 f | | E . 2 | | 0 . > | 2 | < 0 f | | M ( i ) | | 0 . > | 2 

+ 

= 4 K X | < 0 f | | E - 2 | | 0 . > | 2 [ 1 + 1 1 6 ^ ) 1 ^ ] -2-

together with the above expression for e the following expression is obtained for sin rj 

. [ < » 2 ^ ' v t . v . ' y A

> k I rp(yi )
 K I ( i + f i f i ^ i " 2 r 

s i n r ? ^ ^ S KJ iL p^i> K / (iH-f i s ^ r 2 ) 

K 

Kl' 

< V A ' l M t . v . ( 1 ) H 0 3 + > 

< 0 2 + A l lM(l) | | 0 3 + > 
(5.17) 
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and 
i <0 , V 

I 2+B1 t .v. sin a =F I V A > K. 
P ( V K i (i+f !o ~2)J 

M t .v . ' V > 
<9 i 2 + B l |M( l ) | |0 > 

(5. 

In (17) and (18) all the values expect < 0 + l V I 0 . > and 
2 B t. v. 1 2 + A 

4 -
< W | M t . v . ( 1 ) l l y > 
< 0 2 + A l |M(1)| I 0 3 + > 

and I = 
/ <V B f K - ^ I K f * t. v. 3+' 

< 0 2 + B l I M( l ) | | 0 3 + > 
can 

be taken from experiment. The values are 

» 0,3085 MeV; 0.6044; ^ 77 
7̂  - Branching Ratio - — 

22 
6 (Yj) « 6 - 7 . 3 0 ( 7 ^ * 6 * - 2 . 1 

This then gives 

i < 0 2 + B l V t v l 0 2 + A > 

sinr? = T 0.76 — — — — t 
A -n 

eta I , 1 - * 11.8 ^ ' 2 A -

Taken with the experimental result (1) by Holmes et. al. this gives 
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± 11. 8 
l < < W V t . v > Z + A > 

( ^ + 0.19 ^ ) ^ 4 x 10 

Fur ther , unless there is an accidental v i r tual ly complete cancel lat ion, an upper 

l imi t f o r the mat r ix e lement V ^ can be g iven , namely , 

< (3.4) x 10 (5.19) 

Using the value of A = 0,2959 M e V one has 

In the next sect ion the ma t r ix e lement < 0 2 + g I ̂  v l < ? 2 + A > l S e v a a i a t e c ^ 

^- 5 Evaluation of the M a t r i x Element 

Up to this point it has been poss ib le to avoid the consequences of our ignorance 

192 

of the wave functions of the l e v e l s of P t . In this sect ion this is no longer possible 

and v e r y crude s implif icat ions have to be made. 

The method that w i l l be used consists in replac ing the two body T . R . I , violat ing 

potential by an equivalent one body potential (see s imi l a r es t imat ive in Bohr and Mottelson 

(1969), pages 259 and 393). . The specif ic way of doing this is explained be low. 
F i r s t we expand 0 + and 0 O + T , in a sum of Slater determinants constructed 

2 A 2 13 

from single par t ic le orbi tals jul = (m L M S M % My ) where m is the principal quantum 
L S 6 

number and,M , M and M _ are the z project ions of the orbi ta l , spin and i-spin 
L S b 

quantum numbers. 
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V B = S BL 4+: B 

0 2 + A = S a i A 2 + A i 

where ^2 + A a r e ^ e ^ a t e r determinants building up 0 +^ and 0 

respectively and b^ and â  are the expansion coefficients. 

We divide the matrix elements <0 . | V [ 0 9 + R > into three groups of 

terms 

< * 2 +

A l V t . v . l « , 2 + B > = S

1 \ b l ( A 2 2 A l \ v J A 2 ' B > + 

k,l 

+ E a b ( A , A

( n ) ( v | A < m ) ) + m n 2 + A 1 t. v. 1 2+B m,n 

+ s • , V V . W I \ , I < ' 
cr,p 

(k) 

In the first sum over the pairs (k,l) , the Slater determinants A + and 

&2+-Q^ AXE identical. In the second sum, the pairs m and n differ by just one 

orbital and in the (cr,p) pair they differ by two orbitals. 

Being T .R . I , violating, the potential ^ has no diagonal matrix elements 

(see e. g. - Bohr - Motelson (1969)) and therefore 

k,l 



-74-

The third term involving a sum over (a,p) where V connects Slater 
t. v. 

determinants differing by two orbitals cannot be taken into account in moving to 

a one-body approximation for V," since a one-body operator cannot connect states 
t. v. 

differing by two orbitals. We shall therefore neglect this term. 

<0 4 . l v U x S a b ( A + n | V I A 4 _ m ) W 2 + A ' t.v. 1 *2+B m n v " 2 + A 1 t.v. 1 2+B ; 

m,n 

It is now possible to define a single particle potential which has the same 

matrix elements as ^ when calculated between Slater determinants differing by 

just one orbital. Indeed the matrix element of V\ between two Slater determinants 
t. v. 

differing in that the orbital u(i) in n l s v ^ m ^2+B m l S 

< V A " I V t . v. I A 2 + B m > " V ( d i r e C t ) + V < e x c h a n S e > ( 5 - 2 0 > 

V (direct) £ (f d(i) d(j) u*(L) w f c * G ) V y v (t) w k Q) (5.21) 
k 

V (exchange) = - E jjS(i) d ( j ) u *( i ) w f e *G) ( i , j ) v (j) w R ( i ) (5. 22) 

where the sum over k runs over the common orbitals. On the other hand the matrix 

element of a single particle operator F = £ f(i) between the same states is 
i 

< V A

( N ) I F ' A 2 + B ( m ) > 5 3 / d ( i ) U * ( i ) f ( l ) V ( i ) ( 5 ' 2 3 ) 

http://0
http://4.lv
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Comparlng (21) and (22) with (23) permits the definition of an equivalent one particle 

potential V e q ' 

V 6 q * = V 6 q " (direct) + V 6 q ' (exchange) (5.24) 

where 

V e q ' (direct) = S Jd(j)w* (j) V t y ( l , j ) w f e(j) (5.25) 
k 

V e q - (exchange) = - | S f d(j) w fc* (j) [ V P +P* V 1 w 0) (5. 26) 
k « 

In (26) P is an operator which exchanges i and jjthat is 

P(M(i)^(] ' ) )=M(i)^(i) (5.27) 

In order to define an equivalent operator that is the same for all (n) and 

(m) determinants one has to maKe a further simplication. The sum over k in (5. 25) 

and (5.26) has to be restricted to be over the orbitals which are common to all the 

n,m determinants. We shall assume also that the common core is spherically 

symmetrical in orbital angular momentum and spin. This last assumption greatly 

simplifies the problem because now one can say that V has the following simple 

form, purely on symmetry grounds. 

V e q - =* Sh I ( r . ) r l : p .+p l . 1? i h I ( r . )+ S [h^r . ) I r . -p . + p.-r. h^ r . ) ] * z

( l ) 

(5.28) 
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As an example we take the first part (and the only one that contributes in 

this approximation) of a 2-body T-violating potential derived by Huffman (1970). 

(t-t) 

(Mj) 

In Appendix 10 it is shown that 

where' 

(5.29) 

Y ' " ' - « K Tt i . K c. } i a - *2. (5. 30a, 

K = -27T J Q(/.ÍS) s 3 ds (5. 30b) 

and p (r.J is the nucleón density. 

We neglect the part proportional to ^—— X and write the first part as 
A (i) 

y e q . = GK [ L * $ 1 _ • _ + h } = m G K | [ ; S ( r L H J 
2 . i i r. dr. i 0 

i i i i 

(5. 31) 

where 
2 

H - E £L_ + U ( | r - r J ) 
i 2m J 

Substituting (5. 31) in (5.19) we have 

| G Km p J < 3 x 10~4 (5.32) 
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It is interesting to compare this with a theoretical estimate obtained by 

Huffmann (1970), namely 

2 2 ' 
M S V V G = £ - ^ o F 1 F Q (5.33) 

M (27T) 3 1 3 

where 

F, = (47TQ!) , F o = v and a = — — 

1 v ' ' 3 m 137 

-x 
e We can take Q(x) in equation (5. 29) as Q(x) = A —g~ where x = JU fr^-i" | . This 

form for Q(x) agrees well with the curves presented by Huffmann(1970) for | r -r | > I F 

-4 
(Fermi) with A 24,4 x 10 . The value of K given by equation (5. 30b) is 

K = - - x 10"2 (5. 34) 

With the values of G (equation 5. 32) and K (equation 5. 33) we obtain 

|G K mp0 | ~ 5 x 10~5 (5.35) 

Therefore by comparing equation (5. 32) and (5. 35) we see that the experiment by 

Holmes does not rule out a two body T. R. I. violating potential having a strength of 

this order of magnitude. More accurate experimental work is clearly needed. 

To conclude this section it is interesting to compare the strength of the 

Huffmann potential with the strength G of the parity violating potential derived 
p. v. 

by Michell (1965). We have 

| Gm R | ~10~ 3 (5.36) 
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and 

m R Q | ~10 -7 
p. v. 

(5. 37) 

As can be seen from equations (5. 36) and (5. 37) the Huffmann potential is relatively 

very strong. This is due to the fact that it derives from an assumed "maximal 

violation" in the electromagnetic interaction. 

Conclusions 

This thesis has studied the effects in low energy physics of a possible T . R . I , 

violation in the electromagnetic interaction. As shown in Chapters 2 and 3 T . R . I , violation 

effects appear as a two body short range transition operator or as a two and three 

body potential. It was shown by means of semi quantitative arguments that the 

three body potential operator probably dominates in heavy nuclei but has smaller effects 

in light nuclei than the T. R. I. violating transition operators. 

In Chapter 4, therefore, attention was focussed on a light nucleus and an 

estimate of the effect of the T .R . I , violating transition operators derived in Chapters 

2 and 3 was made. The effect of an assumed T . R . I . "maximal" violation in the N*Ny 

vertex was found to contribute significantly to the imaginary part of the "mixing ratio" 

6 in a 1 MeV M1-E2 y transition, namely 

I . m S ^ R e 6 x 10 -3 

Such a value is in principle within the region of possible experimental 

measurement. 
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Finally in Chapter 5 an experiment carried out at this University was used 

to set an approximate upper limit on the strength of a phenomenological T. R. I. 

violating two body potential. It was found that the experimental limit (Holmes 

et. al. - 1972) does not rule out a possible T.R. I. violating two body operator 

derived by Huffmann (1970). One should however keep in mind that due to the fact 

192 

that the wave function of Pt are not known in any detail only a crude estimate was 

possible. 

In general it can be concluded that if the accuracy of experimental data can be 

improved by about an order of magnitude significant information about the origin 

of T. R. I. violation will be forthcoming. 
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APPENDIX 1 

NOTATION 

(a) The Pauli Metric is used throughout this thesis. So a four vector 

-* J2 -> -» 2 
f = (f, if J has norm i = f f = f- f - f . The Dirac y matrices M 0 /u 0 

satisfy 

(b) Natural Units are used throughout so that ti— c « 1. 

~> —> _» -* 
(c) The cross product a x b signifies the usual vector product of a and b. 

The simbol [ a © b] is the tensor product of a and b, thus 

2- b = - /T [ a © b ] ( 0 ) 

a x ? - - n / 5 " [ H « ? ] ( 1 ) 

+ 
(d) The isospin operators T and T are defined as follows 

* 2 x y 
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The identities below are also used 

V<V v = 2 T " + V 
(?(i)-V^>="2T"+V 
V<WV" 2 T + + 1 
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APPENDIX 2 

A. 

MANIPULATIONS T O EXTRACT OPERATORS 

The Lee Vertex 

We start from equations (9) and (10) of Chapter 2, viz 

7 
( fl I - I ) 

v 'i'ÜpV'A [*"<«,)* ssix,-,,) (-1,1) r V ) i 

bu substituting in (A2-1) and (A2- la ) the propagators 

J> U). - J-

A M -
F 

-A 

t - I £ 

4 4 
and integrating first over d x^ and secondly over d Q there results 
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(in)H. 3 y 

C P , - K ) S /m : 

Un)k J 

Now commiting [ y (pj + k) + Im] in equation (A4-4) with y so that it acts 

on $ ( x 2 ) and similarly commiting [ y - (p -k) + im ] in equation j(A2-4a) with y so that 

it acts on i/j (x^ ) , we have 
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an)1! 

2y g% 

an) 

Using now the Dirac equation these simplify to 

UN J 1 

Dx. 
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\ A i , r , . f " } ^ ' " h 
C V - K A / m 2 -

O*,) ^*A1 rf. A) k<3) 

r ' s f-,,1 
(ftJL- C a ) 

For convenience and M are now decomposed into terms with p. ^ p 

p = 4, terms with p = 4 p ^ 4 and finally terms with p. ^ 4 p ^ 4. They are written 

as follows 

6 t ) - fW 
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V ' H J «M'i L 3^ > z ( 

n f%) 

3 ! ' i 

H . i y„ 
^ _ J _ _ Í Ü í r , K ) l ^ A 

3 

h te) 2r rf^)l f fs

r F'J 

tf • ? -

It, l 
'J o 

^6 
3 

A u 

1 ^ ! 
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Analogously 

Uir)f J 

- T 

fry-* 

<0 

7>H 77——~ '"y-kH^)] hV 6 

a) 

<l) 

(7 (! 
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"5 " i » 

'-^ A J 

From each of these matrix elements a non-relativistic transition operator 

can be extracted. The specific procedure to do this is illustrated below for the 

matrix elements and M^. since detailed calculation shows that the operators 

resulting from these two matrix elements are the leading ones in the non relativistic 

limit, i. e. , the operators which are of the lowest order in (—) . 

Using 

one gets 

Integrating over dt , dt and dq and noting that q = p - P«l n ~ 0 gives 



- 8 9 -

ft= -Ail A $(eMX^Vi) . 

3 -e 

f y V £ 
» 1 / 

T h e r e f o r e 

7RV 

J 

w h e r e V-^eQ ( E ) w a s in t roduced in C h a p t e r 2 to s i m b o l i z e the t r a n s i t i o n o p e r a t o r 

r e s u l t i n g f r o m the L e e v e r t e x . A n o n - r e l a t i v i s t i c r e d u c t i o n of t h i s equa t i on 

r e s u l t s in equa t ion (11) of C h a p t e r 2 . 



- 9 0 -

B. The Lipshutz vertex 

In this case we start from equations (15) and (16) of Chapter 2 

.r r v ) x , , r 

p if r < » r - , x 

£f P f S J ¿6) ¿0) ' • ' ( ft 3L- ^ ) 

Now we have to manipulate equations (A2. 7) and (A2. 7a) as in subsection A 

of this Appendix. For simplicity only the equation relating to will be written 

down. 

Firs t the propagators S„ and A„ are substituted in equations (A2.7) and 

(A2. 7a) giving 

\ c q — [A 
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12 2 
Now since p** = - m* and p 2 = m

2 , 

Is, - \ ' ~\ 0 ? A > . ) 

Oil) 1 ! 

Integrating first over d 4

X ; l and then over d 4 Q g i v e s 

H 5 JtJ. 

Similarly, 

The dominant term in (10) and (10a) come from the term 4^p^u^4. This 

can be verified by direct and tedious calculation. Taking this term and y (p ' ± k) & 

i y 4 m we have from 
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7>* 

'3 /t 3/1 fe) 

- ( | V 2 - | ! « 3 ) 

Substituting Aj in (A2-10), integrating over time and extracting the factor 

-27a 5 (Energ. ) gives 
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where r / v \ - J- — 

The t e rm A substituted in (A4-10a) and treated in the same way g ives exact ly 

the hermit ian conjugate of V . S imi l a r ly , substituting B in ( A 2 - 1 0 ) , integrating o v e r 
A I 1 

t ime and extract ing the factor -2ir[ 6 ( B n e r g . ) g ives 

Analogously the t e r m substituted in (A2-10a) g i v e s exact ly the hermit ian 

conjugate of V . So the total resul t is 
A I 

F ina l ly , if one calculates the commutators one gets the resul t of 

equation (17) in Chapter 2. 
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C. The NN*y vertex 

In this case the starting point is equation (3-8) which is the matrix 

element corresponding to the diagram of Fig. \8. a) and (8. b), viz. 

try* ^ J 7" 7 

«s =• <• Jfi AAA ^ t?<«.) ^ Uzi)} f (Xt} i 

The propagator S (x -x ) has been given in Chapter 3 and decomposed 
Ap 1 Z 

into six parts as given by equations 3-11 a to 3. l lf . 

Consider first the part given by equation (3.11a) viz. 

4 4 
Substituting this in (A2-12), integrating over d x^ and d Q gives 

V W ( f S W ^TyT, J f rf;, C) 
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F r o m equation (A2-13) on separating the t erms with X = p and the term with X -

but /.( = p from the term X ^ p and y.^ p, we have 

12.7)4 4 

(<u- is-) 

it * 

(AM?) 

Next substitute the part of the propagator denoted by Y (see equation 3 . l i b ) 

4 4 
into equation (A2-12). Integrating over d x^ and then over d Q gives 
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th) ] 

-A 

l air)1* í 

1 À J-MAA i ^ u - í i ' í í f e - ^ ^ j - L . t ^ K ^ ) 

[ 

Combing y (4 + K) to the left of and applying the Dirae equation, 

J IH "AH 1 ' 

*>) C T ' . ) 

-t t,W - I c 



-97-

The first term of equation (A2-18) should be compared with equation (A2-13) 

M 
They are equal apart from a factor —. Therefore we have the terms 

(a) (d) ( a ) (d) Mj. '(Y.)^M^ ' (Y) which are equal to the corresponding M^(K) M ^ X ) apart from this facto] 

Thus, nj d)= ^ fi* (*) . . . . . f A 2 - | q ) 

(Al-Zo) 

f / l H | ) 

(kl-ll) 

The remaining two terms in formula (A2-18) give often straightforward but 

tedious manipulation. 

(a) 
(1)= 

0n\ 

n V£ U) 

to. 

M 

V (\ ) 7T 
fii , 

K 
cd). 4 

- A H 1 

fc>' Tr5, ) ( A l - 2 3 ) 

r<*2 (,1* • ) 

Next consider the part of the propagator denoted by Z (see equation 3.11c). 

Substituting Z into equation (A2-12) we have 
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H-(th 3* y*) 
<i(*rxi) 

J 1 V << 3J • ( A 1.-15) 

) 

M J 

V 
6) 

ru - I 8 

1 ( A 2 . - J I , F ) 
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The parts of the propagator denoted by V(equation 3.11c) and K(equation 3. l l f ) 

have also been considered. The terms arising from V have (due to the double 

p 
derivative) an extra factor ^ compared with the terms stemming from X . . . . U. 

The terms arising from K are very small because of the factor —~- they contain. 
M 

The transition operators corresponding to the matrix elements 

M j ( a ) (X) . . . . (X) , M j a ) (Y) . . . . l i ^ ( Y ) , M j a ) ( Z ) , M j ( Z ) , (U) and M^*> 

can be obtained by using the methods already explained in part A of this Appendix. 

First however the factor (T • ^ . 0 . ) which appears in these matrix elements should 
(1) (2) 

be replaced by the factor ( T ^ ' ^2)^TRV a S ^ i v e n ^ equations (3.10a)* Similar 

operation with the matrix elements arising from the graph of Fig. 8-b gives 

the hermitian conjugates of these. The complete results are given below. 

C*v W - ~^Tl— [ ¥' ' { — . (fo ' ' v ' ^ J I 

See Note at the end of this appendix. 
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( b ) c-) G f M 

V, T ; — 
^ f f f > 7 ) 2sM J 

(c) 

V3 

The terms (Y) . . . . V ^ ( Y ) are equal to the ones just listed 
NN*y 

excepted that they have a factor — instead of M 

M 2 - m 2 M 2 - m 2 

A) 
IAM. 

, 0 / 



-101-

V 6 ) , 
2 R* HW. 

?L1 
2AV 

(b) 
iw. 

and finally 

V3 Of) 

( W 
V 

(b) (b) 
The W 1 ( B ) of equation (12) in Chapter 3 is V ^ ^ ( X ) + V ^ N * y (Y) and W 2 ( B ) of 

(d) (d) 
equation (13) in Chapter 3 is V N N * y ( X ) + V j ^ ^ O O with the commutators evaluated. 
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NOTE The T. R. I . violating transition operators above have been obtained 

by replacing the factor (T . *t ) by (T ' ^ ) ) T R V

 a s g i v e n b y eciaa-tion (3-10a)-

If instead of this we replace it by the factor ( T ^ - " ^ ^ O R M ^ v e n b v e c i U 3 ^ ' l o n 

(3.10b) we would obtain TRI conserving transition operators. These operators would 

be the contribution of the L a g r a n g a i n ^ ^ ^ ^ given by equation (3. 5) to the T . R. I . 

conserving electromagnetic transition, and can be obtained from the T . R . I , violating 

transition operator by making the following replacements. 

(a) From the TRI violating operator which contains the factors 

2 (2) (3) * * 2 * * (3) 

T 2 Q (V ', V ') <€p-yW+
 8 V V W V the corresponding 

T. R. I . conserving operator is obtained by replacing this factor by 

.(2) „ J 3 ) s 

(b) From the TRI violating operator which contain the factors 

i (2) (3) 
^ (Cp-Cp-€^+€^) x l ) z the corresponds g TRI conserving operators is 

obtained by replacing this factor by 

Js T 2o <n(2>. v y v v + 1 VVVV \< 3 > 

The operator obtained in this fashion agrees with Chemtob and Rho (1971). 
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APPENDIX 3 

DEVELOPMENT IN MULTIPOLES 

The development in multipoles of the transition operators obtained in 

Chapters 2 and 3 is carried out using the formulae and conventions introduced by 

Clement (1971). The technique is straightforward and therefore just one example 

will be given. 

Consider the first term of equation 3.12 

V(B) * | 
j7.(M-m)2m' 

G f i — l / g * - ? _ c * + c ) S rB(r.) I ( 3 ) -
2 ipT N N p p' . L K i' z 

K.1 

B(v.)X 
] z J 

J . x f f . » (r.. (A3-1) 

Taking matrix elements for the emission of a photon we have 

(A3-2) 

where 

. 1 
A » — 

3 

G f i 
—- Â (<•*-£-€ *+€ ) 
2 f3 N N p p' 

ju(M-m)2m 

and 

Using the same phases and overall normalisation as Blatt and Weisskopft (1952) and 

Clement (1971) we can expand the matrix element B*(r.) in electric and magnetic multi-

poles 
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B^V) 3 i K CT r x \ 7 u* „ (A3-3a) LM v L LM v ' 

B L M ( r ) * ° L W X ( r X X V } U * L M (A3.-3b) 

where 

K (L+l) 

The matrix element for the emission of a photon of the electromagnetic potential 

l ( r ) and the electric field E(r) can also be expanded in electric and magnetic multipoles. 

(compare with different convention in appendix 4) 

LM L K LM (A3-4a) 

A [ M % C L ? X X ^ U L M < A 3 " 4 B ) 

E L M A C L W *$XW)UIM <A3-4C> 

E L m M V i K C L ? X ^ U * L M < A 3 ~ 4 d > 

To obtain the electric multipoles arising from the operator given by equation 

(e) 
(A3-1) we replace B*(r.) in equation (A3-2) by the B* ' (r) given by equation (A3-3a). 

I LiVL 
Thus, 

W(EL) * A S i K CT [ £ x ^ . u* (r.) % 0 ) - r. x ^ . u* „ : ( r . )8 
L i i LM i z i i L M v i z J 

(o: x o \ ) ^ ( r „ ) 
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Then using 

? ^ u * L M » - i [ L ( L + l ) ] * J L ( k r ) $ 

where 

0 =* [ Y (r) ® ^ l s t n e u n ^ vector along the co-ordinate axis, 
J, J-ilvl J ivl 

we get 

V ( B t ) - A £ I k C L ( - i , [ L ( L + l ) f [ J L(k r . ) 0 * <r.) i > - J (t r ) * <r > » ' ] 

(ff. x a . ^ i r . . ) 

Further, using 

[0*(r) • í ] < Y (r) ^a j t f^ 
J , L M 

V(EL) - A S KC [ ( L f D L ^ t j (k r ) [ Y L ( r ) ® (<r x o)f^] - j (k r . ) 
i<3 

[ Y _ (r . ) ® (CT. x a . ) ] * ^ 1 ] £ ( r . . ) L L j i ] J M z J x ij 

Now consider two further approximations. Firstly the familiar long wave 

approximati on 

J L ( k r ) 
~ (kr) 

(2L+1)!! 

Secondly the transformation to relative and centre of mass co-ordinates 

R . j =»— (r. + r . ) and r.. = r. - r. 
iJ 2 i j i] i ] 

r . 1 Y . (r .) =t L 
i lm i 

A 

4TT (21+1)! 
2X+1 (21+1-2A.)! (2\)I 

R . 1 _ X ( | r . . ) X [ Y , , ( R . . ) © Y , ( r . . ) ] ( 1 ) 

i] v 2 i j ; L 1-A v i] X v i j ; j m 
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and similarly for r} Y, (r.) which has an additional factor ( - ) \ Since each additional 
J lm v y 

power of r introduces and extra factor of the order of (pR) * where R is the 

nuclear radius (Clement 1971> generally much less than unity, only the lowest power 

of r . . need be kept. So we take 

r - L Y T (r.) ~ R . L Y (R..) 
i LM v L ij LM ij 

substituting back we get 

V ( E I ) . ^ A S k ( — f R . . L [ Y T (R..) ® (a. x o \ ) ] * L (I j-I l ) # ( r . . > 
. L+l i] L ij i j J m z z i] 

All other developments are carried out in a similar fashion (see Clement(l971)for 

more examples). 

The usual multipole operators, expanded using the same conventions have 

the form 

( E L ) „ ^ „ , , * e S 77 (1 + 3 r . L Y * (r.) v 'NORM i 2 z ' i LM - i ' 

(ML) 

l 

[ L ( 2 L + 1 ) ] S

 e S i (i) L - l r _ . , A l l ( L ) * 
NORM M { L Ï T [ 2 ( V ' r i [ Y L - l ( r i ) @ 1 i ] M 

+ 7 7 S [ i ( M + / u ) « 4 ( M - / / ) r L _ 1 [ Y T , ( r . ) « c r . ] ^ } 2 ^ 2 \i p 2 V f n p p ' "z J i L L - l v i' i J M 
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A P P E N D I X 4 

A . The Siegert T h e o r e m 

Th i s theorem is discussed in a number of important papers for example by 

Sachs and A u s t e m ( 1 9 5 1 ) , Osborne and Fo ldy ( 1 9 5 0 ) , Foldy ( 1 9 5 3 ) and Dali tz ( 1 9 5 4 ) . 

L e t the Hamiltonian of the system under consideration be written 

H T = H + JC (î) ( A 4 - 1 ) 

where K(A) denotes the interaction between the system represented by the Hamiltonian 

H and the e lec t romagnet ic radiation represented by the vec to r potential A assumed to 

be in the Coulomb Gauge ( i . e . W - A = 0 ) . 

The Sieger t theorem r e f e r s to the f i rs t t e rm K ^ A ) in an expansion of K(A) 

in powers of the coupling constant 

K ( A ) = J € 1 ( A ) + ^ J y A ) + • - ' ( A 4 - 2 ) 

-» 

This f i rs t t e rm K ( A ) is the interaction responsible for emiss ion or absorption 

of a single photon (in Chapter 5K^(A) was decomposed into two parts K ^ ( A ) =*-K1Q(A) + 
t v ( A ) (see equation 5. 5 ) ) . The second t e r m ^ ( A ) descr ibes the process where two 

photons are involved and so on. 

The fo rm of 3C(A) is however res t r i c ted by the fact that equation ( A 4 - 1 ) must 

satisfy Gauge invariance which states that if A is replaced by A + ^ G (where G is an 

arbi trary function) then there must exist a g such that 

H + K ( A + V 7 G ) = » e l g { H + JCfA*) } e ~ l g (A4-3a) 
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It should be noted that nothing is said at this stage about the form of g (except 

that it is first order in the coupling constant). 

The consequences of equation (A4-3a) have been worked out by Sachs and 

Austern (1951). Rewriting the equation (A4-3a) with A = 0, we have 

H + K ( \ 7 G ) « e l g { H } e~ l g (A4-3b) 

The right hand side of this equation can be expressed as 

e l g H e " l g = H+ i fe,H]+ ~ [ g , [ g , H ] ] + * » -

Substituting for K ($1G) from equation (A4-2) and equating term of equal order there 

results 

^ W G } 3 [ [ g , H ] 

K 2 ( W G ] S - [ g , [ g , H ] J 

[ \ f f G } = = ( i ) n [ g , k , . . . . [ g , H j . . . . ] 3 

(A4-4) 

The first equation of the (A4-4) set will now be rederived using a different method 

which has the advantage of giving an explicit form for g. 

On experimental grounds (see Bohr and Mottelson (1969) page 379 for a discussion) 

the form of (A) is taken to be 

•K^(A) ~ - j~ ? - A d 3r (A4-5a) 

Here j is the electromagnetic current of the system described by the Hamiltonian 

H. (A system of nucleons for the case in which we are interested). We assume 

current conservation (a direct consequence of Gauge Invariance)^ thus 
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div J = i [ p, H] (A4-5b) 

where p is the nuclear charge. 

For a system of particles, considered as points, and in particular for a 

system of nucleons it is a good approximation to take 

p = S | ( 1+ * z

( 1 ) ) 6 3 (A4-5c) 
i 

It will now be shown that equation (A4-5) imposes a restriction to the form 

of K^(A). Consider, for example, the special case in which A is replaced by V G 

(the gradiant of an arbitrary function G) , using the identity 

and finally using equations (A4-5b and c) it follows that 

^ (?G)=< l [ g , H ] (A4-6) 

where 

g = E | G(r.) (A4-7) 
i 

Equation A4-6 is a particular case of the first equation (A4-4), since in the 

first derivation the form of g is arbitrary, because gauge invariance requires only the 

existence of a g such that equation A4-3a holds. 

Equation (A4-6) has many applications. It can be used not only to check whether 

a given =c H + K^(A) is gauge invariant but as shown in Appendix 9 it can be used to 

construct ( A ) . 
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Another more important consequence of equation (A4-6) is the Siegert 

theorem which was used in equation (5. 8). This theorem will now be demonstrated. 

The theorem (Siegert (1936)) states that the electric multipoles E(L) derived 

from the expansion of K^(&) can be written as 

E(L) = i [ H 0 , D L ( K ) ] (A4-8) 

where ^ 

The starting point of the demonstration is equation (A4-3a) viz. 

< K 1 (A) = - / T - ^ d 3 r 

The electromagnetic vector potential A (in a cubic box of side L) is expressed 

as follows (Brink and Rose (1967)) 

^ / 2 T T \ 3

 r - v ik-r - ik - r + -, / A . 

+ 

In equation (A4-10) a j ^ 3 1 1 0 ^ are creation and annihilation operators for a photon 
-» 

with wave number k and polarisation e (c and c are two orthogonal polarisation vectors). 
77 i 2 

The field A(r) can be expanded in electric (e) and magnetic (m) multipoles 

(Brink and Rose (1967)) 

•* -> 
€ q " ^ L M + L M > Mq ( R ) ( A 4 - U ) 
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I n e q u a t i o n (A4-10) (&) l s 3 1 1 e l e m e n t of the i r r e d u c i b l e ( 2 L + 1 ) 

d i m e n s i o n a l r e p r e s e n t a t i o n of the r o t a t i o n g r o u p ( B r i n k and S a t c h l e r (1968)) . 

—> —> (jxi) —•> (Q) 

T h e r o t a t i o n R b r i n g s the z - a x i s to the d i r e c t i o n of k . T h e f u n c t i o n s A A / and A 
L M L M 

a r e g i v e n in the l o n g w a v e a p p r o x i m a t i o n (i. e . k r > > 1 ) b y 

w h e r e 

A T

( ™ } =>. ̂  ^ ( r L C T > x ? 
L M / L ( L + 1 ) V . L M 

( 2 L - 1 ) ! ! 

S u b s t i t u t i n g (A4-11 ) in ( A 4 - 1 0 ) it r e s u l t s 

T h e r e f o r e J£ (A) c a n b e s e p a r a t e d a s f o l l o w s 

( A 4 - 1 3 ) 

^AV /S-J '^ +'Ci> V~h-°-} Dmm (A4-14) 

J C ^ A J s £ ^ ( L M ) + L J C ' ( L M (A4-15) 
L M q L M q 

w h e r e the f i r s t t e r m , w h i c h g i v e s r i s e to the e l e c t r i c m u l t i p o l a s E L i s 

M q 
kq« 

.—> 
T a k i n g m a t r i x e l e m e n t s f o r e m i s s i o n of a p h o t o n wi th m o m e n t u m K w h e n the 

n u c l e u s d e c a y s f r o m a s t a t e | L m . > to 1 1 m > , the e l e c t r i c p a r t £ j C ^ ( L M ) o f 
1 L M q 

(A4-15 ) g i v e s 
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— / i f I I i m i > D » , ( R > < A 4 - 1 6 a » 

The electric multipole EL is by definition (Brink and Rose 1967) 

(EL, . / f t t • V ( r L < M , <A4-16b, 

— 

Equation (A4-16b) has the same form as equation (A4-5a) with A having 

the., form V G and we can therefore use the result of eq. (A4-6) so that 

E L - i [ H 0 , D L ( ) J 

where 

This form of D (k) depends on equation (A4-5c) being true, i. e. , if the system 

in interaction with the electromagnetic field is a collection of point particles. If this 

is not the case however, equation (A4-8) still holds although then D (k) has a different 

form from the one given by the equation (A4-9). 

(A4-8) 

(A4-9) 

B. Critical Analyses of the Siegert Theorem 

The demonstration of the Siegert Theorem given in part A of this Appendix will 

now be examined critically. The purpose is to show that the theorem is an exact result 

only in the limit where the energy of the emitted (or absorbed) photon k vanish (i. e. 

when k —? 0). 
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The paper by Brennanand Sachs (1952) was the first one to show a breakdown 

of the Siegert Theorem for high energy photons. They pointed out that when the long 

wave approximation (kr « 1 ) is no longer valid (which occurs at high energy) the 

equation (A4-12) should be replaced by 

A L M = ^ L ( L + 1 ) _ 1 V V x ^ 0

L M (A4-17) 

where 0^-^ - i^ J(2L+l) j ^ (k r ) ^^^ . ( r ) and J^Ckr) is the spherical Bessel function. 

Therefore equation (A4-16) is no longer valid and we have instead 

(EL) ^ d 3 r y ( K / L i L + l ) ) " 1 ^ X L 0 ^ M (A4-18) 

Since equation (A4-18) is not of a form suitable for the application of the result given 

by equation (A4-6) it follows that the Siegert theorem no longer holds. 

It will now be shown that the Siegert Theorem also does not hold for those 

parts of the interaction Hamiltonian between the electromagnetic radiation and the 

system which depends directly on E (the electric field) and B(the magnetic field) rather 

than on A (the vector potential). It should be pointed out however that since both B and 

E vanish when k -> 0 those terms contribute very little to the emission (or absorption) 

of low energy photons compared with the terms which depend on A. 

Examples of transition operators depending on E and B have been given in 

Chapters 2 and 3. Since however all the operators given there are T . R . I , violating we 

give below two examples of T. R. I. preserving operators of this type. 
-> 

As an example of an operator depending on B we take the second term of the 

usual electromagnetic transition operator. 
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i i 

where 

~ \ + M ) - 7T (M ~ P )3 ^ r i 2 u p 2 u ' p 7 z 

-> 

As an example of a transition operator depending on E we take the case of the 

transition operator stemming from a four particle vertex (NN7ry) as in Figure A. 1 

Fig. Al Fig. A 2 

Following Clement and Heller (1971) the phenomenological Lagrangian corres­

ponding to this vertex is taken to be 

/ 2<x) = ~ 0(x) t- 0*(x).iy 5 a^v 0(x) F^Jx) (A4-20) 

The transition operator is found by calculating the diagram of Fig. A2 using as 

Lagrangian for the right hand side usual NN7r vertex the expression. 

/ 1 ( x ) = i G 0(x) y5l -0 (x) 0(x) 

The resulting transition operator is found to be 

K ( r i r 2 E ) ^ 1^2 * ( 2 ) ) [ V E(r x ) a2- ( r ^ ) + ay E (r 2 ) ^ ( ^ 0 7 ^ ) 

(A4-21) 
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where 

F ^ £ G ^ ) = - - L ( * + 1 _ \ e - " ' r l - r 2 

1 2 ' 1 1 2 

The B dependent transition operator g iven by the second t e r m of equation ( A 4 - 1 9 ) 

does not contribute to the e l ec t r i c mult ipoles in the approximation given by the equation 

(A4-12 ) . Th i s is so because we can wr i t e B =s Wx A and of course ^ x ( r C ..J 0 
ijJVl 

However using equation (A4-17) instead of (A4-12) it is possible to get a smal l con t r i ­

bution to the e l ec t r i c mult ipoles not of the f o r m ( A 4 - 8 ) . 
—f 

The contribution to the e l ec t r i c and magnetic mult ipoles of the E dependent 

transition operator given by equation (A4-21) can be eas i ly obtained by substituting 

—? 
E in equation (A4-21) by 

and 

E ( m ) - - I k 2 ^ * ^ ( r L C ) x ? 
^ L M l K L M L ( L + 1 ) ( r L M X r 

(A4-23) 

r espec t ive ly and proceding l ike in equations (A4-16a) and (A4-16b) . A s can be 

easi ly checked f rom the resul t of the manipulations outlined above, the transition 

operator K (r r E ) g iven by A4-21 contributes an e l ec t r i c multipole operator which 

cannot be expressed in the fo rm ( A 4 - 8 ) . Note howeve r that due to the fact that 

JC(r 1 r E) depends on E , the mat r ix elements of the e lec t r i c multipole ar is ing f rom 

it wi l l have an extra factor ( K B Q ) (introduced in equation A4-22 ) compared to the 

matrix elements of the e l ec t r i c mult ipoles ar i s ing f rom a transition operator depending 

on A . The re fo re for low energy transitions the contribution of such an operator is 

negl ig ible . 
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C. Comments on the use of the Siegert Theorem 

The Siegert Theorem has many applications some of which are explained 

below. 

The more important of these applications is that the Siegert Theorem can be 

used to replace the electric multipoles (EL) given by equation (A4-8) by a simpler, 

effective operator (EL) defined by 

cerned. It is this effective multipole operator which is usually found in the literature 

denoted as electric multipoles. (However the ( E L ) ^ found in the literature may differ 

from (A4-24) in phase and overall normalisation. This point is treated by Brink and 

Rose (1967) in detail). 

There are both advantages and disadvantages in using ( E L ) ^ in place of the 

more general (EL) given by (A4-8). One disadvantage is that ( E L ) ^ transforms 

differently from (EL) under Hermitian configuration and unless one is very careful 

this can produce errors in phase in the calculations (Brink and Rose (1967)). The main 

advantage of using ( E L ) ^ is explained below. 

Consider the effect of a (small) additional potential V ^, added to the usual 

strong Hamiltonian H . Suppose that in order to maintain gauge invariance an extra 

( E L ) e f f = i ( E f - E . ) D L 00 (A4-24) 

where Ej and E. are the energies of the final and initial states of the transition con-

(A4-25) 
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Let ( E L ) Q and (El,)^ be the electric multipole resulting from the expansion of 

^ 0 ( A ) a n d ^ ^ ( ^ ) respectively in multipoles. The Siegert theorems requires that 

( E L ) 0 + ( E L ) a d « i [ H 0 + V ^ , D L ( k ) ] (A4-26) 

Therefore the effective electric multipole corresponding to (A4-26) is 

( ( E L ) Q + ( E L ) a d ) e f f = i (E f - E.) D L ( k ) (A4-27) 

and it has the same form as the operator given by equation (A4-24) (note however that 

the operator given by equation (A4-27) must be used with eigenstates of H + V . and 
0 ad 

that E. and E^ are the corresponding eigenvalues). 

The fact that (A4-27) has the same form as (A4-24) is usually expressed in the 

literature by saying that V^ ( ^ ) has no effect on the electric multipoles. This 

statement however is misleading in that(EL)^ d has effects* 

One must always keep in mind that ( E L ) ^ can not replace (EL) in all the 

circumstances. This point is illustrated with the comments on the paper by Michell (1965) 

on the effect of Parity violating nuclear forces in a gamma transition given below. 

Michell considers the effects of a small one body Parity violating potential (V =G a- p) on 

a system consisting of a particle moving in a potential V ( r ) . (This system is intended to be 

a rough model for an odd A nucleus). The Hamiltonian is therefore taken to be (see 

equation (20) in Michell (1965)) 

H = H Q + G / ; a • p (A4-28) 
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where 

H Q ' ~ + V ( r ) (A4-29) 

Next he observes that s = m G a-r is such that (to first order in G) 

H = e ' S H 0 e ~ l S (A4-30) 

Therefore the matrix elements of any operator A between eigenstates $ of H is 

- i s iS 

equal to the matrix elements of the operator e Ae between the corresponding 

eigenstates 0 of so that 

<0 f|A|0.>= < 0 f | e ~ l S A e L S | 0 . > ^ A < 0 f | A | 0 . > - i < 0 F | [ S, A ] | 0 . > + 0 ( G 2 ) 

(A4-31) 

Using (A4-31) he concludes that electric multipole transitions are not affecteibecause 

(EL) comutes with S. This reasoning however is not correct since the use of 
eft 

(EL) ^ in this case is not appropriate. 

However it should also be noted that Michell (see also the paper by Walborn (1964)) 

does not take Gauge invariance into account. This follows from the fact that the 

Hamiltonian (A4-28) as it stands is not Gauge Invariant. We should therefore replace 

equation (A4-28) by the following gauge invariant Hamiltonian 

H = H + G" cr- p + K (1) + e G " a • A - (1 + <g ) (A4-32) 
U U z 

where 

= ~r [_V A + A ' p ] ^ (1 + * ) + 77- p c r - W x A (A4-33) (T ; 2m 1 2 z' 2m 

2 
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and 

^ n P 2 n P z 

T h e e f f e c t s of the e x t r a p a r i t y v i o l a t i n g t r a n s i t i o n o p e r a t o r in equa t ion 

( A 4 - 3 2 ) ( n a m e l y ? ( A ) = e G c r A - ( L H * ) ) wi l l b e c a l c u l a t e d b e l o w . I n p a r t i c u l a r ? (A) = e G a • A -

we wi l l show that b y tak ing 'Y^ V (A) into a c c o u n t it i s p o s s i b l e to show tha t t h e r e i s 

n o p a r i t y v i o l a t i n g e f f e c t s in the e l e c t r i c e l e c t r o m a g n e t i c t r a n s i t i o n . T h e r e a r e 

h o w e v e r o t h e r e f f e c t s tha t modify s o m e of the r e s u l t s ob ta ined b y M i c h e l l . 

T h e e a s i e s t way to show that t h e r e is n o p a r i t y v i o l a t i n g e f f e c t s in the 

e l e c t r i c t r a n s i t i o n s f o r the Hami l ton i an g iven b y ( A 4 - 3 2 ) i s to apply the S i e g e r t 

T h e o r e m . H o w e v e r , in o r d e r t o c o n s i d e r at the s a m e t i m e the c o n t r i b u t i o n o f / (A) 

to m a g n e t i c m u l t i p o l e s we s h a l l fo l low a l o n g e r pa th . 

* /pv —> 
T h e e l e c t r i c and m a g n e t i c m u l t i p o l e s s t e m m i n g f r o m ' (A) wi l l b e denoted 

pv pv 

by ( E L ) and ( M L ) r e s p e c t i v e l y . T h e t o t a l e l e c t r i c and m a g n e t i c m u l t i p o l e s a r e 

now 

<EL>TOTAL = <EL>NORM+(EL)P'V' 

< M L W L = <ML>NORM-,:<ML>P'V' 

where ( E L ) N O R ] V I

 3 1 1 ( 5 ^ M L ^ N O R M s t a n d s ^ o r ^ e u s U a l P a r i t y c o n s e r v i n g e l e c t r i c and 

magne t i c m u l t i p o l e s . 

T h e e f f e c t s of ( E L ) p V and ( M L ) P V i s t a k e n into a c c o u n t by r e p l a c i n g equa t ion 

(A4-31) b y ( s e e s e c t i o n 5 - 2 f o r a s i m i l a r ca l cu la t ion ) 

< « f I ( E L > T O T A L I * L > - <* f I < E L W ' 0 i> - 1 < 0 f 1 C S ' ( E L ) N O R ] ' 0 i > + 

«p | ( E L ) P V [ 0 . > ( A 4 - 3 4 ) 
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< * f | ( M L ) T O T A L ^ i > = < 0 f l ^ N O R ^ " i < 0 f ^ S > ( M L ) N O R ] " 0 i > + 

<0 f | ( M L ) P V | 0 > (A4-35) 

To show that there is no parity violating effects to the electric electromagnetic 

transitions it is sufficient to consider the first part of K^(A) given by equation (A4-33) 

namely 

K'oi ( A )
 C P - ^ + A - P J h1+V (A4"36) 

This is so because as we have seen in part B of this appendix the second term 

e ~* of equation (A4-33) (namely K (A) = —— fxcr- ^ xA ) do not contribute (in the long wave 
£t XII 

approximation ) to the electric multipoles. 

By using the results given by equations (A4-34) and (A4-35) we have 

< 0 f | JCQ1(A) + e G ' ^ l (1 +y |0. > = < 0 f | KQ1(A) | 0 . > -

< 0 f | - i [ S 5 J C o l ( A ) ] | 0 . X 0 f | e G ' 1 ? - A | ( 1 + T & z ) | 0 . > (A4-37) 

but 

i [S, 3C01.$)3 = e G ' ^ - X l a ^ y (A4-38) 

and therefore to first order in G 

< 0f | K o i ( A ) + KQ2(i) + e G " a' 11 (1 + y | 0 . > = <0 f ^ ( A ) + ^ ( A ) | 0 . > 

- i<0 f | [S ,K o 2 A] |0 i > 
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Therefore the only parity violating effect remaining is produced by X (A*) which as 

mentioned before do not contribute to the electric multipoles. 

To calculate the parity violating effects in a particular magnetic multipole 

one has to expand K (A) in multipoles. Denoting (ML) the magnetic L-multipole 

-> 
stemming from JC (A) we have 

and therefore the effect is given by 

< 0 f | ( M L ) 0 1 + ( M L ) 0 2 + ( M L ) P V 10.>= < 0 f | ( M L ) o i + ( M L ) O 2 | 0 . > + 

+ ~ • < 0 f U r • [a x W ( r L C L M ) ] | 0 .> (A4-40) 

This result differs from that obained by Michell (see equation (29) in the paper 

by Michell (1965)) since he includes the term -i [ S , ( M L ) ^ ] which, as we have seen, 

cancels with the magnetic multipole generated by w ^ 
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A P P E N D I X 5 

T H E N * I N C L U D E D I N T H E W A V E F U N C T I O N S 

I n C h a p t e r 3 t h e e f f e c t s of a p o s s i b l e T . R . I , v i o l a t i o n in t h e N * N y v e r t e x h a v e 

b e e n c a l c u l a t e d by i n t r o d u c i n g the N * n u c l e ó n r e s o n a n c e a s an i n t e r m e d i a t e s t a t e 

in a s e t F e y r n a n n g r a p h s . R e c e n t l y h o w e v e r ( see G r e e n and S c h u c a n (1971) f o r a 

r e v i e w ) it h a s b e e n a r g u e d tha t t h e e f f e c t s of the n u c l e ó n r e s o n a n c e N * s h o u l d b e 

c a l c u l a t e d b y i n t r o d u c i n g it d i r e c t l y into the n u c l e a r w a v e f u n c t i o n . T h u s the n u c l e a r 

w a v e f u n c t i o n i s w r i t t e n 

o i 

$r=» (1 - a ) 0 ( N ) + a 0 ( N - 1 , N * ) ( A 5 - 1 ) 

w h e r e 0 (N) i s the w a v e func t ion of N n u c l e o n s in the g r o u n d s t a t e and J / I ( N - 1 , N * ) 

r e p r e s e n t s the s t a t e w h e r e one of t h e n u c l e o n s i s in a n e x c i t e d s t a t e N * . (Of c o u r s e one 

shou ld a l s o c o n s i d e r t e r m s o f the w a v e f u n c t i o n w h e r e the N * r e s o n a n c e a p p e a r m o r e 

than o n c e . I n p r a c t i c e h o w e v e r one c o n s i d e r s tha t t h e s e a r e n e g l i g i b l e ) . 

I n e q u a t i o n ( A 5 - 1 ) 0 (N) and ¡ | j ( N - l , N * ) c a n b e w r i t t e n in a n o n r e l a t i v i s t i c 

a p p r o x i m a t i o n . H o w e v e r s u c h a w a v e func t ion i s c l e a r l y f o r e i g n t o t h e u s u a l 

f o r m a l i s m of n u c l e a r p h y s i c s and t h e r e f o r e a m b i g u i t i e s a r e l i k e l y t o a p p e a r . I t i s 

the p u r p o s e of t h i s A p p e n d i x t o d i s c u s s t h e s e . 

W e b e g i n b y s t u d y i n g the f o r m s of 0 (N) and i¡) ( N - 1 , N * ) . T h e f i r s t i s the u s u a l 

many n u c l e o n s w a v e func t ion and t h e r e f o r e i s a w e l l k n o w n o b j e c t . W e w r i t e $ ( N - 1 , N * ) 

as f o l l o w s . 
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!Í)(N-1,N*)= 0(x1...xN_1) K ( x ^ ) (A5-2) 

where 0 (x^. . . x - ^ _ 1 ) is a usual N- l nucleón wave function, 4 ( x ^ * ) l s t n e radial 

part of the wave function of the N* resonance and the matrices i j3 \ and f b lare 

I T ) \ C ) 

respectively the spin and i-spin matrices of the \ 0 / \ d/ 

N*(J =t
 3 / 2 , T = 3 / 2 M = 1230 MeV). 

The wave function $ (N) and ^p(N-l,N*) are eigenstates of the Hamiltonian 

N - l 
2 2 

P i P N * 
+ l M + Í . V N N , N N ( V X 5 ) + S V NN*,NN* ( Xi>XN*> 

(A5-3) 

where V- T . T .^Jx.jx.) is the usual internucleon potential and V ^ T . ___T. 
NN,NN i ] ' ^ NN*,NN*V i 

.th 
< x i i V ) l s 

the potential energy between the N * resonance and the f" nucleon. 

The potential " V ^ * ]snsr*^ xi l XN*^ ° m ^ e ^ e r i v e ( i ^ r o m the graphs of Figures 

A5-1 and A5-2 by using techniques similar to the ones described in section (2-3). 

N*: 

N* 

Fig. A5-1 Fig. A5-2 

Once we have V ^ ^ x . , X . ) and ^ ^ ^ ( x . , * ^ ) we should be able in 

principle to solve the Hamiltonian (A5-3) and obtain the two sets of eigenstates # (N) 
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and (N-1,N*). (We know however that this is only possible to a reasonable accuracy 

3 3 

for nuclear matter or very light nuclei such as H or He). 

However the total Hamiltonian of the system will include also the term 

W^*N that is in fact a transition operator in the sense that it transforms a two 

nucleon state into a state with an N* and a nucleon, thus 

H =3 H + W 
0 N*N 

(A5-4) 

It is W

N * N that admixes J/)(N) to $ ( N - 1 , N * ) as in equation (A5-1) and • 

therefore we concentrate now on how W.TJrl>T is derived and how it should be treated. 
J N * N 

The transition operator W + can be derived from the graphs of Fig. (A5-3) 

given below. 

^ 2 N * 

2N* 

Fig. A5-3a Fig. A5-3b 

Using the Lagrangians and the notation given in Chapter 3 the matrix element 

corresponding to the process shown in Fig. A5-3 can be written in co-ordinate space 

as follows. 

2p 

(A5-5) 
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I n t e g r a t i n g o v e r t i m e and e x t r a c t i n g a f a c t o r -2TT[ 6 ( E n e r g i e s ) g i v e s 

w. i f G 

elq- ( r r r 2 ) 
0 „ < r o > T / o x ^ r o ) ] ( A 5 - 6 ) 

<2-W*2-" ( " 2 (2' 2 

T o o b t a i n e q u a t i o n ( A 5 - 6 ) w e h a v e s p e c i a l i s e d t o the rest f r a m e of the n u c l e o n 

r e s o n a n c e a n d t h e r e f o r e e l i m i n a t i n g the t i m e c o m p o n e n t of R a r i t a - S c h w i n g e r s p i n o r 

\j) . ( T h i s i s no t n e c e s s a r y bu t s i m p l i f i e s the " n o n - r e l a t i v i s t i c " r e d u c t i o n ) . 

A t t h i s s t a g e t h e r e i s a s i m p l i f i c a t i o n w h i c h i s u s e d in the l i t e r a t u r e . T h i s 

2 

i s to e x p a n d the d e n o m i n a t o r in e q u a t i o n ( A 5 - 6 ) in p o w e r s o f (P2o"p20^ t 0 ^ e e p 

on ly the f i r s t t e r m , v i z . 

iq- (r, - r ) , _ _ 

5 - ^ — • [ * p T ( 2 ) * * r 2 > ] < A 5 - ? ) 

q +ju - i C J 

T h i s a p p r o x i m a t i o n i s no t g o o d s i n c e ( p ' - p ) ~ ( M - m ) i s not s m a l l . 

T h e j u s t i f i c a t i o n found in t h e l i t e r a t u r e f o r u s i n g s u c h an a p p r o x i m a t i o n i s to c o n s i d e r 

that the N * p r e s e n t in the n u c l e u s i s a v i r t u a l one (off the m a s s s h e l l ) . T h i s i d e a i s 

p u r s u e d b y bo th R i s k a a n d B r o w n (1970) and b y G r e e n and S c h u c a n (1971). T h e f a c t o r 

a P P e a r s * n B r o w n and R i s k a ' s w o r k i s in tended to t a k e in to a c c o u n t 

th is v i r t u a l a s p e c t of the r e s o n a n c e . A n a l t e r n a t i v e w i l l b e ou t l i ned l a t e r in t h i s 
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appendix but f i r s t the a p p r o x i m a t i o n given by equation (A&-6) will be a c c e p t e d 

in o r d e r to i l l u s t r a t e the non r e l a t i v i s t i c r e d u c t i o n techniques to b e u s e d in 

connect ion with the R a r i t a - S c h w i n g e r s p i n o r s . 

T h e f i r s t b r a c k e t of equation ( A 5 - 7 ) involves only nuc l eons and t h e r e f o r e the 

n o n - r e l a t i v i s t i c r e d u c t i o n c a n b e c a r r i e d out a s in Appendix 2 . T h e s e c o n d b r a c k e t 

involves the R a r i t a - S c h w i n g e r s p i n o r s ( see L u r i e ( 1 9 6 8 ) and B r o a d h u r s t ( 1 9 7 1 ) f o r 

deta i l s ) 

U (p,A) =* L *„(P,K) U(p , X ) <i-k XX \ % X> ( A 5 - 8 ) 

* 4 - f > 
and the usua l D i r a c Spinor. 

U (k, a) * J -r=— ) j \ ( A 5 - 9 ) 
2 E t 

( a = | , - f ) \ E ^ m 'a; 
1 1 \ K / £IJL I 

1 3 

In equation ( A 5 - 8 ) the f a c t o r <i~ X^^ \ — X > i s a C l e b s c h - G o r d a n coef f ic ient 

and 6 ( p , \ ) a r e p o l a r i s a t i o n v e c t o r s which in the r e s t f r a m e b e c o m e 

-•2 2 ~ 
In equation ( A 5 - 9 ) - + (k + m f and 
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T h e non re la t iv i s t ic reduction is ca r r i ed out separately for each change of spin 

(i. e . for each pair X,a). The resul t is expressed in t e rms of the (4 x 2) v e c t o r mat r ix 

[ S ] ^ and of the wave function ip ^ defined be low in equation (A5-10) and (A5-11) 

r espec t ive ly . 

lVs>s - v°'*> K ^ X s 'f3** 

v 4 € PS?.) 

(A5-10) 

(A5-11) 

The fol lowing resul t is obtained. 

w - 1° , 
N N * V-

^ . ^ 2 > - ^ 1 2 ) 

V ) • T ( 2 ) W W (A5-12a) 

from which the fol lowing transition operator resul ts 

W. N N * 
f G 1 i>ju. v f G 1 i f G 1 

d ( | r r r 2 | ) T ( 2 ) + 2 ) + K c -
(A5-12b) 

The hermitian conjugate (h. c . ) comes of course f rom the graph of F i g . A5-3b and 
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The operator given by equation (A5-12) is, except for a factor (j^M^) 

already mentioned, the same as that obtained by Brown and Riska (1970). 

An alternative to the approximation used in obtaining the equation (A5-7) 

2 2 2 
will now be given. Writtingm = (p* - p ) - p, we can re-write equation (A5-7) as 

W N N * YTT j j * \ d \ Q*i> 

-*2 2 q- (m^ - i t 
[ib T ibcr ) 1 
L V p (2) ̂  2] J 

—«I' d
3 q(-i) q 

(A5-13) 

By performing the integration over d q we have 

w a±l£L f f d 3 r d 3r r?(r ) r ? «!)(r ) ] NN* ju JJ 1 2 L ^ r K5 4(1) 

(r -r ) T jl)(r ) 1 v 1 2;p L p (2.) ^ 2 ; J 

(-D d r i m i i r r 

i r r r

2 ' ^h~r2^ l r r r

2 ' 
(A5-14) 

The non relativistic reduction can be carried out as before and there results 

W, 
NN* 

d 3 r 2 ( r x ) ^ 4

+ ( r 1 ) l ' P l 
— , ^ - f y - S Z (r ) 

V ? ( 2 ) *L< r l> «L< r2> (A5-15) 

where 

(-D • i m l P l - r 2 l 

The "retardation factor" e i r n * ' r l r 2 ' depends through m^ on the initial and 

final energies of the system. Since however we are considering the final and initial 

velocities to be small we can replace m^1 = ( P 2 0 - P 2 0 ) 2 - in equation (A5-15) by 
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=3 (M-m) - ji and therefore. 2 

where 

(A5-16) 

The "retardation factor" in equation (A5-16) appears quite frequently in this 

type of calculation. We refer to the Chapter 6 of the book by AkhiQzerand Berestetskii 

(1965) for several examples and specific ways of dealing with them. 

Once W ^ T . i s obtained we can in principle solve the Hamiltonian H given by 

equation (A5-4), although in practice this task is beyond present capabilities (except 

for nuclear matter or very light nuclei). However in order to describe how the 

effects of an assumed T. R . I . violation in the N*Ny vertex can be calculated we shall 

assume that we have been able to solve the Hamiltonian H^ given by equation (A5-3) 

for 0 (N) and 0 (N-1,N*). Furthermore we assume also that we can treat W ^ . ^ in 

perturbation theory. Therefore the final state SÊ  and the initial state ^ involved in 

a given electromagnetic transition can be written 

# f * 0 f ( N ) + 2 
< V N ) | W N N j 0 k ( N - l , N * ) > 

^ ~T7i 

Mf E 0 f ( N ) - 0 k (N- l ,N*) 

<0. (N>rW N N j0 k (N- l ,N*)> 

I ip (N-1,N*)> 

I 0(N-1,N*) > 
Mi 0.(N)™ ^ ( N - 1 , N * ) 
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The effects of a T . R . I , violating N*Ny vertex can now be calculated. 

Firs t , by using the method described in section 2-3 a one body transition operator 

H(N*Ny) can be extracted from the graphs of Figure A5-3a and A5-3b. If we use the 

Lagrangian ,ks given by equation 4-3, the operator H(N*Ny) will be T R I violating 

and its effect is given by 

<0 (N- l , N*) I H(N*Ny) | 0 (N) ><4> ( N - l , N*) | W J &(N) 
< * f | H ( N * N y ) | 0 . > = S — ^ - r i - g 5 ^ - £ _ J 

0 f(N) ¡ ¿ 1 (N-1,N*) 

+ E 
Mi 

:0 f(N) |H(NN*v) | ^ ( N - 1 , N * ) ><J/).(N) | 0 k <N-l ,N*) > 

EJ/).(N) " E 0 k (N- l ,N .* ) 
(A5-17) 

Fig. A5-3b 

The equation (A5-17) corresponds of course to the two graphs of Fig . A5-6 

NN* 

N*Ny 

^ i/).(N)^ 

"I time 

0t(N) 

(a) (b) 

F i g . A5. 6 
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Now it is clear that the approach described in this Appendix is similar 

to the one used in Chapter 3. There are however differences. Firstly we note 

that the approach used in this appendix does not take into account exchange contribution 

like the one given by Fig. A5-7 which are included in the method of Chapter 3. 

Secondly, there is a small normalisation correction which the approach in Chapter 3 

2 i 

does not take into account, namely the factor (1 - a ) in equation (1). Thirdly the 

approach in this Appendix would take account of interaction between the N* and the 

nucleons by using the correct ty^ (N-1,N*). Since this is impossible to calculate 

in heavy nuclei, we feel justified in using the simpler approach of Chapter 3. 

Time 

Fig. A5-7 
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APPENDIX 6 

ISO SPIN EXPANSION 

This Appendix is intended to prove equations (3.10a) and (3.10b) namely 

( T ( 1 ) ' 1 ( 2 )

) T R V ~ß T 20 <*<i)V W W + ^ ( V V W \ l ) XV* 
# * 

1 * * (2) 
\ß v N p p ; z (A6-1) 

( T (l) ' t (2) ) NOR 1̂ T 20 ( X ( 1 ) V (V epVV + ^ V V W^l ) * V* 
1 * * f?^ +# <wvv v (A6-2) 

The matrix c(see equations 3. 3 and 3. 4) will be written 

e - (A6-3) 

so that taking a - €p~€p ^ ~ ^ N - ^ w e n a v e ^ n e ^- viola-ting case 

analogously taking a =» c + € b » e . T + C,T we have the normal case. & P P N N 

The task is to calculate (see equation 3. 9) 

and 

<? T 
(1) 

(A6-4) 
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APPENDIX 7 

R E C Q U P L I N G O F O P E R A T O R S 

The purpose of this Appendix is to illustrate the standard techniques used 

to decouple the operators given by equations 3.16 and 3.17 in Chapter 3 and to extract 

from them the operators of section 4. 3-B. Let us take as an example the second 

part of the operator given by equation 3.16, viz. 

= (~) — G f 

; v ' 3 M(M-m)2m 

j r _ y _ j . « i r - > - > i)-> K(|i"[-ri |) 
< [a. x (F.-r. j ov (r.-r.) ** + [a. x (r.-r\)] or.. (r.-r.) 7 >1 ,J — 
( i i J 3 *• J z L ] i j ' J l i ] *z j J M l r [ " r j l 

(A7-1) 

by using 

[ a . x (r .-r .)] = (-L)v^i [a. #(r . -r )] (1) 

[a . • (? -? . ) ]= - ¿3 [a.® (r.-r.)] 

m J 3 l m 

{ [ a . x(r .-?.)] a.- ( r . - r . )? : 3 + [ a . x (r.-r.)] ov (r.-r.) T l l 

i v ^ | f : - r . | 2 {[[a.^Y^r..) ] ( 1 ) ® [a.SY^r.)] ( 0 ) 

3 1 i j 

(1) 

+ [a .SY^r; . ) ]^® C a ^ Y ^ J l ^ J ^ t 1 } 
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, - > - > - » 
where r.. = r. - r. 

Now 

I 1 L] J 1 I] 

1 1 L 

(0) 1 

M 

£ [ (2L+l ) (2L t +l )3 ] t ) l 1 il 
L L ' 

1 0 1 

[ a . ® a . ] ( L ) ® [ Y 1 ( r i . ) ® Y 1 ( ^ ) ] L 

(1) 

M 

which, using 

[ T 1 ( ? . . ) » T 1 A . ) ] < 1 > - / ^ * ^8 ^ 1 ^ 
1 t] 1 Ij J m V4TT/ 0 0 / 

1-m ij 

is 

L L ' ( 4 J ^ 3 Vo 0 0 / 

* 1 1 0 

[(2L+1)(2L ,+1)3]* 
1 1 L J r 
1 1 M°Pai ]

( L ) 0 Y L M V l 

1 0 1 

(1) 

M 

A \ * 4
 1 1 1 I/ 1 1 2V 

( 1 ^ Y 2 ( ^ ) 

1 2 1 

2 1 1 ( 0 0 o ) _ C a i 
® a . ] ( 2 ) @ Y 2 ( ? . . ) 

-1(1) 

M 

(1) 

M 

M 

Substituting in (A7-1) we get 

1. . * i 
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I r.-r.j K (| r.-r.!) + 

1 G f i 2 * * h ) ^ "̂( / ^ ^ 1 
+ 3 M (M-m)2maff ^ 6 x 3 x 5 f (-1) | 2 , ^ Q Q Q J 

M Z Z 

1 G f i 2 * * , (1 2 l j / l 1 2 \ 
+ 3 ^ ^ T 2 ^ ( V ^ p V s ^ [ 6 x 5 x 5 ] ~ ( i ) | 2 x ^ Q QJ 

i_ -J 

i<3 

*1 rt'tt1). 
M Z Z 

The first two parts of V(l) are called wj^ (M* 1) and W ^ M - 1 ) respectively 

in Chapter 4. 
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APPENDIX 8 

FORMULAE OF ANGULAR CORRELATION 

In section 4-2 the angular correlation function W(l ,2) of two y-rays emitted 

in succession and with no perturbation of the intermediate state was defined and 

decomposed as follows (eq. 4-3) 

W(l,2) ~ W ( 0 ) ( l , 2 ) + W ( 1 ) ( l , 2 ) + + W ( 1 ) ( l , 2 ) (A8-1) 

0 < 1 s 2 I. 
I 

(k) 
where each term W (1,2) is proportional to the corresponding statistical tensor 

R o-

Equatiqns(4-4) and (4-5) give the first two terms W^°V,2) and W ^ ( l , 2 ) 

respectively. The purpose of this appendix is to give the general term W ^ ( l , 2 ) 

(we refer to Coutmho and Ridley (1970) for details) in terms of the angles defined in 

Fig. 12. 

(a) 1-even 

wt [ (2I.+1)(21+1)]* R ^ E 0 ^ + 1 n.) A (L 2 L 2 +1 If) 
k,p 
(even) 

^ ( _ ) N ( |N|- |N| o ] 2 P i | N ' ( C O S / 3 l ) P

p

N ' ( c o s ^ 2 ) C O S ' N ' 0 ( A 8 ~ 2 ) 
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1-odd 

W ( 1 ) = [(21+1)(2I.+1)J* R<¡ } S A ( L ^ + l II.) A p ( L 2 L 2 + l y ) X 
k,p 
(even) 

X S (-) 
N 

/ P k *\ 2 p j f ' (cos ß ) p ' N l (cos ß) sin | N | 0 (A8-3) 
1|N|-|N| O J K 1 P 2 

where 0 = 0 „ - 0 , and 
*2 1 

A k

p ( L 1 L 1 + m i ) = [ l + |ô ( l ) l 2 ] " 1
 [ F ^ Í L ^ ^ . J + í ô (1) +(~)1ô*(D) F ^ ^ L ^ I I I . ) 

+ I Ô (1) J 2 F k ( L 1 + l L x + 1 II.) ] (A8-4) 

A p ( L 2 L 2 + 1 V ) = [ 1 + !Ô< 2> > 2 I " 1 [ F p ( L 2 L 2 I f I ) " ( 5 ( 2 ) + 0 ( 2 ) *> F p ( L 2 L 2 + 1 I f I ) + 

+ J ô (2)1 2 F p ( L 2 + l L 2 + l 1^) ] (A8-5) 

g 
F 2 (L i / J j ) = ( - ) L _ 1 { (2j + 1)* (2j +1)* (2L+lf (2l! +lf } < L l / l - 11 g 0> 

1 3 X u 

lo Jo g l 

L L ' g2¡ (A8-6) 

F k ( L L / I . I ) - (-) i + ~ [(2L+1) (2L+1) (21+1) ( 2 K + l ) ] t ^ 1 ^ ^ j ^ 
(A8-7) 



T139-

APPENDIX 9 

D E T E R M I N A T I O N O F V " (A) G I V E N V , t. v. 1. v. 

The general problem of constructing a gauge invariant combination V + « (A) 

from a given potential V will be considered in this appendix. We shall limit ourselves 

to the case where » (A) is linearly dependent on A and therefore according to equation 

(A4-6), V + V^(A^) is gauge invariant if 

V(W G) = i [g , V ] (A9-1) 

where 

g =» S J (1 + ? G (r.) and V =» S V . . 
. 2 z r . ,. i] 

-> —» -* 1 
As already explained in section 5-2 the usual replacement p-> p - e A - ( l + t ) 

<u z 

is not sufficient to ensure gauge invariance of a potential which contains an isospin 

exchange term (e. g. V = L V (|r.-r. | ) "£.). This type of potential is clearly not 

gauge invariant since it contributes to the commutator in equation (A9-1). 

However gauge invariance alone is not sufficient to determine 'V'(A>) uniquely 

from V. In fact the only way of obtaining V (A) uniquely is by going back to a field 

theoretical basis and using the Feyr-man Graphs from which V itself has been extracted. 

This has been done in the case of parity violating potentials by Fischback and Tadic (197JL) 

(see also Tadic and Eman (197.1)). Some of their results will be used to compare with 

the phenomenological procedure described below. 

The procedure is based on equation (A9-1) and is defined as follows. 



- 1 4 0 -

(i) Calcula te the commutator 

C = i [ § {l + ^)G(r.)+l G ( r . ) , V . . ] 

(iL) The resul t wi l l have t e r m s of the form 

G(r.) ±t i? G( r . ) J and [ G(r.) - G ( r . ) ] 

(iii) R e p l a c e [If?. G(r . ) ±W G( r . ) ] by [ A (r.) ± A ( r . ) ] and [ G ( r . ) - G ( r . ) J b y 

an a rb i t r a ry f u n c t i o n a l ^ ( r . r ^ A) such tha t^*( r . r . WG) ~ G( r . ) -G( r . ) s o 

leading to a t e rm in the Hamiltonian H (A(r . ) , A( r . ) ) , depending on A. 

(iv) H(A(r . ) ,A(r . ) ) s ince by construction it sa t i s f i e s (A9-1). 
Mj 1 J 

The functional /F(rjr.A) r e f e r r e d above could be for example 

-* 
r . 

f ( r . r .A) = f Ä(r)-dr 

r . 
l 

where the integration is over an a rb i t r a ry path. Another example for F is 

f (r.r.- ® ) = Jd 3 x t (x»r . , x - ? ) . A(x) 

—v 
where £ ( x - r . , x - r j ) fa l l s off rapidly with x and 

div t - o (x- r . ) - o (x- r . ) 
x ^ 1 j 
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As an example of this procedure, consider the following parity violating 

potential (Tadic ̂ E m a n - 1971) 

\~h f ( 1 ' 2 ) ] - tw^i]T" 
where 

1 e ~ M | r l " r 2 ! 

f(l ,2) = — _» . 
47T r - r 

1 1 2 1 

We have 

i [ g , V f f > i e [ G ^ ) I (1 + + G( r 2 ) | (1 + T ( 2 ) ) , « 

-ek 
2m 

[ f f ^ V G ^ + ffjj.W G( r 2 ) ] f ( l , 2 ) T ( + ) + ^ [ ( ^ ^ - ^ . [ G C r ^ r ^ j f ^ ) ] T + ! 

and therefore 

V(A)= " | | [ ^ •A( r 1 )+^ .A( r 2 ) ] f a , 2 )T + +^[ (a i . p 1 -a 2 . p 2 ) ,F ( r 1 r 2 l ) f ( l , 2 ) ]T + 

(A9-2) 

The potential V was derived from field theory from the diagram in Fig . A9-1 
IT 

Fig. A9-1 

where the crossed bubble is the p. v. vertex. 

Tadic and Fischbach (1971) show that gauge invariance is obtained by considering 

the graphs of Fig. (A9-2). 
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Fig. (A9-2) 

which gives 

V a )* - 2lf ( a r 1 ( r i ) +
 °2 1 { r 2 » f ( 1 ' 2 ) T + 

(A9-3) 

and the diagram of Fig. (A9-3) 

u 
Fig. (A9-3) 

which gives 

V P 2 1 (+) I 

where 

0a,2)«Jd 3 r g [f(3,2) ( l ? 3 f ( l ,3 ) ) - f ( l ,3) ^ ( 3 , 2 ) ) ] " A ( r 3 ) 

(A9-4) 
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Comparison of equations (A9-2) to (A9-3) and (A9-4) shows that the 

phenomenological approach agrees with the field theoretical approach if we 

choose 

2) 
( % f ( l , 3 ) ) § ^ ( \ ? 3 f ( 3 , 2 ) • A ( r 3 ) 

Th i s would of course be quite impossible to guess in the absence of a 

detailed theory. However for T. R. I . violating forces where no detailed theory 

exists one might use a phenomenological treatment and choose a simple form for 
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APPENDIX 10 

AVERAGE PROCEDURE 

T h i s Appendix describes how to obtain a one body operator that is equivalent to 

a given two body T . R . I . violating operator in the sense that it has the same matrix 

element between two Slater determinants differing by just one orbital. 

The T . R . I . violating potential considered is due to Huffman (1970) and was 

given in equation (5-29), namely 

1 i 3 

(A10-1) 

where Q(p, | r j . _ r j ) ) * s a short range function given in the Huffman paper. 

The matrix element of a two body operator between Slater determinants differing by 

just one orbital (denoted below by u and v) is given by equation (5-20), namely 

< V ( i , j ) > = V(di rec t ) + V (exchange) 

where V(direct and V(exchange) is given by equations (5-21) and (5-22). 

We consider first the V (direct) term i. e. 

(A10-2) 

V(d i rec t )= S 
k 

d ( l ) d(2) U* (1) W* (2) V ( l , 2 ) v (1) W (2) 
K K 
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ince X • \ - ~t? - + V 1 s T ( + ) it is easy to see that this matrix S l n C e - - (1) (2) » - ( - ) ( - ) "(2) 

element vanishes. 

The exchange matrix element is 

V(exchange) = - S \ d ( l ) d(2) U*( l ) W ^ ( 2 ) V ( l , 2 ) v (2) W K ( 1 ) 
k 

which is first written in the form V(1,2) = V (1,2) V (1,2) V (1,2) separating 
X 0* 

the space, spin and i-spin parts. Thus, 

V (exchange) = - S X a ( D X <2) V ( l , 2 ) X (2) X (1) 
a. u k v k k 

L X (1) X ( 2 ) V (1,2) X X (1) x | 2 d( l ) d(2) U * ( l ) W*(2) V (1,2) 

1/(2) W k ( l ) 

We now treat each part separately, the aim being to obtain 

V = - V (spin)xV (i-spin) x V (space) 
eq eq eq eq (A10-3) 

Consider first the spin part. We have 

% {(OX* (2) V C 1 . 2 ) x (2) x (1) -
,U k ui> k k 

^ * * 

2 S *a ( 1 ) *a ( 2 ) 
V (1,2) P + P V (2,1) 

cr Cr or a v k 
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where 

rs the usual spin exchange operator. In the Huffman case V (1,2) = oy O^. We 

therefore define 

V ( sp in)=- | s v* (2) [ V ( 1 , 2 ) P + P * V (2,1) ]x (2) = 3 H (A10-4) 
eq 2 ^ a

k a a a a a k 

where fl is the unit 2 x 2 matrix. Similarly 

S X (1) X (2) V. . (1,2) x (2) \ CD = 

k 

31 ? X^*1* X* <2> O ^ 1 ' 2 * P

X

+ P ^ ( 2 , l ) ] x a) X (2) 
lk *u, V *k 

where P ~ \ (1 + X> "t ) . We therefore define 
~Ht 2 1 2 

V ( i - s p l n ) * ! .2 X * ( 2 ) [ V ( 1 , 2 ) P + P * V Y ( 2 , 1 ) ] X (2) =• 

\V2> i ^ i , ^ \ ( 2 ) 

The last result is approximated (see Michell 1965) by 

V e q ( i - s p i n ) = | (1 - (A10-5) 

Finally the space part is calculated in the following way. First write 

L Jjd(l) d(2) U * ( l ) W k (2 ) V x ( l , 2 ) v (2) W k a ) = 

j d ( l ) U * ( l ) E Jd(2) W*<2) | [ V x ( l , 2 ) P x + P * V x ( 2 , l ) ] W k ( 2 ) i / a ) . 
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The operator P is given by (Sachs - 1948) 
X 

P « L — ( ( r -"r )• V + (r -r )-V ) U 

x ri n I w 1 2' v 2 2 1 ; 1 ; 

The first two terms of P are 
x 

p x - i - i f 1 - - ? 2 ) - 5 1 - P 2 ) + . . . 

Because the potential (A10-1) is a short range one we can approximate P 1. 

Therefore 

V (space) =* G £ f d(2) W* (2) 
eq k j k w 

r -r* 
1 2 • • ^ 1 - p 2 ) Q ( M | r 1 - r j ) + h , c . r -r 
1 2 

W k (2) 

and therefore 

V (space) = G P eq f | s |d<2) WM2) j — q Qfcj r r r 2 | ) h. c 

or (see Blin-Stoyle 1955) ^ 

V (space)-G P„ eq 1 2 ^ +h. 

(A10-6) 

Now is we put (A10-4), (A10-5) and (A10-6) in (A10-3) we get 

d ( 2 ) W * ( 2 ) ^ l - T - F j ^ , W k ( 2 ) j (exchange) = - G (P 

(A10-7) 
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Now (see Blin-Stoyle - 1955) define 

<̂V = 3

k

S j d<2> n ,2> (* " ~^FJ | r r r 2 l Wk< 2> 

• ' 3

 n l

S

m ) d r 2 * nhn < r 2 > i ^ 7 ! » , - » , ! *nta **> < A 1 ° - 8 > 

p ( r , r ' ) =3 S ^nlm ^ 

J ( | r - r ' | ) 
Q(M|r-r'|) 

I r - r l 

(A10-9) 

(A10-10) 

so that 

tfyr) = - j j ( | r - r ' | ) p ( r , r ' ) d r ' 

and now using Blin-Stoyle results. 

n, 1 / 

where f (r) is the radial function for a single particle in the state (nl) and is 

related to the mean density distribution of particles (r) by 

nl 

or 

» CD - ! ^ (A10-12) 



-150-

where 

k = - 2fiT JQ (MS) S 3 ds (A10-

Now if we substitute A10-12 and A10-13 in A10-7 we have equation 5-30a. 
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