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SUMMARY

This thesis deals with several aspects of a possible violation of
Time Reversal Invariance in the electromagnetic interaction.

In Chapter 2 it is shown that such a Time Reversal Invariance (T.R.1.)
vio}ation contributes to low energy nuclear physics in the form of a T.R.1.
violating electromagnetic transition operator and also as a T.R.I. violating
two and three body potential. The T.R.1. violating transition operator is likely
to dominate in light nuclei whereas the three body T.R.I. violating potent:nal
becomes more important for heavy nuclei., Two possible forms for a T.R.1.
violating NN*y vertex are considered and the above mentioned operators
calculated.

In Chapter 3 T.R.I. violation is assumed to occur through the N*Ny
vertex and again T.R.1. violating electromagnetic transition operators and
potential operators are calculated.

In Chapter 4 the effect of the T. R.1. violating electromagnetic transition
operators obtained in Chapters 2 and 3 are estimated for a light nucleus and the
operators stemming frbm the T.R.1. violating N*Nvy vertex are found to be more
important. The calculated effect is representéd by an imaginary part for the
"mixing ratio” 0 (the ratio -between the reduced matrix elements of two competing
multipoles) and is found to be of the order of 10-3.

Finally in Chapter 5 an experiment performeddat the University of Sussex
on T-violation is analysed. It is found that if the accuracy of the exﬁeriment can
be increased by an order of magnitude,information of the nature onthe T.R.I. violation

will be forthcoming.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In 1964 Christenson et. al. observed the decay of a long lived neutral
K-megson into two charged m-mesons. This has been interpreted as a violation
of C. P. invariance or if the C. P, T. theorem is true as a violation of Time
Reversal invariance. Since this first experiment many more experimental
results have established that CP invariance is indeed violated. The present
day experimental evidence is expressed by the ratio between the transition
amplitudes for the decay of the long lived K-meson into two pions, M(KLO > 1r+1r_)
and M(KLO - wowo) ;and the corresponding transition amplitudes for the decay
of the short lived K-meson M(KSO -3 v+7r-.') and M(KSO > TI'OTrO). Both ratios
ought to be zero if CP is conserved but in fact one has (Cronin (1968)) Particle

data Group (1970) and Chollet et. al. (1969)) for

0 + -
+ M(KL =TT ) .- i<P+—
n=———"—7—=In |e
MEK_, —»>77)
S
and
0 0 0
00 M(KL <> T oT) 00 i<p00
M(KS > T T)
the values
In* <1, 90 + 0.05) x 107" o' —@s.5 +5.1)°

(7% 2.5 + 0.3)x10°° 0% ¥ @3 + 32)°



Several theories have been put forward to explain this observed CP
violation in the decay of the long lived neutral K-meson. Some of these will

now be very briefly mentioned.

(i) Superweak interaction (Wolfenstein (1964)).

This theory assumes that CP violation is due to a first order effect of a
CP violating term in the Hamiltonian with a selectibn rule ] A Y[ = 2. The coupling
constant F of such an interaction turns out to be of the order 10-8G where G is

the coupling constant for the weak interaction.

(ii) Milliweak Theory.

There are several theories which assume that the CP invariance violating
part of the Hamiltonian has a coupling constant 10'3G and therefore are called
milliweak. Among these the theories of Glashow (1965), Oakes (1968) and Das (1968)

are small modifications of the usual current-current theory of the weak interaction.

(iii) Semiweak Theory.

This theory proposed by Nishijima and Swank (1966 and 1967) is a radical
modification of the usual current-current theory of non leptonic weak interaction.
The coupling constant of the proposed Hamiltonian is of the order of magnitude of
the usual weak interaction strength. However, C. P violating processes occur only
in third order in perturbation theory and therefore the theory accounts for the

smallness of the observed C. P. violation.

(iv) Electromagnetic Theory.
This theory put forward by Bernstein et. al. (1965) and Lee (1565a,b) assumes

that C. P. invariance is violated by the electromagnetic interaction. Since there is



good experimental evidence that P is conserved by the electromagnetic interaction
these a;lthors assume that the total electromagnetic current is composed of a
normal part j” (odd under C) and a C-even part KH which would produce CP violation.

Among the proposed theories described above the assumption that CP
invariance violation occurs in the electromagnetic interaction is more likely to
produce a bigger effect in nuclear physics than the other proposals (for example
|AY]=2 effects would be quite undetectable).

Among the possible tests in low energy nuclear physics this thesis concen-
trates on those which aim to discover a small imaginary part in the ratio between
the reduced matrix elements of two competing multipoles in a given electromagnetic
transition. In fact it was shown by Lloyd(1951) that if Time Reversal Invariance
(TRI) holds then this ratio must be real to first order m the electromagnetic interaction.
On the other hand if TRI (TRI and CP invariance are the same if the PCT theorem is
assumed to be true) is violated in the electromagnetic interaction or in the
nucleon-nucleon interaction a small imaginary part appears.

The observable effects of an imaginary part on the ratio between reduced
matrix elements of competing multipoles in a given electromagnetic transition was
first worked out by Henley and Jacobson (1958) and in more detailed form by Lobov (1969).
These authors show that the effect appears in the form of T. R. invariance violating
asymetries in appropriate angular correlation and polarisation sensitive experiments.
The reader is refered to the work of Henley (1969) for a comprehensive review of
these effects. In this thesis only one of the possible experiments is examined and
is described in Chapter 4. This ekperiment involves the measurement of the

angular correlation between two y-rays from an oriented ensemble of nuclei. This



particular experiment was chosen because it is likely to be the most sensitive
(Hamilton (1971)) and also because it is under study experimentally in this

university.

1.2 Content of the thesis

In this section the contents of the thesis will be described. Since this
thesis is concerned with several different features of time reversal invariance
(T.R.1.) violation this section is intended as a guide to the contents.

In Chapter 2 the electromagnetic current of nucleons is examined with the
intention of constructing a part Kp which is T.R.1. violating (or CP invariance
violating by PCT). The matrix elements <N | K”l N’> of such a current between
nucleon states have been examined before by several authors: Bincer (1960),

Lipshutz (1968) and Huffman (1970). From the results of the last named author
two alternative forms for the matrix elements of KH are taken. Both forms satisfy
the properties usually required for an acceptable electromagnetic c’urren’c.} Parity
conservation, hermiticity and Gauge Invariance.

Both forms of <N IKNIN’> (and indeed any possible form) vanish when both
the initial and final nucleons are on the mass shell. This feature turns out to be
very important since becauge of this it follows that KF: can oniy contribute to low
energy nuclear physics when other nucleons are involved, i.e. as an "exchange effect",
in the form of a two body shqrt range transition operator. Therefore KF is only
likely to contribute a few per cent of the total transition probability.

Two different T. R',I' transition violating operators are derived corresponding
to the two alternative forms for <N , KIJ INI> and are subsequently expanded in multipoles.

An estimate of the effect in nuclear physics is postponed to Chapter 4.



To end Chapter 2 an estimate is made of the magnitude of the T.R. 1.
violating force between nucleons delriving from KM. Both two and three body potential
‘operators are derived. The two body operator is shown to be negligible compared
to the transition operators mentioned before and the three body forces.

In Chapter 3 the violation of T.R.I. is assumed to occur in the vertex where
the nucleon regonance N* (J =3/2, T=3/2, M = 1236) (that is isospin and spin
equals 3/2 and has a mass M = 1236 MeV) goes into a nucleon with the emission of
é'y~ray. Again two body transition operators corresponding to this model are
derived and expanded in multipoles. Two aild three body forces are also calculated.
The calculation of the effect of transition operators is postponed to Chapter 4.

In Chapter 4 the effect of the transition operators is examined. The operators
derived in Chapter 2 are considered separately from those derived in Chapter 3. A
general estimate is given for the operators derived in Chapter 2 and the effect is
found to be too small to be detected with present day experimental techniques. A
more detailed calculation of the effect in a pérticular transition in 18F is given for
the operators derived in Chapter 3. A measurable effect is found.

As mentioned above, all the models of T.R.I. violation treated in this thesis
give a T.R.1. violating contribution to the force between the nucleons
in the form of a three body potential. No detailed calculation of this effect is
presented in this thesis. It is however shown that their effect is smaller than the
effect of the transition operators for light nuclei and therefore unlikely to have much
effect on the conclusions of Chapter 4. They are however likely to be the dom‘matihg
contribution in heavy nuclei and this will make the calculation of T.R.I. violating

effects very difficult for these nuclei.



Finally in Chapter 5 an experiment performed by Holmes (1972) in Pt 2 ig

analysed. Because of the fact that microscopic wave function for Pt192 are not
available, the experiment is analysed in terms of a phenomenological two body T.R.1.
violating force which is assumed to include three body effects.

First the most general form of a two body T.R.I. violating potential is
derived. It is then noted that all terms in this potential are velocity dependent
so that the overall Hamiltonian is not gaﬁge invariant unless further terms are
introduced. It is shown by an example tﬁat these terms can be very important.
It is further shown that it is not possible, having only a two body phenomenological
potential to write down unambiguously the complete gauge invariant Hamiltonian.
The Siegert theorem is therefore used to calculate- the contribution of these unknown
parts to the electric multipoles and thus permits us to relate the observed effect
to one matrix element of the chosen T.R.I. violating interaction.

By means of an averaging procedure this matrix element is evaluated and
so an approximate value for the upper limit of the coupling constant of the T.R.I.

violating interaction is deduced.

1.3 Content of the Appendix

A great deal of the w;)rk presented in this thesis has been separated from
the main body and put in the appendix. About half of the appendix consists of
detailed calculation of the results presented in the text. The other half is described
below.

In Appendix 4 the Siegert theorem is derived following Sachs and Austern (1951)

as a consequence of Gauge Invariance. This theorem is usually stated as forbidding



the contribution of exchange effects to the electric multipoles in a given electro-
magnetic transition. This usage as a simplifying tool is examined critically and
found to be somewhat misleading. The work by Michell (1965) on parity violating
potentials is used as an example in this connection.

In recent years (see Green and Schucan (1971) for a review) the role of nucleon
resonances like the N*(J = 3/2, T = 3/2, M =1236) in nuclear physics has been
seriously considered. Inevitably several different approaches have been proposed and
one of these is used in Chapter 3 to calculate the effects of a possible failure of T.R.1.
in the N*Ny vertex. In Appendix 5 the alternative approach of treating the N*
explicitly in the nuclear wave function is outlined. This approach is compared with
the one used in Chapter 3.

Finally Appendix 8 presents some more complete formulae of T-violating
angular correlations and Appendix 9 examines the problem of making an arbitrary

potential gauge invariant.



CHAPTER 2

TWO SIMPLE FORMS OF A TRI VIOLATING CURRENT

2.1 Introduction

1t is well known that because of the strohg interaction the matrix element
of the electromagnetic current between nucleons is modified by the introduction
of form factors. In the first section of this chapter the possibility of introducing
T.R.I . violation by use of appropriate form factors is examined.

The results of section .2. 2 are fully relativistic and so cannot be
used in nuclear physics. In section 2.3 a method for deriving non-relativistic
operators from the covariant results of section 2. 2 is given. In particular it is
found that T.R.V. terms in the electromagnetic current, can only contribute as
an ''exchange effect” and this in turn implies that the effect of these terms is
just a few percent of the normal part of the current.

In section 3, the methods described in section 2 is applied to two possible
forms for the T.R.I. violating electromagnetic current introduced in section 1 and
two body T.R.V. transition operators are calculated. Finally in section 4 two and
three body operators, contributing to the interaction between the nucleons is derived.

Specific calculations of the effect of the operators derived in this chapter

are postponed until Chapter 4.



2.12  General Considerations

The usual form for the matrix elements of the electromagnetic current betweex\

two nuclear states is (Drell and Zachariasen 1960)

e. m. -
<p._|d Oip >=e 1
3, Ol @ AT

|iF, 6%y, - 1F, @) o ) @.1)

1

x'vhere Fi(qz) = Fis (qz) + Fiv(qz) 7 (i =1,2) are the usual form factors, %”
is the z component of the i-spin Pauli matrix and q2 = (pl—pz)z.

This is in fact the most general form assuming besides T.R. invariance,
Parity invariance, current conservation and that the initial and final nucleons are
on the mass shell,

If one assumes that both T.R. and Parity invariance are violated but the
initial and final nucleons are still on the mass shell, the matrix elements are

complicated by the appearance of two further terms. The electric dipole moment

and the anapole moment (Broadhurst 1971)

e.m. - ] 2 . 2 2
<p 3,7 O py>=e (uplllFl(q Vv, ~iFy@)0, 0+ Fy(q)o a7+
2 o,
A TAL
+Fg) (@, + ) vl ukey) 2.2)

where F 4 and F5 are additional form factors in the notation of Broadhurst. If one
assumes parity conservation (a well established fact for the electromagnetic interaction)
then both the additional terms vanish., Therefore one can conclude that terms in

the electromagnetic current matrix elements that violate T but conserve P can only

appear if at least one of the nucleons is off the mass shell.
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The most general expression for the matrix elements of the current
satisfying only covariance and with both nucleons off the mass shell have
been given by Bincer (1960) and Lipshutz (1967). It contains 24 terms but if
Parity conservation is assumed then there are only 12 terms. These 12 terms
further reduce to only six if just one of the nucleons is assumed off the mass
shell. The twelve terms have to satisfy hermiticity and the Ward identity
(Gauge Invariance). This last requirement gives a complicated relationship among
most of the twelve terms. To simplify the Ward identity Huffmann (1970) took
only three terms and constructed a current which has both TRI normal and
violating terms. These terms will be taken as a starting point for this Chapter
and the reader is refered to Huffmann (1970) for details. The matrix elements
for the T.R.I. normal current JM is
0,4 -i[1-F @] i%‘* ) @)

< |3 lp>=@,|F iy -1F,

The matrix elements for the T.R.I1. violating current K,u is
<o’ |k [p> = @, |7} @) Poa-dP)lu ) +
[ pr 1 B pPp

- 7 2 7 2
+ (a0 - F w )+
(pl(p p) z(q)oqul o)

12 2, ¢, 2 qu |
¢~ - - fd .
+ (up’l ® -p)F; @) (qu Pra ) iup)‘ 2.4)

The notation is P = (p’+ p) q= ('~ p) and the dash in the form factors of

TRV ,

<p' ] J p > indicates that these are different functions from the T-normal

form factors. The form factor F.l(qz) is of course Fi(qz) = Fis(qz) + Fiv(qz) % z
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2.2 Derivation of the two body electromagnetic transition operators

The two body transition operators will now be derived by using the S-matrix
method. This method has been explained in detail (Chemtob (1968), Chemtob (1969),
Chemtob and Rho (1971) and Tadic and Fischback (1971)) and therefore will not be
repeated here. However, in order to illuminaf.e the calculations which follow,an
intuitive discussion of the method will be given following the exposition of Akhiezer
and Berestetskii (1965).

The problem is how to derive an operator from f_ield theory for use in non
relativistic calculations. For simplicity a system of electrons is taken and the
interaction between the electromagnetic field and the electron current is taken,

of course, to be

- 4
X = j* ie [ l,b(Xl)Yu lP(Xl)]A“ =) d x,

The first approximation to the S-matrix is then
s,=-e [d% T, &)v, b &)A &)
1” 1 ¥ W Py A

Integration in time gives

3 : -
Sl=-efd ry lbpa (rl)'Yﬂibp (rl) A“(rl) 270 (ﬁp(+w-€p )=

Pad

o
== 20 () [-de b)Y, b ) A ()]

The "effective transition operator" U, _ is the defined to be

if

. 3
Uifz— ie fd rl zlbp’(rl)‘yp ¢p(r1) AM (rl)
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Finally the non-relativistic limit is taken by using the Dirac representation
for the v matrices and separating the spinors into large and small components.
The result is of course (Spacial Component)

- e

3 = ~r
U= 5o ) @1 ¥p 6 (RG34 Xapleo. 9 x T} by te,

from which the usual operator is extracted

- -
Velet. &) = om [,X(r 1" 31 +31' Aly 1)] é%n W x A% ry)) (2.5)

This method has been used frequently in the past. For example, Blin-Stoyle and
Nair (1966) used this method to extract the effective f~operator from the most
general on shell form of the weak current.

If instead of electrons, nucleons are considered, then from the first term

in (2.1) it follows, bearing in mind that Fl(qz) = Fls(qz) + Flv(qz) g, that

vnucl. @A) = +§%‘n [Z (x)rpy * ple (r_l)J (FIS(O) + Flv(O) 3,)

+ = [FPO+F " O, lo- Bu) 2. 6)

Consider now the problem of using this operator to calculate say Bremstralung
due to the collision of two nucleons.
Before solving this problem it is convenient first to solve the problem of

elastic scattering of two nucleons. In nuclear physics this is done by finding the
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scattering solutions of the Hamiltonian

2 p.

+ U (x ) 2.7

The operator U(r 1 2) should be obtained from field theory by reducing non

relativistically the matrix element Ui obtained from the diagram of fig. 1, by

f

means of
if

S..=-27mi 0 (Energ.) Uif

The diagram is considered as a pole diagram and therefore Ui is the

f

one pion exchange potential (see e. g. Berestetskii andAhkiezer 1965 p509)

Fig. 1

The non relativistic potential U( r if) is represented diagramatically by Fig. 2

Fig. 2
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Now calling f(_) and z,bi(+) the scattering solution of (7) the relevant

matrix element for Bremstralung is (Goldberger and Watson 1964 pp. 202-209)

M =< ‘bf(—) !Vnuc(f—;), wi(+) >

This is equivalent to calculating the graphs in old fashioned pertubation theory

of Fig. 3 below

M=H %?“..*‘ + O = - Goeaee Time

Fig. 3

Is this however a complete solution? If the Bremstralung calculation were to
be carried out by old fashioned pertubation theory in a pure field theoretical
framework there would be many more graphs not included in the procedure just

described. For example the graphs of Fig. 4

. Time

s . I p———

Fig. 4
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These graphs constitute what are called exchange effects. The usual
way to deal with them is to extract, in the non relativistic limit, an equivalent
transition operator for each of them.

Now if the procedure leading to Vnucl. (K) in equation (6) is applied to a
vertex like the ones in equation (4) that vanish when both nucleons are on the
mass shell, it is easy to see that one would get zero in the non relativistic limit,
The conclusion is that there is no one body T.R.V. transition operator. It is
therefore necessary to consider exchange graphs from which one can then extract
two body T.R.V. transition operators. Because of the short range two body
nature of these operators their effect is expected to be just a few percent of the
usual one body operators. So it seems justified fo expect only small effects

from these vertices in nuclear physics as predicted by Bernstein et. al. (1965).

2.3 Calculation of the two body T.R. V. transition operators

2.3.1 The Lee Vertex

In this section the non relativistic transition operators corresponding to
the first term of equation 2. 4 will be calculateci. A vertex of this type has the
theoretical appeal that it arises naturally (Huffmann 1970) from a more fundamental
theory of T.R.I1. violation such as the theory by Lee (1965-b) of T.R.I. violating "a"
‘particles. To stress this point and also for the sake of notational simplicity the
notation used in equation 2. 4 will be modified. The form factor F{(qz) =‘Fi s(qz) +
F;v(qz) 3, will be called FI:ee () = Ffee(qz) + FLZe(qz) % and all the operators

arising from this vertex will have a sufix "Lee" so the first term of the equation 2. 4 is
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written

)

‘ -
<P, O g lp > = <T LTy

2
@) tr - fzﬂplup) (2. 8)

The matrix elements corresponding to the graphs of Fig. 5 are calculated

by applying the ysual Feynman rules
p! DX
2

Py
Fig. 5

Following Tadic and Fischbach (1972) the calculation is carried out from the
outset in co-ordinate space. Alternatively one could (Chemtob and Rho - 1971)
carry out all the calculations in momentum space and transform back to co~ordinate
space at the end of the calculation.

So the matrix element given by equation 2. 8 is written in co-ordinate space.

By using

—_ . - '
0 =-i ‘Y :: i = -1
szi (xl) y lplu gpp{ BV zppl(xl) ip, z,bpl and BVA(xl) i kvA(xl)
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there results

‘ S 3
<p|J“Aip>=—F <0)<b,<x1)v T ta Yy

ox
Xl 1p

aA BA

] A
Xl Xlﬂ Bxl

The form factor F (q ) is of course not known and was approximated by its value

at q2 =0.
Using as interaction between the pions and the nucleons the form

- .4
d =it ) v, 3 v T

the matrix element corresponding to the graphs of Fig. 5 can be written as follows

| -
. 4 4 4 .- s 3 |
= ‘fzﬂfd X dx, dixg {M(Xl)qu;(O) (—Bxl-; axlp)SF(Xfxz)ys vz, ]

, aAp aA v (lﬁ

U i - I .

axlu %‘ (XZ x3) [w (X3)75 ‘D(X )J [FLee+ Lee S z 3(1) 3@) 2. 9)
and

S 3
- lfzf/ﬁ x d * a’x 3L [Beg)vSp ey x, ( *. 9%, )yu‘p(xl) L
1p "1p
' aAp BAH a)}
axlM - axlp AF 2-x3) w (X )y ¢>(X )J (1) (2)[ Lee +F Lee %z (2.10)

The isospin factors have been written outside the wave functions for the sake of

notational simplicity. Of course they should be written inside the brackets in an

obvious manner.
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After the manipulation described in Appendix 2-A, the following

T.R.I. violating two body transition operator is extracted

R
F
TRV, Lee » » =P
—C 5. g & ‘
Viee® = - Bt o (FT) 2%, 3’7(r12)+ 1©2) @.11)
1 - -
where E(r ) is the electric field and v’(r ) = - L L 5 + 3 e -Mrl rz
1 12 4m ]rl—rzl Irl—rzl

The transition operator of equation (2.11) can now be expanded in multipoles by the

procedure described in Appendix III. The contribution to the electric multipoles is

TRV fz Y

Lee 4r 3 qa (=€ “”Hﬂ)
Lo ( )z[L(2L+1)] 23 (% %}Z drij ( -

1]

(EL)

(L)

o 32 L] 11
YL_l(Rij)@Yl(ri],)] _ zI:J' [(5(2L+1] ; zR

1 L- 1[
1L-1 1§ i

—?:0' O'JR

Ly |
[[YH(R ij>@Y1<ri>]‘ﬁ’@[o@c ](Z’J " @.12)

fZF'V

exp (“pTys)
TRV L d
B g = -2 & K I_::l% 0w ( o )

']
J1 L Ly L i %gL 2L
R 9 g M RpeY el + Ry ﬁ [ser+nl*) 17

@) @) @* - [(@L+1) 2 71%(L-1 1L
':[YL(Rij)®Yl(rij)] @[01@03'] ] Mt [ 167 ] §1L 1 }

‘ )
L-1 (1) | @)
I‘i]' Rij [YL—l(R,ij) Y [Gi ® O'j J ] M ( (2.13)
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It should be noted at this point that the transition operator of equation (2.11)
is exactly the same (apart from constants) as the one obtained by Clement and
Heller (1971), although they use a quite different approach. One can in fact at this
stage take over almost all the conclusions of this work as far as the consequences
of this particular transition operator are concerned. These conclusions together
with an analysis of the implications of the transition operators to be derived in the
next chapter will be given in Chapter 4.

To finish this section two further points will now be remarked upon. The
first one is concerned with the Siegert theorem. One might think that the Siegert
theorem, which prohibits exchange effects in the electric multipoles is violatéd
by a contribution such as the operator in equation (2.12). The Siegert theorem is
discussed in Appendix 4 where it is shown that although these exchange contributions
are small they do not vanisﬁ identically. The second point is much more important
and concerns the possible effects of two and three body T.R. V. potentials, due to

the vertex we have been discussing. This matter will be discussed in the fourth section

of this chapter.

2.3-2 The Lipshutz vertex

In this subsection the transition operators arising from the second term of
equation 2-4 will be calculated. A vertex of this type has been discussed by
Lipshutz (1967) in his analysis of possible T.R.I. violating effects in proton Compton
scattering. The notation used in equation 2. 4 will therefore be modified to stress

this point. The form factor F;(qz) = F{S(qz) + F;V(qz)‘gz will be called



Llp(q ) = Llp(q )+ F (q ) gz and all the operators arising from this

vertex will have a sufix "Lip". So the second term of equation 2. 4 is written

<o'| &, 19> = «wd Py @) 6, qlu) (2.14)

Lip Lip

Using the same procedure described in 3.1 the matrix elements corresponding

to the graphs of Fig. 5 can be written

4 4 4 = €2 2
= [ fetey e o +9)0 Sl XY b (x,) ]

3 Au(xl)

o, A, x) [Py ¥ ()] FLlp +F Llp*eqﬁ%, &) (2.15)
14

&, -2
fzf_[[d X d %, d X [l,b(x )'ySSF(x xl)(~82 +52) Gpvwxl)]

d A“(xl) [F o B(1)] ) 16
5%, A x,%g) [Blxgvdx P8Py FLip * Frip % (2. 16)

After the manipulations outlined in Appendix 2-B, one can extract from the

matrix elements (14) and (15) the following leading term.

2t

2
v ()“‘;ﬁﬁ

Lipshutz [, BE) 0y @) P, + 0, (r2~r1),3’(r21) B(z))-B, ]

711)‘?23 ‘s }+(2-—->1)+

+%f—2— 1[0' (p xB(r )) -7 )'3‘+cr (r T )9‘01- (B(l;l) X%l):,
{F ‘6+F (2§+(2-—91)+

Lip U)(Z)
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L CFL
é:lp [ y B(r ) (r -rl)%rlz) -O' . (rz rl)g{rlz)B(r ) p1]( 12_ (Ej)xaz

g’V
+

L — hoed A — -y - 7 - -
+ [o,- 6, xB @) 0, @, T4 @ )-0, @,r)Pr, ) 0 BF) x5, )]

4m

Mgy ¥Y, T ) -
Again by using the techniques described in Appendix 3 it is easy to expand the

operators of equation (2.17) in multipoles. However, no further use will be made

of the operators in equation 2. 17 in this thesis. This is for two reasons. Firstly

because there is no detailed theory that predicts matrix elements of the form (2. 14)

and secondly because all the operators are seen to depend on P;> that is,velocity

dependent and therefore their effect is expected to be small compared with the operator

given by equation 2. 2. Since no use will be made of 2. 17 the very lengthy expressions

for the multipole operators will be omitted.

2.4 Two and three body operators

In this section the possibility of two and three body T.R. V. forces arising
from T.R.I. violation in the electro-magnetic interaction is discussed. A calculation
of two body forces is given in a paper by Huffmann (1970).

Two body forces arise from a large set of graphs a selection of which is

given below in Fig. 6.

Fig. 6
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In those graphs the bubble vertex represents the T.R.V. vertex and the
point on the other end of the virtual photon is the normal electromagnetic vertex.
Because of the extra e in this normal vertex, it is possible at least as a first
approximation to assume their effect to be small compared with the effect of the
transition operators derived earlier in this chapter.

The three body potential arises from the graphs of Fig. 7

(a) (b)

Fig. 7.
To derive the three body potential from the graphs the method of Clement

and Heller (1971) will be followed. Using this method it is trivial to derive the three
body operators from the transition operators already presented.
Firstly the case where the bubble in Fig. 7 represents the Lee vertex given
by equation 2. 8 will be considered. The three body operator is obtained from the
‘s T.RV,. . . .
transition operator VLee (E) in ecquation 2. 11 by replacing E (rl) by

- . ) e(i" -T.)
E el Py .
(rq '?1;]“3’3 £+ (g)) (2.18)

-
The right hand side of equation 2. 18 is of course the electric field E produced by

the third nucleon in the position of the first one. By doing this replacement there

resvits
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g RV *fZF,L‘;e L +3% ?1';2, " 2
Lee (1T T T 5 0 ) 4 FEp O BT Byyehy)stey)
+ (1 —> 2) 2. 19)

In the case where the bubble in Fig. 7 represents the Lipshutz vertex given

Q
by equation 2. 14, the three body operators are obtained by replacing B(rl) in equation

2.17 by
- = A
Bey= S (3010 gy i |
i°73 173
where
Z
+ ——— - U s 2.21
p= %(u m) =0, e) B @.21)

Equation 2. 20 gives the magnetic field produced by the third nucleon in the position '

of the first.

By doihg the replacement indicated above there results

TRY. oy . o o[¥ 3”"3'(?”?3) &3 - | 6’3 o @, )
. - i G srane y— Y
Lipshutz 172" 3 4m2 1 ‘rl-r3]5 173 e -r] 12
> >
- HE. (ot 3 B
uc'r) (r.-r,) 4
+=—eila B 9= (x,-r,) ~ ps= c-(r-r);(r )+
5 173 > |3
n l 3[ 111 r3[ 2" V2 "1/ 21
HOg (f;“;;,) ?

+0, (v 1)97(1‘12 3 - i?3 5 Y1 '3) li" '3 xp1 ]
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S A Z
FLp®a 2@ TLpSe)!
v = 2 2. -»
. pao, @ -r) 4]
r—2Peprls 2L ey, 2 b @) S
Am2 1 I, T, 5 173 7} rJS 2 7271 12
-> -»
u?‘ r, -r) o)
_ 3 173 - 3 P 4 (-i)
0@ -r)%er ) |3 @ -r,) - p p.] == (&x
1’77 2 7 > 2
272 2 kl_rs 1°3 lrl‘r3l 17 2 3) (2))z
T g.@- 2
+ L;p Lo | Py x 3#% fl 51'3) ( ?3) - qof 5 1|% ®y” 1)3(1“12)
4im rl—r3| }rl 3‘
- >
/,LE?- (r,-r.) a
- (T )P, ) o] 3 T -T) - p X7, |]
2 7271 127 1 -+ =7 15 173 > =13 1
‘ T r3| 1'11'3
B8y, X3, + @ 2) 2. 22)

As is clear from ecquation (2.19) and (2. 22) the part of the three body potential
connecting the third nucleon is a long range one. (This is obvious from the féct
that the exchanged photon in the left hand side of each graph in Fig. 7 is a massless
particle). This implies that its matrix elements between states diagonal with
respect to A-2 nucleon orbitals (Clement and Heller, 1971) will have a factor Ze
instead of the factor e for the two body potential. Theréfore for heavy nuclei
(and therefore large Z ) it is perhaps fair to expth that the three body potentiais
will be the dominating effect of the T.R.1. violating vertex.

This is unfortunate since calculations with three body potentials are com-
plicated. However as explained in Clement (1971), it is possible to replace, in

certain circumstances a three body potential by a two body equivalent potential
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although of course this involves some approximation. We shall return to this
subject in chapter V where the case of a heavy nucleus (Ptlgz) is treated.

In chapter IV attention will be focused on light nuclei where the effect of
three body potential is small compared with the effect of the transition operators
presented earlier in this chapter. Before this however, in the following chapter |
another possible mechanism of T.R.I. violation is examined along the same lines

as the analyses presented in this chapter.
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CHAPTER 3

THE N*Ny TRI VIOLATING VERTEX

3.1 Introduction

In recent years much attention has been paid to the role of nucleon
resonances in contributing to the magnetic moment of nuclei and to the g~decay

Gamow Teller matrix element. It has also been found that the N*(J =—§— T=-3— M=1236)

2
resonance is an important factor in possibly removing the need for a hypothetical
¢-meson in the one-boson exchange potential (see Green and Schuvca‘ri
(1971) for a survey).

Much earlier Barshay (1966) had suggested that the NN*y vertex might
violate T.R.1. invariance. He calculated the conéequences of such an assumption
on detailed balance for the reactionsy +d -+ n+pandn+p >y +d.

In this chapter, the possible effects of T.R.1. violation in the NN*y vertex
on y-transitions in nuclei will be considered. In the approach used in this chapter the
N* resonance contributes to the effect only as an intermediate state in the Feynman
Graphs. In Appendix 5 however a different method of calculation is outlined. In this

alternative approach the N* is introduced explicitly in the nuclear wave function.

Also in Appendix 5 the two approaches are compared although no detailed calculation

is presented.
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3.2 Effective Interaction

3

The N*(J = -23- T = 5 M = 1236) is a nucleon resonance with both spin and

isosping- and a mass of M = 1236 MeV., The Rarita Schwinger (1941) formalism

will be used to describe the N*. The resonance has four charged states with

charge 2e, e, 0 and -e. To describe the i-spin, column vectors \I’A are

introduced for the isobar. The corresponding spinor for the nucleon is denoted

%, thus

P = (3.1)

The N*N7 vertex is taken to have the form (Sugawara - 1953)

3¢ o
=. G = al Gz o
iNN*” p %\Ta v BXA T} g*)Toz \IIA 3}5\ 3.2)

where the Ta are the following matrices

- = = -
1 0 = 0 [ o 0
0 '%. o i J% 0
T. = v T = 3 T = | 3. 3)
111 0 2 L 0 3 0 -2
3 NEY Iz
0 i
i 1] | o i 0 0




and ¢ o is the pion field.

-2~

The interaction (2) conserves charge and is the one usually adopted

(e.g. Salin - 1963).

The NN*y vertex is taken to be (Salin - 1963 and Gourdin - 1966)

L o o
NN'y=m‘~Il

3
A

——
=

where F

A -3
Ap K

below.

A

A_ is the electromagnetic tensor and € is a matrix given

[T

T.R.I1. is violated if € is complex and so the T.R.1. violating vertex is taken

to be

7 T.R.V.

-i
A NN*y

B

B 0
_ fe -ex
2
0
0

0 —
0
Y VW
ek MO
NN
0
A

Al

and the normal time reversal invariant part is taken to be

7

NORMAL-i
NNty m

0 0
e+ 0
PP "

0 W%

0 0

'YM'Y

_Y

F

Ap

—

i
m

0

m

p

+

-

€|

g1~

€
p

0

0

()

&€
P.D
0

0 .0y

Ty

% 5|

3. 4)

F

With these interactions it would appear to be an easy matter to calculate the diagrams

of Fig. 8 below. In this figure the line z represents the isobar and the vertex

is taken to be T.R.I. violating i. e. given by equation (3. 4)

N
%

lyl!
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(a) (b)

Fig. 8

The only difficulty is that normal dependent terms in the Hamiltonian do not
cancel exactly with the terms coming from boson contractions (Lurie -~ 1968).
This is a difficult matter the solution of which has been given by Takahashi-
Umezawa (1953). Their result is that one should (wrongly) assume that H = —4{»

and use the common Feynman rules with the following propagator for the N*

S, (%, -x) =2 (X, -x [(v —ya>+<v'aMm 6%, -x.)
Fo 12 uVAFX123Mz ,ﬂ 172

(3. 6)

where

a = - -B—M 6 — Q- - 3 3 3.7
il )[W vyt 3M<v 7,2 ) ; 2 2 6.7
and

(x) = d4k
AF (27r) S’ k +M2 - i€
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Now using the usual Feynman rules one gets for the matrix element

of Fig. g-a

({4 4 4 Gf -
Ng:f% x,d x,d . [),’J(xl)}/”'y5s}\p(x )T( )u(x )]F x2

3 AF(X2'X3)~ N -
BT g v by ] (3. 8)
2p _
where
T me*T 3.9)
@) @)

The suffices (1) and (2) refer to particles (1) and (2) respectively. The matrix
element of MII can be written down but'it is easily verified thaf the operators coming
from MII will be the Hermitian Conjugates of the ones coming from MI This was
also the case for the operators derived in Chapter 2.

The i-spin dependence can be further simplified as shown in Appendix 6.

The results for the normal and T.R.I1. violating (T.R.V.) cases are given below.

T2 e L, 2)

(T a) (2))TRV ~/— 20(‘6(1) 32 (S, (€ e+eN &) +2[_(e -€ €N+(N)(‘ xe) +

+ = ¢~ € +€ @) 3.10
ﬁ(NﬁNppH’z : (3.10a)
T 7 ) T (%( )@ 2 )

)(6 +e +€N+€N) toE F (e +e -eN e Vx

+
Z

0 2)NORM 2 Ta0

+—1-(*+ —s*—€)1,(2) | (3.10b)
Jo NN P p z ’
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Obviously if ep and €. _ are real then the T.R.I. violating term vanishes.

N
Substituting the N*(J = — T == M = 1236) nucleon resonance propagator

given by equation (3. 6)info equation (3. 7) the non-relativistic transition operator

corresponding to the graphs of Fig. 8 are obtained. However, because

the N*(J =-§ T =-§— M = 1236) propagator is so complicated the whole calculation

is rather long and the transition operator includes very many terms. To present

the results in an orderly fashion it is convenient to divide the propagator into six

parts as follows.

S =X+Y+Z+ U+V+K

F
py
where
X“*‘M[W 3 “v] Ap ) (3.11a)
Y=~~Y-a[5 --v he T A+ 5 (vpav—yvap) B (x) (3.11b)
1
= - N — - P)
Z=-73 4 (YMBV Y, p)AF(X) (3.11c)
U=- —~2—lé v, 8 8.11d)
s HV
V + (y-0- M) ———2 a d AF(x (3.11e)
3M
K= 2L [y3-%3)+y.3 vy ] 6" (%) (3. 11%)
M2 BV v pv

Among the transition operators listed in the Appendix 2-C only the leading ones in
the static limit are taken, that is, only the operators in the lowest order in (——I%) are

taken. On this basis the terms stemming from (3. 11c) and (3. 11e) are all neglected.
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The transition operators from the part of the propagator given by (3.11a) are
larger than the transition operators from the other parts (equations 3.11b, 3.11d and
3.11f). The transition operators from 3. 11la have a factor M . The corresponding

M- m”

factors in the operators deriving from 3.11b, 3.11c and 3.11f are respectively

m 1 m\ 1 -
Mz_mz I and (M) e Therefore the terms arising from 3.11c and 3.11f
can be neglected since they are of the order of 10 “ smaller than the terms arising
from 3.11a.
In the final result given below the operators stemming from 3.11a and 3.11b

combine term by term so that the overall factor is

The resulting transition operators are given in the form

= +
WW1 W2

They have been separated according to whether the isospin space part is itself

odd under time reversal or not. Thus W2 has ( x%} which is T.R.I. violating.

W B)=~ ——————— B (r.)0 xa,J'(r ){ )(e € +€_~€ )

178 e U 1T % Nz 17 T20%0) %) G o TN N
> 2

9 * * @), 1 GE(-1) = . > & o 177

+2 (€ -€ ~€+€)g '} +% ————B(r.)q x{T,-T,) o, - K(|r,-r

3 NN P Pz 3 u(M-m)Zmz 17171 T2 2 Irl rzl 172

{f 20 Eay¥e) % . €+€N Nt (€N <N“€ ve)e, e (3.12)
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> (-)2 Gf - i : (1 (2)
W_(B) = Ba,) SR, ) {4 (@ -c -+ ) (4 ),)
2 3 Memyzm? L2012 VB p NN
72
2 Gf =2 > 2. 1 2 oy A i (2)
te ———= B @) (@ 1) d ==, K(IF -, |) {—<e + )(z xa ),
3 poemem? L 12 R EF SRR €N N
(3.13)

By using the techniques described in Appendix 3, the transition potentials
are expanded in multipoles. The results are listed below. The electric-multipole
stemming from Wl(B) is written W1 (EL) and analogously the magnetic L multipole

is written W1 (ML).

1 Gf . L 5 L
Wl(EL) =3 ————-————-——z-rl (eN €N—€ +€ ) iZJ K(L+1) R.. [Y (R )@(cxcr)]

p (M-1m)2m < M
. N K(fe.-r.|)
i, 4k 1 Gf - _‘ L i)
(&, ~ g, 1T, +3 3 23 1 (EN Y% +€) E Rl] .- x|
p(M-m i 73
. *L
[ YL<R13>®{[qx<?i—?j)]cj- (ri—rjnz + [crj X (f’i—rjﬂoi- <f'i—?j>s;}]M +
3 K(Fr‘.-?.l)
1 Gf 2. L L i
o . A— (s e+€ -€ YK ) LR, T/ (‘6 3 .0)
3 (M-m)2m> vz ' N N (L+1 i<j 4 lri—rjl (1)" @)
*1L
(v, ®) 8o, x @ -rplo. @+ oxer)lo e ] 1 (3.14)

2 Gf i L : L
R S Sy 4
Wz(EL) = ( )3 5 3 (€p €p <N+ €N) K(LH) P (r )R [YL(R )@(0‘ 0)]

(M-m)2m p i<j
(1) () 2 Gf Gl '
e x4 (e € -5t K ) |z~ | K(le,-r.|)
z 3 (M-m)Zm f EN ~ (L+1 <y L3 ‘ i’
o) L2 G i s %
R [Y<R>®<cr—a)] B, ty T TN K
z 3 (M—m)Zmzr NN )
L\E p KOEFD —
(i:i) I R, ¥ ® )®([ -?)X(G—O)JX(F ?)}] —3 M x2W
i< lr -7, 3

]

(3.15)
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Analogously the magnetic multipoles are

T,
1 Gf 2 * * 5 L-1
W, (ML) =~ —————— = i (,~¢.~€ +¢) [ @L+1)L]* & R] [ L ®;o0xC )]
1 2 u(M—m)Zmz 3 cN <N PP > ij Uiy
i - 1 Gf 2. * & L-1
B -tHfe )+ ()5 =i (€ e e+ )L+HLF IR Y, R.)®
7z 7z ij 3“(M_m)2m2{§ (N €N P P i<y ij L-1"7ij
pq ] i FLR(ET D
{[oi X (ri_rj)]cﬁ"‘ri_rj)zz"L [cr].x(ri—rj)] cri-(ri—rj)‘eZ } ]M lf'i"i‘?jl +
1 Gf 2, k% R Y
T 2 (e € e - L TR, [Y -7 )o@
*3  myzm2 V3 (e ~e reme) [L@L+) ] - Rijl[ 1-1®;p Olloy xE ) Joo @ i}l
\ . (k7D
slo, x EF)]o T UT, (Bs )~ 1
R EUTIOTY oy Te0 P B e .19
i
W_ (ML) = <+)3—-—9f-———- [L(2L+1)% (€ Y + )2 R
2 3 2 3 <N N
pM-m)2m

Y ]L* ® . 0) 2 GE
- . ya S -
[L—l(Rij)®(0j ) M%(ri]) (e x%7), +()3“: -m)2m> ,/ (5 "% i\r”N)

[L(2L+1)]% z lr r | K(lr —r ) RL 1 (Y _,®, ) (0"0)] a® 1(1) +

i<j
2 Gf i B 3> > ’
s (€ -€~c+ )[(2L+1)] Z;R Ty LRO@{E-T)x
3 (M—m)Zmzu B p €N N i< L=1"ij i’
" K([F,-r.]|) . -
[erryxe -0 " —= B« (3.17)
] ] M |E-r|
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The effect of the transition operators will be given in Chapter 4. In the
next section of this chapter the three body T.R.I. violating potentials arising from

the NN*y vertex will be briefly examined.

3.3 Two and three body T.R.I. violating forces

In this section it will be shown that the T.R.I. violation in the NN*y
vertex also contributes to low energy nuclear physics in the form of two and three
body T.R.I. violating potentials between the nucleons.

The contribution in the form of a two body T.R.I. violating potential stems

from a set of graphs a few of which are shown in Fig. 9.

}M?—

—

W

Fig. 9

The wavy line in each graph represents a virtual photon. The NNy vertex in
the right hand side of each graph is taken to be the normal electromagnetic vertex.
This extra photon vertex contributes an extra small factor e in addition to the small
N*Ny T.R.I. violating vertex. Therefore the effect of the two body T.R.I. violating
potential is expected to be small with respect to the T.R.I. violating transition

operators already derived.



..35...

The three body T.R.I. violating potential arises from the graphs of Fig. 10,

below

e 4

(2) ‘ (o)

Fig. 10

As already explained in section 2. 4 it is easy to calculate the three body
potential from the transition operators given by equation 3.12 and 3. 13, by using the
—
method given by Clement (1971). This method consists of replacing B(r1) in WI(B)

-
and W2 (B) (equations 3. 12 and 3. 13) by the magnetic field produced by the third

nucleon in the position of the first, viz

-5 - -
f)?(r y=— {3 H% lrl.rsl @ -T.) - u-—~——-—03 (3.18)
I r 3 |5 103 r <% |3 :
o 7y | [7; <%
where
1 1 Z
== W tp)-= @ -p 3.19
p= g (”M Mp) 5 (Hu Pp) 3(3) (3.19)
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The resulting formulae however are very complicated and therefore will
not be written down here. Note however that the part of the three body potential *
connecting the third nucleon is a long range one due to the virtual photon shown in
the left hand side of the graphs of Fig. 10. As already explained in section 2. 4
this implies that its matrix elements between states diagonal with respect to A-2
nucleons orbitals will have an extra factor Ze due to the normal electromagnetic
vertex. Since for heavy nuclei Z can be very large the effect of the three body
potential for these nuclei is expected to be larger than the effect of the transition
operators derived in section 3. 2.

In the next chapter the effect of the transition operators derived in Ghapter 2
and in this chapter will be estimated. Because of the effect of the three body operators

discussed above, the calculations are confined to the light nuclei.
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CHAPTER 4

ESTIMATE OF THE TRVYTRANSITION OPERATORS
IN LIGHT NUCLEI

4.1 Introduction

In this chapter attention will be devoted to the experimental consequences
of the T.R.I. violating transition operators derived in Chapters 2 and 3. In the
next section the experimental method to detect a possible failure of T.R.I. which
has been used in this University will be discﬁssed. This method is based on a
theorem due to Lloyd (1951) and presented below.

Consider a "mixed y-transition' between two nuclear levels, that is, a
transition such that both the electric multipole operators E(L+1) and the magnetic
multipole operator M(L) contribute significantly. One can define the reduced
matrix elements of the transition operators by the Wigner~Ekhart theorem (see
Brink and Satchler (1968) pp 56). Fof example

L
<Pl E@+ > = ()

>< >

qimiLM,Ifmf tprE(L+1)szi

where I and m refer to the spin and its third component of the state indicated.
The result given by Lloyd is that if T.R.I. holds then the ratio between

the reduced matrix elements of the competing multipoles is real. Thus, if

T.R.I. holds the imaginary part of the "mixing ratio' 6 vanishes (Im 6= 0),

where 0 is defined as*

0= <t | E(L+1)|| ;>
24T TE>

X
This definition is in accordance with the convention of Lobov (1969) and Frauenfelder
and Steffen (1965).
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Conversely (Lobov ~ 1969) if T.R.1. is violated thenIm 6# 0. Both
statements however ignore final state interaction effects. This point is taken
up later in this chapter.

The chservable effects of an imaginary part in 6 were first worked out
by Henley and Jacobson (1958). Their analysis is based on the result that the

expectation value in the final state of an operator Q with respect to T.R., 1.

odd
(that is T"QT_1 = - Q) vanishes if T.R.1, holds. This result is valid if the decay
is weak (in the sense that first order pertubation theory is adequate) and if final
state interactions can be neglected (see Sakurai (1964) for a discussion).

Table 1 below, taken from the work by Henley and Jacobson (1958) presents
in the second column a list of T.R.1. violating quantities which can be measured
in an electromagnetic transition from a nuclear level A (spinI A) to a nuclear

level B (spin IB). The quantities K, £ and ¢ are the momentum, the circular

polarisation and the linear polarisation respectively of the emitted y-ray.

Degree of orientation

y-ray polarisation Quantity measured QA Op
%1) @1 xI 1 9
None K-Ip) KIzxI)) .
(EEIA) K1, x1p) 2 1
ircul 2 D) (K 1 1
Circular K- ) ( -IA xIB)
K D E1 xL)@g.Ll) 2 2
e 2) K1y x1p)lyly
Li Rl x@) K1.)(c I 0
inear (K. A x €) K A) (€- A) 3

TABLE 1
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The first column indicates whether y~ray polarisation measurements
are necessary and where they are which kind of measurements (circular or linear)
is required.

In order to understand the mea n ing of the third column the concept
of "degree of orientation'is introduced below. Other concepts to be used in the next
section will also be discussed here.

Consider an assembly of identical nuclei subjected to a strong magnetic
field in a certain direction and at a very low temperature. Due to the interaction
of the magnetic moment of the nucleus with the external magnetic field the assembly
becomes "oriented", that is, the probability a_ of finding a nucleus of the assembly
in a state \Im > (assume for example that the quantisation axis is in the direction
of the magnetic field) varies with m.

Consider now the density matrix of this assembly p =% | Im> a <Iml and

m

its matrix elements <Im| p|Im'>. One can expand <Im|p|Im'> in terms of the

k
"statistical tengors" Rf(] ) introduced by Fano (1951).

<Im|p! Im'> = T (_)I-m <Im1l - m'{kq> R(k) @.1)
k.t q
»
or
Rék Y2 2 '™ <am1- ol kP <Im|p | Im'> (4.2)

In the representation chosen above <Im] p] Im’> is diagonal

(<Im| p| Im'> = a_ Gmm,) and therefore only tensors with q = 0 survive, viz

L&) 1

o = Z0)

_m<ImI-m|k0> a
m m
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The "degree of orientation” of an assembly of nuclei is © if in equation 4.1 the
greatest value of kis .

Returning now to Table 1, the degree of orientation shown in the third and
fourth columns gives the minimum degree of orientation required for the statesA and
B respectively so that the expectation value, for the assembly, of the corresponding
T.R.I. violating terms do not vanish.

In the next section the experimental method used in this University to
search for a possible failure in T.R.I. will be explained in detail. It aims fo
detect the first T.R.I. violating term shown in Table 1, namely (E;-IB) (R}IB x1I A)'
The degree of orientation required for the initial state A is Q AT 1. This is
obtained by subjecting the nuclei to a strong magnetic field in a certain direction
(taken for convenience as the z-axis) at very low temperatures. The measurement
of the orientation .QB of the state B is carried out by detecting a second y-ray
emitted when the nucleus decays‘from the state B to a third state C (see Fig. 11).
This is effected via a measurements of the dire ction k2 of the second y-ray through
an implicit correlation involving \fi;' IB). The overall quantity measured is

—> —> : > > =
therefore obtained from (Kl. IB)(Kl- IB xI A) by replacing jB by K2 and is (Kl- Kz)

- —> ; :
(K .K2 X é’) where S is a unit vector in the direction of the assembly expectation

1
value of the angular momentum of the state A, that is, <I,>. This will be seen

in detail in the next section.

4.2 Angular correlation from oriented nuclei

In this section it is shown in detail that examination of the angular distribution
of y-rays emitted from an oriented assembly of nuclei can be used to detect a violation

of T.R.I. Of course as mentioned earlier there is always the possible effect of final
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state interactions that simulates the effect of T.R.1. violation. This will be
considered briefly in the last section of this chapter.

Consider two y-rays emitted in succession and with no perturbation of the
intermediate state as shown in Fig. 11 and consider the probability W(1,2) of
detecting photon Y1 in detector 1 in coincidence with photon Y in detector 2 as

in Fig. 12, The assembly of nuclei is considered to be oriented by a strong

1{‘34 detector 1
Za

!

?

O/\?— detector 2

magnetic field B also shown in Fig. 12.

' 4
) ’[32 ,/
1 \ . ,/ ;
L4
Y
1
= I
y
’Y'2 N
b 1 S\
f AN
A Y
Fig, 11

Fig, 12

The function W(1,2) is called the angular correlation function and can be

decomposed as follows,

W(l,'2) = w® a,2) + W(l)(l,z) . + W @,2) (4. 3)

0=9 =< 21.1
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(k)

where each term W' "(1,2) is proportional to the corresponding statistical

®

tensor R 0

(0) 1)

Lobov (1969) has obtained expression for W* '(1,2) and W '(1,2) in the case of

Yy and Y, being mixed transitions of multipolarities M(Ll), E(L1 + 1) and M(LZ)’

E(L2 + 1) respectively, in terms of the reduced matrix elements already defined.

Waz

k{even)

(L. L. 1T1)+2 Re 5(1)F (L, L+ LD + |6(1)l F (L +1L +111)}

| R 1
A) 2
{Fka,szIfI)—z Re 8 (2) Fk(L2L2+1 L1)+ 16 @2)] F (L, +1L,+11 ft)} P, (cos 912)

“. 4)

' 2
= Z{F, (L LII-2Re @) F, L.L_+11]J)+6@)]
(1+|5‘)(1+|5')k k,22fI k272 tI :

F) (L3iL, + 110}

GP
[Iiaiﬂ)]%

d P, (cos 91 ) 5
Z .3 o k 2 2 k+1 k
s [m xm,] Im 6 ) Toos 5, [1_<(k+1] Fo @ L+111)

4. 5)

-
In the two formulae above §, 1?11 and m2 are the directions of the magnetic field
and the directions of photons (1) and (2) respectively. The coefficients are

I+1-1 ;
L L k L I k
Fk(LL' LD = (- VI [ eren el +1) @i+ (2k+1)]2 1 'o) {I I 1

f

}

L
¥ )
11\(L L+ I1)=(- ) [(2L1+1)(2(L1+1)+1)(21+1)(21i+1)] <Lj1L;+1 1| ko>
I, I 1

L1 11+1k
I I K
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In equations (4. 4) and (4. 5) the angle between the directions m1 and m2 is denoted

by 6__ and Pk(cos 612) is a Legendre Polynomial.

12

(1)

The constant P in equation (4. 5) is related to the statistical tensor RO

by

@RI+ I . +1) %
P i \31 i R(
0

1)

©)

The terms W' ' (1, 2) for an arbitrary £ can also be easily obtéined (see Appendix &

and Coutinho and Ridley (1972)) but these more general terms are not needed here

nor for the experimental analysis given in this thesis (Chapter 5). This is because
the method of orienting the assembly of nuclei by applying’ a strong magnetic field

at low temperatures produces negligible R(g) for £ greater than £ =1 (Siegbahm - 1965).
From equation (4.5) we see that the effect of T violation manifests itself through the
first transition of the cascade. (Therefore it is essential that the first transition

be of mixed multipolarity). The effect is seen to be proportional to E defined below.

The proportionality constant consists of some geometrical factor plus some nuclear

factors refering to the second transition only.

= —— ) ‘ .
E 1+|6(1)|2 Imo@) 4. 6)
In the next two sections -Im 8 (1) will be calculated for the transition operators
derived in Chapters 2 and 3. It is therefore convenient to relate Tm 0 (1) to the
matrix elements of a general T.R.I. violating trangition operator.
The majority of mixed transitions met with in nuclear y decay are mixtures of

T
a magnetic M(L) and electric E(L + 1) multipoles. In what follows E RV(L + 1) and

MTRV(L) are the electric (L + 1) and magnetic (L) multipoles stemming from a T.R. 1.



violating transition operator. The electric (L + 1) and magnetic (L) T.R.1.

conserving operators are ENOR and MNOR respectively.

(L+1) (L)

From the definition of the mixing ratio (first equation in this chapter) it

follows that 8 (1) is given by

NOR TRV
NOR TRV
<1{l™m @) H11>+ <I[]M(L) ||Ii>
NOR NOR TRV TRV,
(<l P s <l e (<l e e <t
NOR NOR : NOR NOR
<I|IM(L) 1> <t o iz | <l <IIIM(L) |l1>

TRV TRV NOR

where <I || E(L+1) [ Ii> and <I H M(L) HI1 > are imaginary relative to <IHE (L+1) HI,I
or <IH MI;ILC;RH I,l >. Therefore the imaginary parts of 6 (1) ( Im 6 (1)) is
’ TRV TRV
Imb (1) = 8 (1)¢) SEgagli> o <tiMa) (112 @7
NOR OR
<tllgpon > <t Il
<llE I : .
where 0__(1) = is the real part (Re 6 (1)) of 0 (1). Hence (4. 6) becomes
N NOR
<i||m [|1.>
(L) i
TRV TRV
£ (D) o) <UIE gyl <l g il @8
—5 NOR ) NOR ’
1+]61) | <UlE gl <t

From equation (4. 8) it follows that the best experimental situation is one
in which the transition under study has |5 @ I ~1, Also from equation (4. 8) it is

seen that the effect depends on the ratio between the T.R.I. violating multipoles and
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the corresponding normal ones. This is useful since it implies that it is
possible to use any one of the many déf'mitions of multipole operatoré found
in the literature (see Brink and Rosé (1967) for a review)tocalculate these ratios
without worring about phase and normalisation problems. One must however take
note of these conventions when using values of d from experimental data.

In the next section the value for E in equation 4. 8) will be calculated for
the case in which the T.R.1. violating transition operator is derived from the Lee

vertex discussed in Chapter 2.

4,3 Consequences of the Lee Vertex

In this section the possible effects gf the operators derived in Chapter 2
(Equations 2.12 and 2. 13) will be considered.
Full advantage will be taken of the fact that these operators have the same

form as the one derived by Clement and Heller (1971).

In equations (2.11), (2.12) and (2.13) the value of F‘LZe(O) is not known,

For the purposes of this section we take

’

Iy e

Foo 0=— (4. 9)
m

This value obtained on purely dimensional grounds is usually referred to in the
literature as a "maximal value'" for the form factor (see Clement (1971) and
Huffman (1970) for examplé).

Now a close look at equations (2.12) and (2.13) will reveal that all the
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multipole operators are such that as with the usual multipole operatore an
additional factor KR 0 (where R 0 is the nuclear radius) is introduced when there
is a unit increase in multipolarity. Thus to compare to the normal transition
operators, it is sufficient to consider the ratio of the lowest multipole operators.
This fact together with equation (4. 8) shows that to obtain an order of
magnitude estimate of the effect it is sufficient to estimate the ratio between the
matrix element of the T.R.1. violating electric and magnetic dipole operators and
the corresponding matrix elements of the normal transition operators.
As was remarked before the transition operators Vggev obtained in
Chapter 2 have the same form as the operators obtained by Clement and Heller (1971)
who make an equivalent comparison (see equation (4) in this paper and compare with
equation (2.11 ) in this thesis).

Allowing for the difference in proportionality constant, the following

estimates are obtained for the different matrix elements.

2ef2 (_;J;)3 1
poom (MRO)zl

<(E- l)Lee >

KR )
<Oy > '——zifz £y =,
' (UR)
SEDyorm~ ™ ¢ By

=M DyorM ™~ m
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where RO is the nuclear radius, K is the energy of the y-ray, p is the mass of
the pion and m the mass of the nucleon.

With these estimates the ratios necessary to evaluate expression (4. 8) can

be calculated. The results are

TRV
SEDpee

<(E.1)

— =i1.25% 1072 (4.10)
NOR

TRV
< (M- >
( 1)Lee

<0 DRor™

=i 7.25 x10°° (Ey in MeV) (4.11)

With these figures it is possible to make an estimate of the effect given

by equation (4.7). We have taking 6~ 1 and Ey':.'a 1 MeV

. <IHETRV @+1)}]1.> <I”MTRV“I. >
Lee i (L) i o =D
B= 2 NOR - NOR ~ 10 (4.12)
e {<llENOs e <t R

This value of E isrmuch toosmall to be detected at present, even allowing an
extra factor of 10 to allow for the crudity of the estimates.

No estimate for the transition operators stemming from the Lipshutz vertex
will be given. This is because as remarked already in Chapter 2 all the transition '
operators resulting from the Lipshutz vertex have a factor (-r%) and therefore

their effect igs expected to be even smaller than the effect of the Lee vertex.
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In the next section the effect of the transition operator stemming from a

possible T.R.1. violation in the N*Ny vertex will be given.

4.4 Consequences of T.R.I. violation in the N*Ny vertex

4.4,1 Introduction

This section sets out to obtain a realistic estimate of the effect of the

trangition operator VTRV

N*Ny (B) stemming from a T.R.I. violation in the N*Ny

vertex. This transition operator (eq. 3. 12 and 3. 13)was obtained in Chapter 3 and
expanded in electric and magnetic mﬁltipoles (eq. 316 and 3.17).

Before proceeding with the more detailed calculation it is worth noting

T

that the effect of the electric multipoles stemming from V. fl\:;r (B) are negligible

N

compared with the effect of the magnetic multipoles so that the following relation

holds.

TRV TRV
<
My, ©> < Ego @H)>
NOR >z NOR | (4.13)
<M L) > <E (L+1) >

To see this an estimate using the method of Clement (1971) will be made for one

TRV .
N*Ny (B) noting that all terms have the same

term only of the transition operator V
order of magnitude. Firstly, inspection of equation s (3.16) and (3. 17) reveals that
all the multipole operators vare such that an additional factor K R 0 (where R 0 is
the muclear radius) is introduced when there is a unit increase in multipolarity.

Thus to compare to the normal transition operators, it is sufficient to consider the

lowest multipoles.
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The first term of the transition operator in equation 2.13) is

(a) Gf

-3
~()

- 1)L
3 pm (M- m)ZmJ (€ € €N+€N) [B(r ) 0rl (1’2)]%(1'12)(B x%
This, expanded in multipoles gives

2 Gf

@ gy o] L
W @)= 02 S K(Lﬂ) 2 i) ry [ R0 @[
0,

(e -€ ~€N+%\I) % XB

(a) Gf

2
Wy (ML) =73

J_‘—. : 'p'ENH ) [ LEL+1) ]% 29"(

(M-m)Zm 7 i<j

W) o (D) 50)
(Y, 1 ® 8@l @7 =8,

On comparing the two operators (W; a) (EL) and W (b) (ML)) with the corresponding
ones resulting from the special scalar meson vertex of Clement (1971) it will be noted

that they have the same form, Therefore, by using the estimates given by Clement

(1971) we have

TRV
< (E- 1)NN*y > (KRO)
o @ . (4.14)
<@1) > @R
and
< 1>§f§; (R )

- (4.15)
<@ %> @R’



Since m >> Kthe inequality (4.13) is justified and therefore the equation (4. 8)

reduces to

i6 <1|| MmVHIi>

N (L)

E =
2 NOR
1+(6 <I{| M
+[6] | @)

(4.16)
1>

L
In the remainder of this section a more realistic estimate of the effect of

18
the transition operator V (B) will be given. A particular transition in =~ F

N*N vy

has been selected for the following reasons. Firstly because this is a transition

in a light nucleus and so the effect of the three body potential is minimised.

Secondly because this. is a "simple' nucleus from the shell model point of view

(the wave functions of certain levels are essentially a closed core with neutrons and

protons filling completely the N = 0 s and p shells and the two remaining particles in

then =1 s = 0 or n= 0d shells). The chosen transition is from the (J =2 T = 1 E=3.06)

tothe (J =3 T =0 E =044) levels. This choice considerably simplifies the problem

because the change AT =1 in isospin and the two particle nature of the levels implies

that only the operators which are antisymmetric in isospin coordinates contributes.
4The nﬁcleus 18F has been studied both experimentally (see for example

Warburton et. al. (1967) and references therein) and theoretically (Kuo and Brown

(1966)). An earlier theoretical study of this nucleus was made by Elliott and

Flowers (1955) and the wave functions given in this work will be used for the present

calculation.
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I=2 7=
J:O T:'
J3=3 T7:0o
J={ T=o0

Fig. 13

The level scheme of 18F is given in Fig. 13 above and the wave
functions for the levels indicated are given in the L-S coupling representation

in an obvious notation as follows
Y(T =0, J=1)=0,82 (dz) Bs - 0.07 @) By 016 @) o 10,02 (ds) 13y
(T =0, T =3)=-0,59 (d2) 135+ 0. 03 (dz) s 0. 12 @) 11F+0.79 (sd) 13y
BT =1,3=0)=0, 84 @) s~ 0.38 @) 3P + 0.39 &%) s

BT =1, J=2)=0.65 (@) 1D +0.33 (@) >°P - 0.20 @) >>F-0.61 (sd)>1D

+0.22 (sd)°°D,



4.4.2 Operators

Given the cietails of the last subsection it is easy to extract from those
operators in equation 3.16 and 3,17 the ones that contribute by using simple |,
techniques of angular momentum algel;ra, as explained in Appendix 7. The
relevant operators are all antisymmetric in isospin space. The operator

W1 (ML) given by equation (3.16) contributes with

W, (M- 1) = Wf‘) (M- 1) + Wib) (M- 1) +W1(°) (M- 1)

1
where
(a) Gf 1,  «x % 3 2 ol i, av
(M-1) = —— = [ (¢ ~"re) (-=F T (0x0). & -%)%..)
u(M-m)Zmz V3 NN p p AT i<j i" i M Cz z) ij
wPar =2 —SL 2 (& & s)&——)’%(“")z 0. x g1
1 3 23 L NTND 0o00l” (G%C
p(M-m)2m <]
i i _ _
(&, -%) Iri rle(lri rjl)
© ~rav_ () Gf ) Li1nf112
W1 M 1) = 3 ——-——————*M(M_ 5 \/= l(eNi\I€+€)[6X5X3] {21»1}(000)

v
2 1) 1[o80] Y Ve @l -6, Irr) kx5

. A
1<j

Analogously the operator Wz (ML) given by equation (3.17), can be written

WM 1) = W(;)(M- 1) + wg’hw 1) + Wéc)(M. 1) + W<2d)(M- 1)
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where
Yrn= 2 G0 3% o TL gy
walr 1) = () 2 P 7566y () 2 Loy @0 )
(b) i = Z Gt _i-_ 9&'_ _ #* _§_ % 5 4 ong
Wy (M-1) = () 3 T 5 NN G i; EREN ENUASAY

“1 .
[O.i—OEiJM (2 O B(J))Z

(c) Gf 2 10\ 1. %
M- 1) = () 2 —8L g (e -E ey war1t;01) (~—)% T
3p(M-m)2m2 P p €N €N GOO)!M i<i
* - ¥
©a) gy (8, x3), |TT I K(rx, )
(d) 2 -
(Ml)—-()3 rx51(6€€N+€N)W(111121 000 2
p(M-m)2m

X1 ~ - -~ |
(Y o 0000) Ty 7 IREZD & x3)

At this stage two points should be noted. Firstly, that the operators listed
above are only the leading ones (see Chapter 3 and Appendix 2. c¢). Secondly, that
due to the radial dependence of the operators their matrix elements would diverge
if it were not for short range correlations. These can be taken into account by

introducing a hard core rc and by performing the radial integral from this value _
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This introduces an uncertainty into the calculations and it was therefore decided
to simplify the whole calculation by using an approximate procedure due to

(Magueda and Blin-Stoyle ~ 1967), This procedure will now be explained for W(la) (M- 1),

(b)

The results of similar calculations for the remaining operators W (M- 1), W(C) (M- 1)

1
and Wl(a)(M-l) to W{d) (M-1) will be quoted. First, write W{a) (M- 1)
(e ome ¢ +¢ )
3 i(g.~€. € +€
(@) Gty NENDY sk *1 3§ i
w1y = __ Gt 3 : - _
1 D e 2m G E 0x9)y G, \é‘z)'f’(” Ty
i<j
4.17)
where
w2y
-1 1 1 e
C Bery= o St o

The method consists of using instead of the operator (14) the long range one

*k E S
3 i( - -€ +€ ) 1 . . .
@) ar 1y . _Gfp YD D 3.3 R S | ,
U_1 (M-1) = p(M-m)m 2m () F iij (@ Xcrj)M ®,x%) (4.18)
where F is defined as
m .
« 2
! Paprp) 4r (%) dm)
F=_tc © o (4.19)
2Ry |
3 0

ia) (M.1) can be considered as the first term of a "multipole"

expansion of the operatore W;a)

The operator U

(M-1). By doing this we get the following operators

UM-1) = U(A)(M. 1) + W(B)(M. 1) + w© D)

(M-1) + W/ (M- 1)
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v®ary =q, (2 (0;x0 )M %) %)
1<]
by *1
i<j
1 1 ' *1 3 H
v orn=c " & 1ilqealVe Y, )Ty &l-b)
i<j
A~ *1
vPary=c, B £ xg)), [ ¥, E)6(0 -0 )]y
i<j

The calculation of the reduced matrix elements of the operators above was
performed by using the techniques of angular momentum algebra. We have for

example that the matrix elements of U(A) (M. 1) is, using standard notation,

Ms> =
<n; LnylAs s, 8J%, 3 T M, ||U ) (- 1)““11227‘5 s Sngng

PP
3 % @ _, @, ' L
=i 627G, <, TM | -5, )|3%,T M, > {35+1)] gg‘g
2 @s’ 1)
1 1 e :
ey ? pse? ( e 1)) 7 s 5,5 [opa, Pl s s 550 ns
6 2 &6__,
Ll, "

It was found that the last two operators have matrix elements which are one
order of magnitude smaller than the first two, because the small values of the reduced
matrix elements <n111n 212 A H Y (r ) ”nl 1 N> they contain. So they were

neglected.
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The values of GA and GB are

% 3k
YN %™
P P
G =0.01
A 3 2m

and

GB=-0.03

% * ’
i (6p—€p-€N+€N)
2m

In calculating this number the following values have been taken from

Gourdin (1966).

G=2.071{=13 M=1236 MeV m = 938 MeV p =138 MeV

4,.4.3 Results

The following results are obtained:

A)

<J=3T=0]| w' M1)||g=2T=1>=(-)i3,38 % 0,013

. % %
i (eN- EN- ep+€p)
2m

ES *
i€ € ~€ +€ )
<J=3T=0 HW(B)(M.l)llJ=2T=1>=(—)i2,29x0.03 P gmiNﬁ\I

The normal operator to be used must have the same conventions as far as

phases and normalisation is concerned as the TRI violating ones. As explained in

Appendix 3 the M- 1 normal operator is

.NOR _ 3 & 1 e > 1 I N ( O SRS
M1 = ) —27n—§{2(1+tz)>11+[2(un+p A RTRR A AN
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and the relevant matrix element is found to be

a3 T = OR o T=1> =2 (3,8
<J-3T-OHMN (1)”J-2T-1>—-2m(4w) 5,26

Therefore
TRV ¥ *
o< ]| (- 1y HIi> - (e e gitey) 3
(-1) NOR = S 4,5 x 10
<1/ jeru >
A "max’imal" estimate is of course
- * * K
l(Ep—spfi\THN) = e and therefore
TRV
<l or Oy > 3
. Y
(-1) NOR = (-)4,5x 10
<{la-1)" >

This is a relatively large number and the result is therefore very encouraging.

However, for this particular transition 6 _ ~ 0,06 and therefore

N
TRV
, 6N <HM(1)H> )
E=(-) =2,7 x 10
1+1612 | <] | malOR|p

4

This number is a little outside experimental possibility at present, but not far

enough to preclude the experimental investigation in a few years time.



4,5 Final State Interaction

As was emphasised in the first section of this chapter Lloyd's theorem is
valid only as far as the electromagnetic interactiqn can be treated in first order
perturbation theory. If high order r:adiative corrections and final state interactions
are taken into account a phase 7 appears in the "mixing ratio” 6= || emwhich
has nothing to do with T.R. 1. violation.

The magnitude of this "spoiling" sphase has been studied by several authors
(see Henley and Jacobson (1966) and Hannon' and Trammell (1968) for example).

This eff'ect makes it possible for a T.R.1. odd operator Q to have non zero expectation
value even if no T, R.1. violation occurs (see Sakurai (1964) for a discussion).

Thé important fact about this "spoiling' phase is that it can be calculated at
least in principle and therefore its effects can be subtracted out from possible TRI-
violating effects.

The phases introduced by radiative cori‘ections were first calculated by Henley and
Jacobson (1966). The contributing physical processes are shown in the graphs of

Fig. 14 below, and the "spoiling’ phase introduced were found to be roughly 10-6 and

s 7

@ ®)

Fig. 14

therefore negligible.
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The effect of the interaction with atomic electrons was calculated by
Hannon and Tramme!l (1968) and found to be important. The most important
process is shown in Fig. 15 where in the intermediate state one atomic electron

is in an excited state leaving a hole as represented by the dashed loop

Fig. 15

The contribution to 7 due to the graph of Fig. 15 where the electron-hole
pair occurs in a particular electron shell was found to be proportional to the
internal convei‘sion coefficient (Rose - 1958) of this shell. Since the internal
conversion coefficient decreases with energy the effect is expected to be smaller for '
high energy transition. |

The magnitude of 7 was calculated by Hannon ‘- and Trammel (1968) for two
low energy Mossbauer transitions (the 90 keV transition in 99Ru and the 73 keV

1
transition in 93Ir). The calculated values are

NRu) = - 6,5 x 1073

ﬁar) ~0.9x10°
These values are .seen to be of the‘sa.me order of magnitude as the expected values
from a possible T.R.I. violation. | We must howevér remember that those values are
for very low energy transitions. For transitions with energy around 1 MeV the values

of n should be at least one order of magnitude smaller.
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4.6 Conclusions

In this chapter the effe_cts of the transition operators obtained in Chapter 2 and
3 have been calculated for a light nucleus where the effects of three body operatoxrs
are minimised. Three models of TRI violation have been considered but only a

"maximal' violation in the N*Ny vertex was found to contribute significantly to an

imaginary part of 6 , namely.

5 = Re 6)x10'3

The effects of final state interactions were also considered qualitatively and
also found to contribute an imaginary part to 6 , we shall call éF o For transitions
with an energy of about 1 MeV the value of GFSI is approximately
4

bogr ™ [6]x10

In the next chapter an experiment performed at the University of Sussex in

192Pt will be analysed.
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CHAPTER 5

ANALYSIS OF AN EXPERIMENT IN 192131:

5.1 Introduction
A recent experiment gt the University éf Sussex (Holmes et. al. (1972))
has used the angular correlétion techniques described in section 5.2 and the
object of this chapter is to attempt a theoretical interpretation of the experimental
results. For experimental reasons described in the paper by Holmes et. al. (1972)

the nucleus chosen was 192Pt the level scheme of which is given in Fig. 16 below.

+
3
+
4
E-2+ M1~ 7
+
2 A
/
E- 2 -~ ’Yz 71
e~~E- 2+ M1
/__o'R
PN 2 A
E-2 Yo ¥
0
Fig. 16

Because the energy differences between Y1 and 'y’; and between yll and vy N

are small the two cascades shown in Fig. 13 are detected simultaneously. From
4 a
now on we shall denote the quantities referring to the cascade +_1L,z[) + Ya 5 P + by
3 2B 0

a prime. For example we write
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A <bpupllE2]ly, > <, 1B 2[]y,>
0 = and O =
<Y M1 fly, > <, 1M1 ] ]y, >

The experimental result (see formula 4 in Chapter 4) is
/ -3 A
|senn’+ 0,19 senn| < 4x10 (5.1)

where sen n/ = %ﬁr and analogously for sen 77.

It is the specific aim of this chapter to interpret this experiment in terms
of a Phenomenological two body T.R. V. potential. If the violation does derive
from the electromagnetic interabtion, we have seen in Chapters2 and 3 that in heavy
nuclei the effect is more likely to appear in the form of a three body T.R.1.
violating potential. However, as stated there, such a three body potential can be
simulated by an effective two-body poteutial.

The most general two body T.R.I1. violating but parity conserving potential
has been given by (Herczeg - 1965) and it should be noted that all the terms in this
potential are momentum dependent. The simplest terms arising and to which the

remainder of this discussion is restricted are given below.

P S o =g Z
Vg, = @Ty) ©p70y) Thy () +hyry) 2 4y +hary, (1) %)

+hy (T, [zé) +% 2Z)]}. [a+bo O %) ] + Hermitian Conjugate  (5.2)
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- -
B g

1 gl The fact

In (2) the h1 (rlz) to h4(r12) are arbitrary functions of rlz
that the potential is momentum dependent implies that as it stands it is not

gauge invarignt and the consequences of this will be discussed in the next section.

5.2 Gauge Invariance Requirements

For well known reasons, in nuclear physics one uses the Coulomb Gauge,
where the electromagnetic vector potential X satisfies W . & = 0. By gauge
invariance we mean that everything should be unchanged if one makes the transformation‘
- ‘
Z —> A + W G where G is an arbitrary function, More precisely we require that given

an arbitrary G there exists g such that

Hidb @ +wa)=o B+ HBR)] o @ 5. 3)

In Appendix 4 it is demonstrated that for the case of a system of point particles, g

is required to have the form

= e (i)
}g—-? G(ri) 5 (1 +‘6Z. ) (5.4)

This gauge invariance requirement has powerful consequences for nuclear physics.
The so called Siegert Theorem (Siegert (1937)) is one such and it is examined in
detail in Appendix 4.

Here we note that gauge invariance requires that the total Hamiltonian of

the system has the form
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, - )
Hy=H +V, . +H®E) JA/L? (A) 5. 5)

In this expression H_ is the usual strong Hamiltonian, Vt v is the T.R. V. two

0
body operator,\?! 0(Z) is the usual electromagnetic interaction and .ﬁ/t;v (X) is

a two body T.R. V. interaction between t.he electromagnetic field and the nucleons.
—Vt.;. (K) has to be introduced so that the total Hamiltonian HT given by (5. 5) is
gauge invariant.

» <
The importance of ‘/ (A will now be illustrated with an exanple. Assume
t. v.

that

A% =z (F,l - ?j)- (f;’i —'5].) h, (lf’i-"fj! )+ h. c.
v. o,
(i)
In mmpaxumﬁamaas.eglt/. @;w&QQMAhamxam%u&%M&Wn
.o L.V, .
- i), » |

-p )
— == 1+
pi pi 2 ( '_ %z

, ~ - .:.L.. (i) = l G A L I
nvmpnzeGéjmagza+% )= K g @e®, Ty ) By

Now it is easy to verify the following two remarkable equations

v, =i [s ) HO] (5. 6)
-3
Y @ =i(s,# ®)] - 5.7)
tv
where 9
Py
HO=2. T + .Z}-V(ri.)
1 1<)
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and
. M.
Ne 8 PR Yoo 1 (i) _i 2
Ho® =52 5 @A) v AG) ) 5 A4E, )+ E g 5 R B
with
. _ - (i) N I
Mi~‘(u“+up) W, =B, and B =\V x A
and finally
- 5 = d H(r) _ _
$=G Z 2mH (I x’jl) where —=— = -r h (r)

i#j

Because of equs. (5. 6) and (5. 7) the T-violating effect stemming from Vt v
cancels in first order with the effect stemming from"}/ (K) as shown below.
t.v.

Let ;bk denote eigenstates of H = H0 +V and ¢>k the corresponding

t.v
eigenstates of HO' Then the matrix element between two states zpi and zpf of the

total electromagnetic operator can be written
- > -
M, =< tbflﬁ‘O(A) +’>t/v Aly>= <u D v>+<p |V Dy >

the first term in the preceding equation becomes

- iS
Writing z,bk =e ¢k,

> - = 5 ,
<Dy, > = <oyl H B el w0 W0 > - <o ]t [sAD] 5>

bS] <¢f lﬁé(X) l ¢i> - <Q%"/t-v (K) Igb,l> because of (5.7) and the second term to

first order in (G) is

<Y Blo> = <6 1Y @ Bl 52 <o VT Do >
t.v. t.v.

t.v.
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so that Mfi becomes

31T R ] ~ 1y > - )
Mﬁ = < l,bf(f({(A) +7 ‘. (A)! l,b.l> = < ¢fL¢'é(A)]¢>i > to first order in G

and therefore there is no T—viola‘cin,:@,«'r effect in the matrix element.

This example shows how important Vtng) can be and therefore we next
examine the possibility of determining Vt. . (X) given solely a phenomeﬂological
Vt. v, The cancellation we have seen only happens if equations (5. 6) and (5. 7)

are both satisfied. This only occurs for a T.R.I1. violating potential of the type

given in equation (5. 2) if eithexr h2 = h3 =h =b =0 or the strong potential V in H

4 0

has no spin or isospin exchange terms.
The general problem of constructing a gauge invariant combination V ¢y +
a—?
Mv (A) from a given Vt v is trivial when Vt v does not contain an isospin
. . . - - -1 '/
exchange term. In this case the gauge invariant replacementp — P-e A 5 @A+¢7)
. '5/ - | .
leads directly to b v (A). The general case was dealt with by Sachs (1948) who
first expressed the charge exchange interaction in terms of the space exchange
operator px in the Wheeler (1936) representation and then made the gauge invariant
-y —~p g 1 Z . .
replacement p —» p-e A 5 (1 + ). A simpler and slighly more general procedure
. . . . ’1)/ N
is explained in Appendix IX, However as shown there the terms (A) are
t.v. —
not uniquely determined-.?arts of it are found to depend on functions i (rirj;/\ ) of

E such that

F ooV a=6r)-acr)

This is also true for the procedure given by Sachs (1948) mentioned above (see

Bohr and Motelson (1969) page 392 for example). In fact the only way of obtaining
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P
QY b v (K) uniquely is by going back to a field theoretical basis using Feynman

Graphs from which V,c v itself has been extracted (see Appendix 9). This clearly

cannot be done for a phenomenological potential V . Progress can however still

t.v.

be made as shown in the next section.

5.3 Use of Siegert Theorem

As was remarked in the last section (and in detail in Appendix 9) the
terms Vt. v. (X) cannot be uniquely determined from Vt. v. and there are generally
terms which depend upon arbitrary functions F (ri, rj,_[;\,).

One could however argue, that in a phenomenological treatment a simple form
for ﬂ: (ri- r]. 7\’) could be chosen and the calculations carried out. This would indeed
be the case, if it were not for the fact that for the nucleus Pi:l92 being considered
particle wave functions for the levels are ﬁot available, (Fhefe are however good
collective model wave functions) ¢} i

However some progress can be made. Thus use can be made of the Siegert
Theorem (see Appendix 4) which states that the electric multipoles resulting from

the expansion in multipoles of # O(A) +K v (A) can be written as

EL)+E,  @=i[H+V,  DK)] (5. 8)
where ‘ '
9 i i
—_— @, "L [L+1 L
Dy, B = (zi:) 5 A+, ) % e oy Cm®
(K™
where x. = and K is the energy difference between the two levels.

L~ @L-1)!!
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Using the Siegert Theorem one obtains the following expression for the

electric multipole matrix element.
SYLEM+E @4 > =€ - <p lDK]e> (5.11)

wheref, and E are the eigenvalues of the totai Hamiltonian H  =H_ +V
f i T t.

0 V.

corresponding to ¥ P and Y - If we now expand the Y's in terms of the eigenstates

¢ of the unperturbed Hamiltonian H0 one has

SR e W

<¢fIDL(k)I¢ <9
Ei - E

M t.v.‘

<$ | E@+E_ @ >=E ~€)[<¥ble >+

p# i b

<oV o 1#,> <o, Inle >
E -E
f p

+ (5.12)

p#f

Note that it is not claimed that E t v, (L) has no effect. This claim, usually
found in the literature is based on the fact that one can calculate the effect without
knowing the form of E t v, (L) and is clearly misleading (see Appendix 4).

Since there is no Siegert Theorem for magnetic multipoles we have

<o M@)o > <9 [V, lo

e AM@ M, @ 4> = < M@)o+ T FE l
p#i L 4
<g¢lv, s >< |ML)|p.>
T T tv. T B L +<¢f|Mt y (L)l¢i> (5.13)

E.-E_
l.

p1S f
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The "mixing ratio" & can then be written

< ‘be E(L+1)+Et. v (L+1)H¢i>

© 5 ; M g ei(eL_?_l te
0

(e) (m)‘
L

° =2 M@+, @9, > =%+ % wn T
t.v. i
= lole'm (5.14)
where
<¢§HE(L+1)H¢i>
6, = 6 A
07 S T [To> 20 18,1 ~1el
and
@ ay - <gllo wlle ><eflv, e, >
ig ), =[<elID  ®]l4>] Hii E-E,
<g V. o ><¢|ID_ ]le>
LY ' t.v. ;-Eu L+1 i 5.15)
AL -t 1]
<p M@y le ><¢ |V _|o.>
. (m) _ . -1 f u utotov. i
te; " =[<el IM@[le, >] ME;“ ) +
<glv, o ><¢ |lm@)|le >
+ I LA C N — +<g | IM, @] le >l (5.16)
E, -E f t.v. i
p#f f Tp
192

5.4 Calculation for Pt

Using (15) and (16) derived in the previous section it is now possible to

calculate sen nand sen 77’ needed for use in the experimental result (1). First of

all the sums in (15) and (16) will be replaced by just one term resulting from the initial
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admixture of levels ¢2+ A and ¢ otp This is probably a good approximation because
of the small energy denominator ( AE = 300 kev) and the fact that there seem to be
no other nearby states having the same spins and parities as the states involved in

'

the two transiticns. The result is

e © =<¢2“‘B“Dz("Kl)”‘?jst> <Gpin |V, L 180
1 <q§+AllD2m<l>H¢3+> A
. N <@gl MO8 1> <ty 1V, 18,4p> <¢2+A”M (1)H¢
1T <, M| g> A 9 yipl lM(l)H

and analogously a similar expression for 'y:'L transition. Using now the transition

probability (Brink and Rose (1967))

2 ‘ 2
|<gllE-2llo > [<o ] IM)le>]

P('yl)-":‘]:Kl 5 + 3 =3

’ 2 -1 1
=4K1l<¢fHE-2H¢i>| [Z+ ‘§|5(71)| 2]

together with the above expression for ¢ the following expression is obtained for sin g
\

5 ~2. %
D aglV, o 10, > K [P K @+ (80|

smn = A K |Po) K]

1.1-2
EX A

K Bt | <a,llm  f 94>
S0 <o, M) e g0

(5.17)
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and . / i > 1 é 5 L} "2‘.%
n e <00l V, o 18,6, > K [P X argloapl™)
N K | P K 5 -2
A L R LA
/ 7]
Ky 00 | Bupll g L o> 6.19)
0 (v,) '
1 1 <¢2+B!|M<1>l |64 >
In (17) and (18) all the values expect < ¢2+B|Vt. v, |¢2+A
and g~ can
<oipl (MO [0, > <¢2+BHM<1>| |6 >

be taken from experiment. The values are

PO/)

/
K1 = 0,3085 MeV,; K1 = 0,6044, ——(—75 = Branching Ratio = g—

/
6 (r) =6=7,3 b(yy) =0 =-2,1

This then gives
: ¢2+B| '¢

sinn = ¥0,76 A ‘.51

<o g [V o 1054, > e
A 1

sin n'=7F 11,8

Taken with the experimental result (1) by Holmes et. al. this gives
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i<o IV lqs >
2¥B! "t.v. 2tA , -3
- <
+ 11.8 (E,f+0.19 gl) 4x10

1

Further, unless there is an accidental virtually complete cancellation, an upper

limit for the matrix element Vt v, can be given, namely,

< 0oapl Ve o Byra™
A

< 3.4y x107% (5.19)

Using the value of 4= 0,2959 MeV one has
i< > o~
1< 0501V, o 19504 > ~100 ev.

i ix el "< v > i .
In the next section the matrix element ¢2+B' t v, |¢2+ N evaluated

5.5 Evaluation of the Matrix Element

Up to this point it has been possible to avoid the consequences of our ignorance
of the wave functions of the levels of Pt192. In this section this is no longer possible
and very crude simplifications have to be made. ‘

The method that will be used consists in replacing the two body T.R.I. violating
potential by an equivalent one body potential (see similar estimative in Bohr and Mottelson
(1969), pages 259 and 393). The specifié way of doing this is explained below.

First we expand ¢ ot and ¢2+B in a sum of Slater determinants constructed

A

from single particle orbitals ul = mULM_S MS'Z; MB) where m is the principal quantum

L

number and,ML, MS and M‘g are the z projections of the orbital, spin and i-spin

quantum numbers.
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and ¢ _+

i i
. 1di
where A2+B and A2+ A are the Slater determinants buildingup ¢ 9B oA

respectively and bi and a, are the expansion coefficients.

We divide the matrix elements <¢ ot Al [93 o+B > into three groups of
terms
&k )
> =
<Ogial Vi v e E ak 1 (Az“zA Vg | Aep) +

@) (m)
* z am bn (Az"‘A 'Vt. v. ‘AZ"'B )+
m,n :

+ T a b (A Rk A .
o V.

In the first sum over the pairs (k,1), the Slater determinants A2+ A(k) and

® are identical. In the second sum, the pairs m and n differ by just one

BB
orbital and in the (o,p) pair they differ by two orbitals.

Being T.R.I1. violating, the potential Vt v has no diagonal matrix elements

(see e. g. - Bohr - Motelson (1969)) and therefore

®)y

2 a4, OV 1 4" o
k,1 :
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The third term involving a sum over (0,p) where Vt. v. connects Slater
determinants differing by two orbitals cannot be taken into account in moving to
a one-body approximation for Vt; vl since a one-body operator cannot connect states
differing by two orbitals. We shall therefore neglect this term.,

~ n
lv .'¢2+B>=n‘?nambn(Az+A lVt.v.lA

2+A

It is now possible to define a single particle potential which has the same
matrix elements as Vt v when calculated between Slater determinants differing by
just one orbital. Indeed the matrix element of Vt v between two Slater determinants
differing in that the orbital u(i) in A,  is v (i) in my

iffering in 3j e orbital u(i) 2+A s V(i A2+B s

<Borp Vi | 2+Bm > = V (direct) + V (exchange) (5. 20)
V (direct) = 2 ffd(k) d@G) u*(i) w, *(]) V (l v w (]) 5. 21)
v (exchange) =~ Ebﬁ(l) dtu*h W *(J) Vo @0 v6) w0 (5. 22)

where the sum over k runs over the common orbitals, On the other hand the matrix

element of é. single particle operator F = Z f(i) between the same states is
' i

< 8,0, P U7] 2,5 = fa@ v t0) v 6. 23)


http://0
http://4.lv

Comparing (21) and (22) with (23) permits the definition of an equivalent one particle

potential v

NAIE Al (direct) + Ve (exchange) (5.24)
where
eq. - —_— - a - . . -
v (direct) = i S.d(J) Wﬁ G) Vt. v. ,3) w,_0) (5. 25)

voe (exchange) =- 3 2 g dg) Wk* G) [Vt. v, P +p* Vt. v.] wk(j) (5.26)

o

In (26) P is an operator which exchanges i and j,that is

P v () =p@) vi) (5. 27)

In order to define an equivalent operator that is the same for all (n) and
(m) determinants one has to make a further simplication. The sum over k in (5. 25)
and (5.26) has to be restricted to be over the orbitals which are common to all the
n,m determinants. We shall assume also that the. common core is spherically
symmetrical in orbital angular momentum and spin. This last assumption greatly
simplifies the problem because now one can say that v has the following simple

form, purely on symmetry grounds.

eq. _ bl R o (i)
VI = Dby mpp + P T @) + I [hy ) B BT ) T,

(5. 28)
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As an example we take the first part (and the only one that contributes in

this approximation) of a 2~body T-violating potential derived by Huffman (1970).

<> ,
(r.—?.)
2 G I —3L @-p. -1, -0) (6.8 -% %% % +hc.
Viv. " @ i Iri-rj! ®; pJ)Q Mrl rll) (% 0J) Gfl)%j) ‘%1) 4)) y¥heo
(i#)
. 29)
In Appendix 10 it is shown that
eq. > = 1 day) N-7Z z
V== ~T, Laqg- =2
GK ?{pl T ar, thoe}da- = ‘é(i) ) (5. 30a)
where’
K= -27 fQ([,LS) 5'3 ds (5. 30b)

and ?(ri) is the nucleon density.

N-Z z
A ® (i)

We neglect the part proportional to and write the first part as

dp(r.)
eq. _ -GK < 3 1 i - .
v = o= {f&pi X o & the }_mGK,l[_z p ) HOJ
1 1 1 1
(5.31)
where
2

Ho=2 P +ude-r|)
0 R I7j

i 2m

Substituting (5. 31) in (5.19) we have

Ke! Kmpo{ <3x107? (5. 32)
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It is interesting to compare this with a theoretical estimate obtained by

Huffmann (1970), namely

”2 g v._v
G =~ 2= _ F_F (5. 33)
m (27r)3 i1 73
where
3 gra)’ 1
v o : v @ra)” =
Fl = (4ra)”, F3 = =0 and o 137
-X

We can take Q(x) in equation (5.29) as Q(x) = A —3— where x = p e, This
X

rol-
form for Q(x) agrees well with the curves presented by Huffmann(1970) for l r 1—r2| > 1F

(Fermi)with A = 24,4 x 10_4. The value of K given by equation (5. 30b) is

K=- === x10 (5.34)

With the values of G (equation 5. 32) and K (equation 5. 33) we. obtain

IGKmpOI ~5x10° : (5. 35)

Therefore by comparing equation (5.32) and (5. 35) we see that the experiment by
Holmes does not rule out a two body T.R.I. violating potential having a strength of
this order of magnitude. More accurate experimental work is clearly needed.

To conclude this section it is interesting to compare the strength of the
Huffma.tm potential with the strength Gp‘ v. of the parity violating potential derived

by Michell (1965). We have

|GmR0l ~1073 | . 36)
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and

-7
| Gp- , MRy ~10 -6 37)
As can be seen from equations (5. 36) énd (5. 37) the Huffmann potential is relatively

very strong. This is due to the fact that it derives from an assumed "maximal

violation" in the electromagnetic interaction.

Conclusiox_ls

This thesis has studied the effects in low energy physics of a possible T.R.1.
violation in the electromagnetic interaction. As shown in Chapters 2 and 3 T.R.I. violation
effects appear as a two body short range transition operator or as a two and three
body potential. It was shown by means of semi quantitative arguments that the
fhree body potential operator probably dominates in heavy nuclei but has smaller effects
in light nuclei than the T.R.1. violating transition operators.

In Chapter 4, therefore, attention was focussed on a light nucleus and an
estimate of the effect of the T.R.I. violating transition operators derived in Chapters
2 and 3 was made. The effect of an assumed T..R.i. "maximal" violation in the N*Nvy
vertex was found to .contribute significantly to the imaginary part of the "mixing ratio"

6ina 4 MeV M1-E2 vy transition, namely

Imbé~Re 6 x10 °

Such a value is in principle within the region of possible experimental

measurement,
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Finally in Chapter 5 an experiment carried out at this University was used
to set an approximate upper limit on the strength of a phenomenological T.R.I.
violating two body poté’ntial. It was found that the experimental limit (Holmes
et. al. - 1972) does not rule out a possible'_I‘_,_Ij_. I. violating two body operator
derived by Huffmann (1970). One should however keep in mind that due to the fact
that the wave function of 192Pt are not known in any detail only a crude estimate was
possible.

In general it can be concluded that if the accuracy of experimental data can Be

improved by about an order of magnitude significant information about the origin

of T.R.I. violation will be forthcoming.
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APPENDIX 1

NOTATION

The Pauli Metric is used throughout this thesis. So a four vector

2

-» -> -
fy = (f, ifo) has norm f2 = fﬂ fp =f f - fO . The Dirac y matrices

satisfy

, ..—.:25
{’Yl"' YV} Ly

1
and v =Y,7,Y5Y 0 =50 Drpv, L

y
pv

Natural Units are used throughout so that A=c¢ = 1.

- -
The cross product 2xb signifies the usual vector product of 7 and .

The simbol [2 @ ] an; is the tensor product of 2 and b, thus

The isospin operators T+ and T are defined as follows

+ +) () -) +)
= k4 X ‘
T 1) 1(2) + 1 2) where

1 .
1 =5 (3 * l‘Zy)
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The identities below are also used

zZ - P zZ
= K4
1) Y =2T )

- Y
<¥(1) 1(2) RIS

Z = z -+
4 =
‘Zl (1(1) (2))‘1(2) 2T +1
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APPENDIX 2

MANIPULATIONS TO EXTRACT OPERATORS

A. The Lee Vertex
' We start from equations (9) and (10) of Chapter 2, viz

—_—

A 1[50 Z gl [ 1)

31;

tv

S [ ] (48T 0] 7,7, (Az-1)

'L 5 35 X
Ay vf ﬂf‘l dx ‘)"J {‘”"J ¥, S"‘ %) (‘;J*" )X ‘Hzﬁ] [ Ml) )A,u(’ﬁ)J

g a
XI/M )k‘j‘
8 (%) {W",) “‘{55"{’8)} ey Ty [ 3 tF) ft)J
' (A2-12)
b9 substituting in (A2-1) and (A2-1a) the propagators
YAt s Al
( -
S ¥ (zf‘)‘l ‘(d Q L
Q% mleis (R2-2)
A"Q')é
oM S Ay —
L) ﬂz+/\z- l'E (A 1'3)

. . . 4
and integrating first over d xl and secondly over d4Q there results
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. ) , Vo ) ' M) s (x, )
M= ‘5'21 ol‘x,dl'xz{ ()Y ©) w)f m] i) [MX ) ) 9(3,(7)]

v ( P:-‘» K} 2.1. ,mz 5 a’(le ax}j

- {4 S
A et 7 s oWy
[ ) J 1 Foitee [§05) i) ] [Fm A ‘% (124)
[N(*’.'K)u'frn}f[ﬂﬂ’,-k) W),
e ity {7 g0 v} [B )

(P-x) 4 xm? # Y 27y

[ fﬁ)“ JG)? IR [ ¥ Gt | %, 7, £F£:+ FI: ?}w] - (Ar4a)

Now commiting ['y- (pi‘ + k) + im] in equation (A4-4) with y)& so that it acts

on $ (xz) and similarly commiting [y- (p1~k) +im ] in equation (A2-4a) with v so that

it acts on P (Xl)’ we have

3 Yy, Y
(Plex) 4 m?

o= i4? ﬁ() c)x {Wx [-3« (,7{‘,,,()“./\11] () (PHJH() } [
| [ — jo\g 2% )

- 2 Hax,) ‘S (,u

g(:vzfs) t
. ‘, _ o oy
e oty Ll ol [ 229 st
'(P“W)Q}mﬂ ’ B Bagj J

[ , JJ" ¥ )

= i 2 ] [‘F(X)ID/ ¥ix) (S

2\ 2, 3) Y5 t ) -
(2r) S?Du 3 5) 1 f&frfég Zz] ’((;)'z;(;) (925)
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H z 1-; jf ‘{‘](’(kl)(() X &L}’LP k) "',l/Yﬂ} \f/(x’)J —?“'lf_“i) ’aA/“hl)
(Pc l\)z‘*’/ﬁ’\z Dxu /b)(l
/ it
g { )
S ] \
{(Lﬁ)[‘j 4 32" . § [ij) ‘({J,‘f{;(j)] _ FS ) ng(;) s
/(Avl&

W Q) Ja fo ¢

"y 4 Qli (71_7(3)

,_L - 1S 'y ' (L)
{(2“)"} im} [‘f{"s) b}‘f”@)] ?Ct) 2’(3) [F t qu gé
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For convenience MI and MII are now decomposed into terms with p # p

p =4, terms with p =4 p # 4 and finally terms with p # 4 p # 4. They are written

as follows
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From each of these matrix elements a non-relativistic transition operator

can be extracted. The specific procedure to do this is illustrated below for the

matrix elements Mg ) and M&I)

since detailed calculation shows that the operators

resulting from these two matrix elements are the leading ones in the non relativistic

limit, i.e., the operators which are of the lowest order in (%).
Using
YK = v. 07,
Y K 4. Y, K,
2
Ceri)smt & g X,
' _ 2 1
(P\ k)t -2 K,
one gets
ta) i) rg by
¢ lx,)
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Integrating over dtz, dt3 and dqo and noting that P p20 ~ Py ¥ 0 gives
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R
where Vlrfeev (E) was introduced in Chapter 2 to simbolize the transition operator

resulting from the Lee vertex. A non-relativistic reduction of this equation

results in equation (11) of Chapter 2.
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B. The Lipshutz vertex

In this case we start from equations (15) and (16) of Chapter 2

_ - ’Q %,
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Now we have to manipulate equations (A2.7) and (A2.7a) as in subsection A
of this Appendix. For simplicity only the equation relating to MI will be written
down.

First the propagators SF and AF are substituted in equations (A2,7) and

(A2.7a) giving
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Integrating first over d4x1 and then over d4Q gives
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The dominant term in (10) and (10a) come from the term 4 #u#v#4. This

can be verified by direct and tedious calculation Taking this term and v (pl' +k) S

i'y4 m we have from MI
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Substituting AI in (A2-10), integrating over time and extracting the factor

-27i & (Energ. ) gives
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where f { »{“) PR

The term AII substituted in (A4-10a) and treated in the same way gives exactly

the hermitian conjugate of V A Similarly, substituting B_ in (A2-10), integrating over
1

time and extracting the factor -27i & (Energ. ) gives

I
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Analogously the term BII substituted in (A2-10a) gives exactly the hermitian

conjugate of V A So the total result is
I
42
oy A -
\/JZ(P(B): ’_4—,}; [3 s 1{ 4 &)OE'B{”J) JL(IZZ;) ] ‘I QF'S'Z z ty (2)
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Finally, if one calculates the commutators one gets the result of

equation (17) in Chapter 2.
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C. The NN*y vertex

In this case the starting point is equation (3-8) which is the matrix

element corresponding to the diagram of Fig. (8. a) and (8.b), viz.

G ' ) ' 35,,(2:(-7:‘3
= x/[[c))ro,k a’ /j [l((z,) 5 Vs f(i,)g) ¥(x) ] z((x,)[ N)]

9754]:

[\;/xj) Xs ((/['1‘3)] (.':("/) (2,> e (Ai- [2>

e , = ¥
(¥) 55 ¢00)  ( Ty %) S (A9-na)

The propagator S

A x 1—x2) has been given in Chapter 3 and decomposed

into six parts as given by equations 3-11a to 3. 11f.

Consider first the part given by equation (3.11a) viz.

J @ (%)
= S - L
4 (1/1)" J’da R*+ HZ_ ¢ " L"" 55;7{»]

Substituting this in (A2-12), integrating over d4x1 and d4Q gives

Ho(x)= - —”Ho) ><5 U(’ﬁ VY G >H xf 3 J(Pkmz i 1)}
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From equation (A2-13) on separating the terms with A = p and the term with A =p

but ¢ = p from the term A # p and i # p, we have
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Next substitute the part of the propagator denoted by Y (see equation 3.11b)

into equation (A2-12). Integrating over d4x and then over d4Q gives

1
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The first term of equation (A2-18) should be compared with equation (A2-13)

h¢
They are equal apart from a factor n% Therefore we have the terms

(a) @) (a) @)
(Y).. M% (Y) which are equal to the corresponding MI(X) M[(X) apart from this faC'COJ
{a)
m
Thus, (‘I)— T M (x) L (p,g-‘q)
lo)
A lyyz )
L H Nr()() e e (49,—20)
Q) fc)
H_‘[‘ (\1) - & H ()) ........ (A&_i‘>
()
H _ ()
) = (—H‘— h,oOx) o (;,9_-21)

The remaining two terms in formula (A2-18) give often straightforward but

tedious manipulation.

le) :
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Mo(y)e A J 4 Ly am
T M f”LH nda [ I Ks)j#fx )] T LY (x,)
[(4) J ‘219 Jg(?&h) [ - .
“! ! Si’/uz ' ] th XJHI;)) ( (Z) \(5)) LT (A_')_,ll,>

Next consider the part of the propagator denoted by Z (see equation 3. 11c).

Substituting Z into equation (A2-12) we have
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The parts of the propagator denoted by V(equation 3. 11c) and K(equation 3. 11f)
have also been considered. The terms arising from V have (due to the double
derivative) an extra factor —E} compared with the terms stemming from X....U

The terms arising from K are very small because of the factor —-15- they contain.
M

The transition operators corresponding to the matrix elements

0)
M® oM @), M® m) Nf[(Y), @), M(z), MY (U) and MI(L)

can be obtained by using the methods already explained in part A of this Appendix.

First however the factor (T _ - T_.) which appears in these matrix elements should

® @)

be replaced by the factor (T as given by equations (3.10a)* Similar

ay T2y TRY

operation with the MII matrix elements arising from the graph of Fig. 8-b gives

the hermitian conjugates of these. The complete results are given below.

'# See Note at the end of this appendix.
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NN#y oy (Y) are equal to the ones just listed

excepted that they have a factor instead of M .
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The W1 (B) of equation (12) in Chapter 3 is VNN* X) + VNN v (Y) and W (B) of

@)

+V
) NN*y

. . d
equation (13) in Chapter 3 is V (7) with the commutators evaluated.

X,
NN v X
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NOTE The T.R.I. violating transition operators above have been obtained

by replacing the factor (T ) by (T as given by equation (3.10a).

. 2
@) “B) @ G)YTRV

If instead of this we replace it by the factor (T M given by equation

IR 4
(2) @)%HDR
(3. 10b) we would obtain TRI conserving transition operators. These operators would

(NORM)

be the contribution of the Lagrangai XNy

given by equation (3. 5) to the T.R. 1.
conserving electromagnetic transition, and can be obtained from the T.R.I. violating

transition operator by making the following replacements.

(a) From the TRI violating operator which contains the factors

e 20(7’ ) - + B (Gt Y,

T.R. 1 conserving operator is obtained by replacing this factor by

(3)

the corresponding

L5y ()
yf= p €N€N) (‘e’. )Z

b) From the TRI violating operator which contain the factors
1 (€ ~€ ~¢_+€ ) (1(2) X ‘;(3)) the correspondin g TRI conserving operators is
VAN z
obtained by replacing this factor by

2 @) ©8), * * 2 oo _x 3)
fo’TZO %) (€p+€p+i\l+i\l) 3 &N % sp) %,

The operator obtained in this fashion agrees with Chemtob and Rho (1971).
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APPENDIX 3

DEVELOPMENT IN MULTIPOLES

The development in multipoles of the transition operators obfained in
Chapters 2 and 3 is carried out using the formulae and conventions introduced by
Clement (1971). The technique is straightforward and therefore just one example
will be given.

Consider the first term of equation 3.12

1 Gfi 2 () (i)

V(B) == S (¢ ~c -€*+¢) Z [B)? - By ']
p(M-m)2m2 \3 N % P P i< i’ "= j "z

31 x&’j#’ ) (A3-1)

Taking matrix elements for the emission of a photon we have

WE) =A I [Bx) zz(j) - B*(r.)‘ez(i)] (a’.xa’.)’?ﬁri.) (A3-2)
where
1 Gfi 2
Ams —231 2 (e e ¢ ¥ie)
3 )z’ 3 NS

and

»
B¥(r,) = <1 photon ]B(ri)[O >

Using the same phases and overall normalisation as Blatt-and Weisskopft (1952) and
Clement (1971) we can expand the matrix element B* (ri) in electric and magnetic multi-

poles
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(e)* =1 * -2
B () =iKC rxW wr (A3-32)
By 2. Wxir xw ) u* (A3-3b)

LM L LM '

where
QL +1t! )

C, = ——— andu =j (Kr)Y_ . (6 @)

L KL(L+1) LM L LM

The matrix element for the emission of a photon of the electromagnetic potential
-
K(r) and the electric field E(r) can also be expanded in electric and magnetic multipoles.

(compare with different convention in appendix 4)

A9 Z¢ (—Ii) W x(r x\W) u*

LM L LM (A3-4a)
Ag’;}* =Cp. ¥x W quM (A3-4b)
Eﬁz: = C W @ x\V) u;M (A3-4c)
E(;Jnhzl*a-i K Cp FxW - | (A3-44)

To obtain the electric multipoles ariging from the operator given by equation
(A3-1) we replace B*(ri) in equation (A3-2) by the B"if;} (r) given by equation (A3-3a).
Thus,

. 3. G = ‘ (i)
K \V * - Wk
W(EL) = A izij L CL [ri xWVouy o (ri) L3 rj X i uLM‘(rj)zz ]

(0, x oﬁ )
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Then using

- . 5.
Foavut o [ L@L+1)] jp ko) QSFL,LM

where

->-(L) -, . s .
Py m™ [YJ(r) & e ]M and € is the unit vector along the co-ordinate axis,

we get

V(EL)=A Z ik Cp (D) [L(L+1)}%[jL(k r)® ]

* i |
-j kr)® )z ]
i< L i" "L,LMY 1§ "z

. .
L. v %

(a'.l X t:)'j)A?7 (rij)

Further, using

* * (L)
(6 @) 2] =[Y.c) 2] ¢
J, LM ¥ M

- Er . *(L) () _ |
V(EL) = A iEjKCL[(Lﬂ)L] [ipkr) [Yp @) @mixaj)] VR A N

-
(Y )80 x0p] el ] fey

Now consider two further approximations. Firstly the familiar long wave

approximation

(kr)L

I &) T G

Secondly the transformatipn to relative and centre of mass co-ordinates

= 1 ~4 -» el o ~y
R,lj =3 (r,l +71,) and r.= r,l rj
. 1
1 4T (21+1)! 2 1-A 1 A 1)
= ®
T @)= f . euiany el Ry (3T [Yl—}\(Rij) Yh(rij)]m
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1
and similarly for rj Ylm(rj) which has an additional factor (—)A. Since each additional
power of rij introduces and extra factor of the order of (p,R)—l where R is the
nuclear radius (Clement 1971) generally much less than unity, only the lowest power

of rij need be kept. So we take

L
T Yom &P SRy Yom®y

substituting back we get
5 i
VED)~ A D k( "’ R, [Y (R)@(o xo)] —zz)%(ri.)
i<j ]
All other developments are carried out in a similar fashion (see Clement(1971)for

more examples).

The usual multipole operators, expanded using the same conventions have

the form
1 i, L *
Ebyorm=® ¥ 5 O3 07 Yy @)
[ I
L(2L+1) ] e L1 (i), L-1 (L)*
ML = L
ML) vorM i { T ;2 A+g "r [YL_l(ri)mi] M

1,1 1 (i), . L-1 (L)*
g?[g(u“+up)-*§(un-up> 7,0 vy @0 13
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APPENDIX 4

A. The Siegert Theorem

i

This theorem is discussed in a number of important papers for ex_ample by
Sachs and Austern (1951), Osborne and Foldy (1950), Foldy (1953) and Dalitz (1954).

Let the Hamiltonian of the system under consideration be written

Hp, = H+X 7} (A4-1)
where }C(X) denotes the interaction between the system represented by the Hamiltonian
—
H and the electromagnetic radiation represented by the vector potential A assumed to
->
be in the Coulomb Gauge (i.e. W . A = 0).
-)
The Siegert theorem refers to the first term }Cl(A) in an expansion of ¥} (A)

in powers of the coupling constant

KA =} A) +L KM+ » =+
(B) =3¢ B) +5 I @) + (At-2)

-y
This first term Kl(A) is the interaction responsible for emission or absorption
of a single photon (in Chapter 53C1(A) was decomposed into two parts JCl (A) =$C0(A) +
—-)
{v (A) (see equation 5.5)). The second term }Cz (X) describes the process where two
photons are involved and so on.
The form of JC(X) is however restricted by the fact that equation (A4-1) must

satisfy Gauge invariance which states that if Xis replaced by—A) +Wg (where G is an

arbitrary function) then there must exist a g such that

H+X(A+WG) =e® (H+X@) e & (A4-32)
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It should be noted that nothing is said at this stage about the form of g (except

that it is first order in the coupling constant).

The consequences of equation (A4-3a) have been worked out by Sachs and

Austern (1951). Rewriting the equation (A4-3a) with K: 0, we have

H+3(\WG) =e® {H} & © (A4-3b)
The right hand side of this equation can be expressed as
elgHe_lg=H+i[g,H]+%- [g,[g,Hj]+ s o ®

Substituting for 3 (W G) from equation (A4-2) and equating term of equal order there

results
s wel =1 (g, H]

X, \WGl=- [g,[&,H]]
....................... (Ad-4)
X, Wael=m"[gk,....[g,H]...]]

The first equation of the (A4-4) set will now be rederived using a different method
which has the advantage of giving anexplicit form for g.
On experimental grounds (see Bohr and Mottelson (1969) page 379 for a discussion)

the form of J'Cl(A) is taken to be
=Y
5 () = - f 7oA &r | (A4-5a)

Here 3” is the electromagnetic current of the system described by the Hamiltonian
H. (A system of nucleons for the case in which we are interested). We assume

current conservation (a direct consequence of Gauge Invariance), thus
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-—’
divd=ilp, H] (A4-5b)

where p is the nuclear charge.
For a system of particles, considered as points, and in particular for a
system of nucleons it is a good approximation to take

p=I 2 @+ zz(i)) 5° (}’-?i) (A4-5¢)
1

oo

It will now be shown that equation (A4-5) imposes a restriction to the form
of }Cl(A). Consider, for example, the special case in which A is replaced by Ve

(the gradiant of an arbitrary function G), using the identity

-
\v.(?{}):(}\v.j +?-\\7 G

and finally using equations (A4-5b and c) it follows that

), (Vo)y= i[g,H] (A4-6)

where

g=Z £ a+2) ow) (a4-1)
i

Equation A4-6 is a particular case of the first equation (A4-4), since in the
first derivation the form of g is arbitrary, because gauge invariance requires only the
existence of a g such that equation A4-3a holds.

Equation (A4-6) has many applications. It can be used not only to check whether

-—)
agiven H_ = H +}C1 (A) is gauge invariant but as shown in Appendix 9 it can be used to

T

construct JrCl (X),
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Another more important consequence of equation (A4-6) is the Siegert
theorem which was used in equation (5. 8). This theorem will now be demonstrated.
The theorem (Siegert (1936)) states that the electric multipoles E(L) derived

from the expansion of }CI(K) can be written as

E(L) =i [H,,D, (K] (A4-8)
where "
i _
"o 3 © (i) _ﬁ L+l L a }
Dy (&) ? 2 1+%,7) 2%, Tay CIm Ty (A4-9)

The starting point of the demonstration is equation (A4-3a) viz.
-~» re
¢, ) = -f i -1R &y

>
The electromagnetic vector potential A (in a cubic box of side L) is expressed

as follows (Brink and Rose (1967))

- = 27 g Y 1?{? -1‘1?3 +
Ar) = Z [= ) {€ e a +c e 2, } (A4-10)
kn L3k n nom 7

+
In equation (A4-10) a kn and z\k?7 are creation and annihilation operators for a photon

-

with wave number k and polarisation en (el and ¢ _ are two orthogonal polarisation vectors).

2

=Y
The field A(—I") can be expanded in electric (e) and magnetic (m) multipoles

(Brink' and Rogse (1967))

T 1 - (m) - (e) L
€ =-= X (qA + A )y D ®R) (A4-11)
q N LM LM‘ LM Mq
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L
In equation (A4-10) DMq(R) is an element of the irreducible 2L+1)
dimensional representation of the rotation group (Brink and Satchler (1968)).

~
The rotation R brings the z~axis to the direction of k. The functions A 3 o) and A 2@

LM LM
are given in the long wave approximation (i.e. kr >>1) by
i
2@ L fin 2oL )
ALM—~ T I W (r LM) (A4-12)
i X
- (m) L -
A S -1
LM m_.) (r )xr (A4-13)
where
_ (k"
L @L-1)!!
Substituting (A4-11) in (A4-10) it results
A(r) 5z L i {( A + M (e) ak - h.c.} DI\I/} ®R) (A4-14)
fLqu?‘] q
Therefore &%(A) can be separated as follows
}Cl(A) b }él(LM) + 3 K.(m)( ‘ (A4-15)

LMq LMq

where the first term, which gives rise to the electric multipolas EL is

-X N
(@) s 1fear\e, "L i L L
1 (LM)"fd XJ'EQ‘/Z‘ng L=/ Ve Gadteyt B 0 Ppg®

el
Taking matrix elements for emission of a photon with momentum K when the

nucleus decays from a state lIlmi > to |Ifmf> the electric part Z iC(le) (LM) of
' LMq
"(A4-15) gives
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5
<1fmf§| z Rl(e) (LM)|I.m, > =(—%§J <Ifmf| z f &Or 7-\'9’ (rLCLM)*
LMq b L LMq

Xy i L
i II,L m, > DMq(R) (A4-1632)

i

The electric multipole EL is by definition (Brink and Rose 196"7)

*

) ()X
(EL) =fd3r 7w e C;M) % L / Igf (A4-16b)

—>
Equation (A4-16b) has the same form as equation (A4-5a) with A having

the.. form VG and we can therefore use the result of eq. (A4-6) so that

EL =i [HO, Dy ( )] (A4-8)
where
'EX; L+ L
- e (i) + " -
DK = ? z O+ X ot T ) Cum® (Ad-9)

This form of DL(k) depends on equation (A4-5c) being true, i.e., if thesystem
in interaction with the electromagnetic field is a collection of point particles. If this
is not the case however, equation (A4-8) still holds although then DL(k) has a different

form from the one given by the equation (A4-9).

B. Critical Analyses of the Siegert Theorem

The demonstration of the Siegert Theorem given in part A of this Appendix will
now be examined critically. The purpose is to show that the theorem is an exact result
" only in the limit where the energy of the emitted (or absorbed) photon k vanish (i. e.

when k —» 0).
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The paper by Brennanand Sachs (1952) was the first one to show a breakdown
of the Siegert Theorem for high energy photons. They pointed out that when the long
wave approximation (kr <<1) is no longer valid (which occurs at high energy) the

equation (A4-12) should be replaced by

(e) _ -1 g -
A= &V LI+H) - WxL b (A4-17)

where QSLM = iL (21.+1) jL(kr) CLM(?') and jL(kr) is the spherical Bessel function.

Therefore equation (A4-16) is no longer valid and we have instead

(A4-18)

(EL) =fd3r 7 YI) TW x L ¢;M

Since equation (A4-18) is not of a form suitable for the application of the result given
by equation (A4-6) it follows that the Siegert theorem no longer holds.
It will now be shown that the Siegert Theorem also does not hold for those
parts of the interaction Hamiltonian between the electromagnetic radiation and the
_system which depends dirgc’cly on_E (the electric field) mdg(the magnetic field) rather

P —p
than on A (the vector potential). It should be pointed out however that since both B and

Fvanish when k -» 0 those terms contribute very little to the emission (or absorption)
of low energy photons compared with the terms which depend on A.

Examples of transition operators depending on E and B have been given in
Chapters 2 and 3. Since however all the operators given there are T.R.I. violating we
give below two examples of T.R.I. preserving operators of this type.

-
As an example of an operator depending on B we take the second term of the

usual electromagnetic transition operator.
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1 . - ~ -
@ = 5= sa+3 ") pme) Aepp)r 55 p o xBr)  (as-lo)
i i
where
SN
+ up) 5 (b, pp)o 2

=1
=g Wy

-

As an example of a transition operator depending on E we take the case of the

transition operator stemming from a four particle vertex (NNwy) as in Figure A.1

¥

Fig. Al ' Fig. A2

Following Clement and Heller (1971) the phenomenological Lagrangian corres-

ponding to this vertex is taken to be

> = ,
L= b0 Tdwi’e, 40 F (A4-20)

The transition operator is found by calculating the diagram of Fig. A2 using as

Lagrangian for the right hand side usual NN7 vertex the expression.

4,026 30 vt 9@ b

The resulting transition operator is found to be

AT

i B) = —al
% B = T2 By B

) [O’l‘ E(I’l) 0'2' (.rl_rz) + 62' E (rz) 0'1" (Fl_%)] %(rlz)

(A4-21)
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where
_ kG o3 1 ( 2 1 ) “H,rl"rzl
F = "— andJr = - — R + — e
2 12 7 |2 -7 |3
m 41y lrl r2| lrl rz‘

The B dependent transition operator given by the second term of equation (A4-19)
does not contribute to the electric multipoles in the approximation given by the equation

. =R L
(A4-12). This is so because we can write B = W x A and of course W x W (r C

v =0
However using equation (A4-17) instead of (A4-12) it is possible to get a small contri-
bution to the electric multipoles not of the form (A4-8).
—
The contribution to the electric and magnetic multipoles of the E dependent
transition operator given by equation (A4-21) can be easily obtained by substituting
—_—
E in equation (A4-21) by
€) ’
) o k2 _ Ll ol ,
ELM =3 Ary = VT W(r CLM) (A4-22)
and .
kX
my . =@ "L 2 L ~ _
ELM = -ik ALM = L) (r CLM) Xr (A4-23)

respectively and proceding like in equations (A4-16a) and (A4-16b). As can be

easily checked from the result of the manipulations outlined above, the transition
operator X (rerEI) given by A4-21 contributes an electric multipole operator which
cannot be expressed in the form (A4-8). Note however that due to the fact that
.}C(rlrzE) depends on —E-}?, the matrix elements of the electric multipole arising from

it will have an extra factor (KRO) (introduced in equation A4-22) compared to the

matrix elements of the electric multipoles arising from a transition operator depending

on A. Therefore for low energy transitions the contribution of such an operator is

negligible.
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C. Comments on the use of the Siegert Theorem

The Siegert Theorem has many applications some of which are explained
below.

The more important of these applications is that the Siegert Theorem can be
used to replace the electric multipoles (EL) given by equation (A4-8) by a simpler,

effective operator (EL)eff defined by
= i - { -

where E¢ and Ei are the energies of the final and initial states of the tra.nsition con-
cerned. It is this effective multipole operator which is usually found in the literature
denoted as electric multipoles. (However the (EL)eff found in the literature may differ |
from (A4-24) in phase and overall normalisation. This point is freated by Brink and
Rose (1967) in detail).

There are both advantages and disadvantages in using (EL)eff in place of the
more general (EL) given by (A4~8). One disadvantage is that (EL)eff transforms
differently from (EL) under Hermitian configuration and unless one is very careful
this can produce errors in phase in the calculations (Brink and Rose (1967)). The main
advantage 6f using (EL)eff is explained below.

Consider the effect of a (small) additional potential V added to the usual

ad’

strong Hamiltonian H 0 Suppose that in order to maintain gauge invariance an extra

-
term Q}QA) is necessary, thus

-> —-)/:)
HT = H0 + Vad + }CO(A) + ad(A) (A4-25)
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Let (EL)O and (EL)ad be the electric multipole resulting from the expansion of

¢ O(A) and "@(3) respectively in multipoles. The Siegert theorems requires that

(EL)g + (BL) g =t [y + Vg D] (A4-26)

Therefore the effective electric multipole corresponding to (A4-26) is
( (EL)0 + (EL)ad )eff =i (Ef - Ei) DL(k) (A4-27)

and it has the same form as the operator given by equation (A4-24) (note however that

the operator given by equation (A4~27) must be used with eigenstates of HO + Va a and

that Ei and E_ are the corresponding eigenvalues).

f
The fact that (A4-27) has the same form as (A4-24) is usually expresséd in the
literature by saying that ’/ad(X) has '.no effect on the electric multipoles. This
statement however is misleading in tbat(EL)a d has effects: |
One must always keep in mind that (E’L)eff can not replace (EL) in all the
circumsgtances. This point is illllstrated with the comments on the paper by Michell(1965)
on the effect of Parity violating nuclear forces in a gamma transition given below.
Michell considers the effects of a small one body Parity violating potential (VpV=G”(? : 5) on
a system consisting of a particle moving in a potential V(r). (This system is intended to be

a rough model for an odd A nucleus). The Hamiltonian is therefore taken to be (see

equation (20) in Michell (1965))

. p (A4-28)
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where

H, = L v (A4-29)

H=e He (A4-30)

Therefore the matrix elements of any operator A between eigenstates  of H is
-1 isS
equal to the matrix elements of the operator e _1 SAe1 between the corresponding

eigenstates ¢ of H 0 S° that

-i8 is . . A
<gpf[A|zpi>=<¢f[e A e '¢’1>NA<¢f,Al¢i>—1<¢f1[S’AJ'¢i>+O(G )

(A4-31)

Using (A4-31) he concludes that electric multipole transitions are not affectelbecause
(EL)eff comutes with S. This reasoning however is not correct since the use of
(EL)eﬁ. in this case is not appropriate.

However it should also be noteci that Michell (see also the paper by Walborn (1964))
does not take Gauge invariance into account. This follows from the fact that the
Hamiltonian (A4-28) as it stands is not Gauge Invariant. We should therefore replace

equation (A4-28) by the following gauge invariant Hamiltonian

H=Hj+ ¢" ope+ }c0<'A*)+e G'_'“a’-A’% (1 +3) (A4-32)
where
; - e > 2> .1 e -3
= — . = = A\ -
Hold) = 5= [pA+Ap]2(1+‘gZ)+2mp0' W x A (A4-33)
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and

DO | bt

1
p= (uﬁ+up)—§(uh~up) e,

The effects of the extra parity violating transition operator in equation
> # -2 1
(A4-32) (namelyZ/pV(A) =eG g A 3 {t .—FEZ)) will be calculated below. In particular
. . 'yt)V > . . .
we will show that by taking (A) into account it is possible to show that there is
no parity violating effects in the electric electromagnetic transition. There are
however other effects that modify some of the results obtained by Michell.
The easiest way to show that there is no parity violating effects in the
electric transitions for the Hamiltonian given by (A4-32) is to apply the Siegert
. . . eae %)V -
Theorem, However, in order to consider at the same time the contribution of (A)
to magnetic multipoles we shall follow a longer path.
. . . . qﬁv -5
The electric and magnetic multipoles stemming from (A) will be denoted

by (EL)pV and (ML)pv respectively. The total electric and magnetic multipoles are

now
B p. V.
EL)rorar, = Elyorm ¥ EL)
ML = (ML) £ L)P- v
ML) por AL = NORM
1 i i 1 i d
where (EL)NORM and (ML)NORM stands for the usual parity conserving electric an

magnetic multipoles.
The effects of (EL)pV and (ML)pV is taken into account by replacing equation

(A4-31) by (see section 5-2 for a similar caleula‘cion)

< .| €D >= < | BL) 16> -i<e |[8, @D 118>+

|
toraL! ¥ NOR '@ i

<@ .| ELPY|g > (A4-34)
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< P, (ML) |9 >=<o ML) plo>- <o l[s, Mo Tle >+

TOTAL NOR NOR

<l ( oLy | o > (A4-35)

To show that there is no parity violating effects to the electric electromagnetic
transitions it is sufficient to consider the first part of ¥ 0(A) given by equation (A4-33)

namely

L@ =§—-[ R+ A p] S (1+%) (A4-36)

This is so because as we have seen in part B of this appendix the second term
of equation (A4-33) (namely X 02 (A) = —2% pno. 7 XA ) do not contribute (in the long wave
approximation ) to the electric multipoles.

By using the results given by equations (A4-34) and (A4-35) we have
-yl -3
/ S = -~
<YK () +e G TAS @+ ) 9> = <8 K Ao, >

' 1
<p.| -i[s, xOI(X)]]¢i><¢f| e G"F KE (L+% )]0 > (A4-37)

ol
but

: N1 = Z. 7L -
i[s, 3, A) = RS 4 az> - (a4-39)

and therefore to first order in G

- o L | - -
< ;bfl Ko A +X (A +eG o RS +1;Z)l p.> = <¢flK01(A) +K02(A)l¢i>

-}
- i<, |[8, X @] e, >
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Therefore the only parity violating effect remaining is produced by 3C02 (ES which as
mentioned before do not contributé to the. electric multipoles.

To calculate the parity violating effects in a particular magnetic multipole
one has to expand X 02(X) in multipoles. Denoting (ML) 02 the magnetic L-multipole

.—)
stemming from I 02 (A) we have

e

-> L
o B o\WIr Y

(ML)02 = ) (A4-39)

LM

and therefore the effect is given by

pv -
<z,bfl (ML), + (ML)OZ + (ML) |¢;1>~ <¢f| (ML)Ol -&(ML)021¢1> +

G ”e
2m

% 2L
+ < ¢fl pT- [0 xWVErTc 0] ’¢1> (A4-40)
This result differs from that obained by Michell (see equation (29) in the paper
by Michell (1965)) since he includes the term -i [ 8, (ML)Ol] which, as we have seen,

cancels with the magnetic multipole generated by ’}QK)
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APPENDIX 5

THE N* INCLUDED IN THE WAVE FUNCTIONS

In Chapter 3 the effects of a possible T.R.I. violation in the N*Ny vertex have
been calculated by introducing the N* nucleon resonance as an intermediate state
in a set Feymann graphs. Recently however (see Green and Schucan (1971) for a
review) it has been argued that the effects of the nucleon resonance N* should be

calculated by introducing it directly into the nuclear wave function. Thus the nuclear

wave function is written
2.5
T=@1-0a) YN)+a PN-1,N*) (A5-1)

where  (N) is the wave function of N nucleons in the groﬁnd state and P (N-1,N¥%)
represents the state where one of the nucleons is in an excited state N*. (Of course one
should also consider terms of the wave function where the N* resonance appear more
than once. In practice however one considers that these are negligible).

In equation (A5-1) P (N) and PN-1,N*) caﬁ be written in a non relativistic
approximation. However such a wave function is clearly foreign to f:he usual
formalism of nuclear physics and thgrefore ambiguities are likely to appear. It is
the purpose of this Appendix to discuss these.

We begin by studying the forms of ¥ (N) and  (N-1,N*). The first is the usual
many nucleons wave function and therefore is a well known object. We write ¢ (N-1,N¥*)

as follows.
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P N-1,N%) = (... x0_) & () (A5-2)

where ¢ (Xl' . .XN_l) is a usual N-1 nucleon wave function, £ (XN*) is the radial
a a
part of the wave function of the N* resonance and the matrices { 8 | and [ b lare
Y c
"respectively the spin and i-spin matrices of the ]

N*(J = 3/2, T= 3/2 M = 1230 MeV).

The wave function §p (N) and YN-1,N*) are eigenstates of the Hamiltonian

N-1opt ol |
= —— +
Ho= 2 ot am * 2 Ve, ®e %)t Ve e SR
i=l < i
(A5-3)
where VNN,NN(Xi' xj) is the usual internucleon potential and VNN*,NN *(Xi‘ XN*) is

th
the potential energy between the N* resonance and the i~ nueleon.

The potential V ) can be derived from the graphs of Figures

NN, N K X

A5-1 and A5-2 by using techniques similar to the ones described in section (2-3).

7 ’ 5! % 1.7
Py Z Py Py EPN*
I
Fig. A5-1 Fig. A5-2
s d , 1 le i
Oneze we have VNN,NN(Xi’Xj) an VNN*,NN*(Xi XN*) we should be able in

principle to solve the Hamiltonian (A5-3) and obtain the two sets of eigenstates Y (N)
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and P (N-1,N*). (We know however that this is only possible to a reasonable accuracy
for nuclear matter or very light nuclei such as 3H or 3He).

However the total Hamiltonian of the system will include also the term
WN*N that is in fact a transition operator in the sense that it transforms a two

nucleon state into a state with an N* and a nucleon, thus

H= HO + WN*N (A5~4)
It is WN*N that admixes PI) to ¥ (N~1,N*) ag in equation (A5-1) and
therefore we concentrate now on how WN*N is derived and how it should be treated. »

The transition operator W__ .~ can be derived from the graphs of Fig. (A5-3)

N*N

given below.

Ponk

Fig. A5-3a Fig. A5-3b

Using the Lagrangians and the notation given in Chapter 3 the matrix element
corresponding to the process shown in Fig. A5-3 can be written in co~ordinate space

as follows.

4 . . 3 Alxq- —
M= (i) ff dxy dhy [-itBe By ve] 252 195 )T s )
20

(A5~5)
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Integrating over time and extracting a factor -27i 8 (Energies) gives

_ifG 3 3 - - 1 3
VN = T, ff d'r,d"r, [%b(rl)v5‘6(1) b)) 3(%)3 fd q(-l)Tva;é4

AL (rl—rz)

| — .-
4~ 0y e B Tgyve] e
20 "2
To obtain equation (A5-6) we have specialised j:o the rest frame of the nucleon
resonance and therefore eliminating the time component of Rarita-Schwinger spinor
;bp. (This is not necessary but simplifies the "non~relativistic' reduction).
At this stage there is a simplification which is used in the literature. This
is to expand the denomihator in equation (A5-6) in powers of (pf2 O—p2 0)2 and to keep

only the first term, viz.

_ifG 3. 3 = 2 1 3 -1
id- (r, - )
. (r.) ] (A5-7)
?1’2+u2 Sie po(2)7 "2

This approximation is not good since (p;() ~ (M-m) is not small.

" Py
The justification found in the literature for using such an approximation is to consider

that the N* present in the nucleus is a virtual one (off the mass shell). This idea is

pursued by both Riska and Brown (1970) and by Green and Schucan (1971). The factor

+ M 2
(m i ) that appears in Brown and Riska's work is intended to take into account

this virtual aspect of the resonance. An alternative will be outlined later in this
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appendix but first the approximation given by equation (A5-6) will be accepted

in order to illustrate the non relativistic reduction techniques to be used in

connection with the Rarita-Schwinger spinors.

The first bracket of equation fA5—7) involves only nucleons and therefore the

non-relativistic reduction can be carried out as in Appendix 2. The second bracket

involves the Rarita-Schwinger spinors (see Lurie (1968) and Broadhurst (1971 ) for

details)
U®AN =T € @A) Up, ) <tk A%k (A5-8)
3 3
(7 RCTRRREE >
and the usual Dirac Spinor.
Ek +m & go
Uk, o) = 5 (A5-9)
k o- k
( =1 ——1-) m g(r
T=% "3 B

1
In equation (A5-8) the factor <i§ ?:1?\2 f—zgih > is a Clebsch~-Gordan coefficient

and éu (p,A) are polarisation vectors which in the rest frame become

1 1 0
- 1 - 1 Y
€(,1) == i €0,-1)== [ -i €(0,0) = 0
E] ﬁ » ‘/'2" ?
0 0 1

1
In equation (A5-9) E, =+ <—ka + m?)? and
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The non relativistic reduction is carried out separately for each change of spin
(i. e. for each pair A,0). The result is expressed in terms of the (4 x 2) vector matrix

-
[S ]S*s and of the wave function zp4 defined below in equation (A5-10) and (A5-11)

respectively.
[S ] = € (0,0) <izas|Zst> (A5-10)
p~ S*s p -’ 2 2 ‘
(ol a
B b
11’4 = £ (XN*) 24 c (A5-11)
6 d
The following result is obtained.
o, p
G . 3 3 + + 171 3,
xj d T d r, Y (rl) \1’4 (rz) el (r ) S (r
4 by ) ) (A5-12a)
@’ (2) L A
from which the following transition operator results
G 1 - G . T - o
Wy = [u — o s:?zrlz)+ o om Ty S (r ) ll‘rrzl
dg"(lrlhrzl) EF 169 2)+h | A5-12b
T, + h.c. 5-12
a(Te-r,h) Ty T G AR (A5-120)

The hermitian conjugate (h. c.) comes of course from the graph of Fig. A5-3b and

1 1 ~p e -1y

G (xyr, ) =- L= . ¢ P12
2 ar {7 - == 13
AT
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)
The operator given by equation (A5-12) is, except for a factor ( H;;f)

already mentioned, the same as that obtained by Brown and Riska (1970).
An alternative to the approximation used in obtaining the equation (A5-7)

will now be given. Writting mI2 . 20 p2 0 2 - p,z we can re-write equation (A5-7) as

W = 2 ffdr a’r, [¢(r>v5 Ty by )] fd al- l>qp¢4

en’
o i (rl rz)’ [0, g b ] , (A5-13)
—(mI) - it ‘ 'p

By performing the integration over d3q we have

| 1 d o a7y |
Url’rzl I Y e

ifG
Wy -———-ﬂdr dr [zb(r)»ys?(l)w(r )]

pir,) ] (A5-14)

&y, 17,7,

The non relativistic reduction can be carried out as before and there results

= ——1ffd T d rzz[!L (r ) \If ( )[ R (i’l-?z)‘"s)z (rlz)i

2 - ,
1.(1)' T(2) ll)L(rl)»&bL(rz) (A5-15)
where )
(-1) q 1 o M1 lrl—rz ]
Z (o) |r -t dlle-r |) 4r |T-T,]
12 "1 2 1 2

~img |r; -1y |

The '"retardation factor" e depends through m_ on the initial and

1

final energies of the system. Since however we are considering the final and initial

velocities to be small we can replace mI2 = (p;O—p20)2 - ;12 in equation (A5-15) by
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mIIz = (M—m)2 - “2 and therefore.

fG 1 G 1 2> - >3 1
W = [ 2m.0aysa)$“ﬁzy+u am (17T S @y -7 29 h?-rl
___diiiiéJ) :%1) + (1~ 2) (A5-16)
d|r1 5
where

(-1) d 1 ““Tﬂrl T |
Ky =F = | &~y 4r |¥ -7

1 72 172 1 %

The "retardation factor' in equation (A5-16) appears quite frequently in this
type of calculation. We refer to the Chapter 6 of the book by Akhiezerand Berestetskii
(1965) for several examples and specific ways of dealing with them.

Once WN*N is obtained we can in principle solve the Hamiltoman H given by
equation (A5-4), although in practice this task is beyond present capabilities (except
for nuclear matter or very light nuclei). However in order to describe how the
effects of an assumed T.R.I, violation in the N*Ny vertex can be calculated we shall
assume that we have been able to solve the Hamiltonian H_ given by equation (A5-3)

0

for Y N) and  N-1,N*). Furthermore we assume also that we can treat WN*N in

perturbation theory. Therefore the final state \Iff and the initial state \I/i involved in
a given electromagnetic transition can be written
- *)>
<3, NN*Izbka\I 1,N%)

V=N D — o O-1,N%)>
A Ty -y 1N g

<P (N)| W [, V-1, N%) > ,
gb(N)+ 2 El NN* Tk lgb(N-l,N*)>

kA )T Py -1,
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The effects of a T.R.I. violating N*Ny vertex can now be calculated.
First, by using the method described in section 2-3 a one body transition operator

H©*Nvy) can be extracted from the graphs of Figure A5-3a and A5~3b. If we use the
TRV '

N*Ny given by equation 4-3, the operator H(N*Ny) will be TRI violating

Lagrangian A

and its effect is given by

<P, (N-1,N%) | HO*Ny) | . ) > <@, (N-1,N*) | W lzz:x(N)*
<y |uEeNy) g >= T —= . ok Bt b
kA b @) b, ON-1,N%)

<P (N) |HQIN*v) [ (N-1,N%) ><yp @) [W___ | (N-1,N%) >
+ 3 f . zpk - i NN*' "k (A5-17)
k#1i api(N) ;bk(N—l,N-*)

Fig. A5-3b

The equation (A5-17) corresponds of course to the two graphs of Fig. A5-6

e Ye®y LN
1,
Tl L
VNN* };{ Z 1 time
‘. _ | N*Ny % v
N U S ‘ _F wwx L
My -
~ g - "y
(@) (b)

Fig. A5.6
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Now it is clear that the approach described in this Appendix is similar
to the one used in Chapter 3. There are however differences. Firstly we note
that the approach used in this appendix does not take into account exchange contribution

like the one given by Fig. A5-7 which are included in the method of Chapter 3.

Fig. A5-7

Secondly, there is a small normalisation correction which the approach in Chapter 3
does not take into account, namély the factor (1 - 042)% in equation (1). Thirdly the
approach in this Appendix would take account of interaction between the N* and the
nucleons by using the correct z,l)n (N-1,N*). Since this is impossible to calculate

in heavy nuclei, we feel justified in using the simpler approach of Chapter 3.
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APPENDIX 6

ISOSPIN EXPANSION

This Appendix is intended to prove equations (3.10a) and (3. 10b) namely

“* 1

* * T *
Ty teymrv =F T20 Coyde) NN T 2l G S NN R X,

1 x % (2) ' -
+ﬁ(s <N€p+€p)zz (A6-1)
.;
T 4y *@yNoR J” ()(€ +€+%ﬁ%ﬁ+ “4{ 3{39“ X Yoy
l Ere-c-e)e @ | A6-2
NS % (A6-2)

The matrix €(see equations 3. 3 and 3. 4) will be written

)

(A6-3)

o ©
o T o o

* *
H =3 - = - h . M i ]. i
so that taking a €p €p and b &N €N we have the T.R.I. violating case and

* *
analogously taking a = Ep + Gp b = EN+ €N we have the normal case.

The task is to calculate (see equation 3. 9)

! * —y
T =¢ T (A6-4)
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APPENDIX 7

RECOUPLING OF OPERATORS

The purpose of this Appendix is to illustrate the standard techniques used
to decouple the operators given by equations 3.16 and 3. 17 in Chapter 3 and to extract
from them the operators of section 4.3-B. Let us take as an example the second

part of the operator given by equation 3.16, viz.

NN | Gt 2 . % # 5
VL) = () 3 Toiaem 5 1(3‘\I & €p+€p)[(2L+1)L] ifj R

L-1

ij Y14 ®;5) 8

*L ~> >
j - = > -» i K([ri-T; ,)
{ [Gi X (?’i—_r’j) ] o5 (ri—rj) ”CZJ + [O'j X (ri-xzj)] o, (ri—rj)‘(zl}]M —‘LLTJ—
by using
. 1
[or.l X (r.l—rj)] = (-i)V2 [Gi&(ri—rj)] @)

[oi- (i"’i-?j)]= -3 [aj® (?i-x-"j)] ©

A1) _/é_TL
m T3 Ylm

-r--) . «9_:-, j : -—>_,_,\ . —)_—b i =
{[cri x(r, r].)] crj (ri rj)'ZZ + [oj X (r.l rj)] o, (ri rj) ‘g }
] ¥4

1) :
. 4 -y~ 2 N 1 0 -
- e AT % {E01®Y1(rij) 1P (o, 07,@)]" it

' a .
A 0
* {[ojml(rij)] Te (o0, ()] ’J le}
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where T =°f,-?.
i
Now
M -
(0,87, €] '@ [0,®Y & )] .
11 L i1
' % \ L) ~ A 4L
Z [erer+1)3]® J1 1 L{j[o®c ] '®Y. €.)®Y. (r..)]
! Lo 1 i~ j 1%1ij 17ij "

which, using

%
A ) (3] 1 1 1 A
[Ylﬁij)®Y1(rij)]m—( 47T) V3 o O) Yy &)

is

|
) @
[[cr 8 Uj] Llg Y (ri].)] |

M

L

kX 1 1 L\, \ kX
=T [3)? [ (2L+1)(2L+1)3]
Ly (4) V3 (o 0 0 )

iy

fd
©
Lo

ot

1 1 0

% ( @)
/3 0 0 0. @) A
~(—-4) 3= [[019%] @Yo(rij)j +

R M

5 11 1 11 2 1)
3 5 1) A
+(47r> () [5x3] 32 11 (o 0 o)l["i@oj] @ Yz(rij)] M

a\F 3 1 2 1/ [f1 1 2 2) A(l)
’L(E) 5xs]"¢) 1, 5 1{ Lo o o [Gi@"j] ®Yz(rijZI

M

Substituting in (A7-1) we get

*1
1 1 9 j i
QP (0 0 O)Eriéwj]M (2

ol

Vl———l-——'--——-—-gGrfi 2 e-c-c+e) D2
M) =)g p(M-m)2m y"?;(€N€N P p)i<j47r
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!ri—rj] K (]ri-rjl) +

11 1) /11 2
1 _ Gfi 2 x  * %_.3 }
*3 u(M—m)2m2\f§(i\Ti\€p+€p)i§j [6xsxs]"¢D), | (0 0 o)

—

1) S B N B |
l,["i@“j] 9 Y, (ri].)]M (-3, +

1 Gfi 9 % * 5 . %.;121}112
t3 poemem? 3 R Z Lexsx5F 0], 1 i\, o o

i<j

) *1 i i
[[ai@ on @ YL(?H)] . (T, +1)),

The first two parts of V(1) are called Wib ) (M*1) and Wl(c) (M- 1) respectively

in Chapter 4.



P-137-

APPENDIX 8

FORMULAE OF ANGULAR CORRELATION

In section 4-2 the angular correlation function W(1,2) of two y-rays emitted
in succession and with no perturbation of the intermediate state was defined and

decomposed as follows (eq. 4-3)

1)

wa,2) = w2+ wPa,2 ... +wPa,z (A8-1)

0 <1 szI.l

(k)

where each term W

(k)
R

(1,2) is proportional to the corresponding statistical tensor

0) @)

Equations(4-4) and (4-5) give the first two terms W '(1,2) and W™ '(1,2)

)

respectively. The purpose of this appendix is to give the general term W' '(1,2)

(we refer to Coutinho and Ridley (1970) for details) in terms of the angles defined in

Fig. 12.
@) lI-even
1) z o0 k
W:[(21i+1)(21+1)] R, Ep A (L, L +1 IL) Ap(L2L2+1 1T)
(even)

Pk 1

; ]

]

b (cos 62) cos IN[ ] (A8-2)
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®)  l-odd

M _ 3. K ‘
W —-[(21+1)(2Ii+1)] Ry T A (L L+I Ap(L2L2+1 IT) x

0 K.p 1p 11
(even)
X E_(—)N pok 1 2 PEI' (cos B,) P'N] (cos B,) sin IN| o (A8-3)
N N|-IN] o P

= - d
where ¢ ¢2 ¢1 an

k . 2.-1 .k 1
Alp (L L +IIL) = [1+]6@)]°] [Flp(LlLIIIi)+(6 (1) +(-) 6*(1)) Flp(L1L1+1IIi)

+16@)? Fll; (L, +#1 Ly + 11L) ] (A8-4)

' 12971 -
Ap(L2L2+11fI)=[1+‘6(2), ] [Fp(LszlfI) (6 @) +06 @)% Fp(L2L2+1IfI)+

2
8 (2) -
+ 16 @) Fp(L2+1 L,+1 111)] (A8-5)
g - L Y
F 2 (LL'j i) = (-)L 1 { @i +1)é~’ (2] +1)% (L+1)? (2L’ +1)°} <L/1 -1}l g 0>
g1g3 1°0 1 0 2
o 3o &1
L L g, (A8-6)
i 1 B3

L 1’ K)iL 17 Kg

1 -1 o/(1 1 1,

Fk(LL'IiI) = (it [ @L+1) @L +1) (21+1) (2K+1)]%<
1

(A8-7)
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APPENDIX 9

-
DETERMINATION OF’){V (A) GIVEN Vt v

The general problem of constructing a gauge invariant combination V +i/(1?.)
from a given potential V will be considered in this appendix. We shall limit ourselves
V‘ > . 4. . .
to the case where ¥ (A) is linearly dependent on A and therefore according to equation

(A4-6), V + ¥ (B) is gauge invariant if

YW =i (g, V] . (A9-1)
where
- ne (®) -
g=ZZa+TY)G@)amd V=TV,
i i#j

-

As already explained in section 5-2 the usual replacement 1—3)-5 p-e X -;— i+ ‘tz)
is not sufficient to ensure gauge invariance of a potential which contains an isospin
exchange term (e.g. V=2 V~z (Iri—rjl )‘ti- ‘tj). This type of potential is clearly not

17
gauge invariant since it contributes to the commutator in equation (A9-1).
However gauge invariance alone is not sufficient to determine (A) uniquely
v
from V. In fact the only way of obtaining ¥ (A) uniquely is by going back to a field
theoretical basis and using the Feyrman Graphs from which V itself has been extracted.
This has been done in the case of parity violating potentials by Fischback and Tadic (1971)
(see also Tadic and Eman (1973)). Some of their results will be used to compare with

the phenomenological procedure described below.

The procedure is based on equation (A9-1) and is defined as follows.
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i) Calculate the cornmutator

c=ilg <1+z )G(r)+ (1+2>G(r),VJ

(ii) The result will have terms of the form

[\*7i G(r,) :l:\Vj G(rj)] and [ Gr,) - G(rj)]

(i)  Replace [, G(r,) i\Vj G(r,)] by [2 (r) + 'K(rj)] and [ G(r,) - G(rj)]by
an arbitrary functional IF (rirj A) such that fF (rirj WG) = G(ri)~G(rj) so

leading to a term in the Hamiltonian H (A(ri), A(rj)), depending on A.

(iv) ")/EK) =2 H(A(ri),A(rj)) since by construction it satisfies (A9-1).
i#]
The functional H: (rirjA) referred above could be for example

-
I

j
F (x;x,4) ==S A()- dr

&
r,
1

where the integration is over an arbitrary path. Another example for F is

-
fax By = fd?’ xE @7, X)), A

where g (x—ri, x-rj) falls off rapidly with ¥ and

divx? 6(xr)-53(xr)
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As an example of this procedure, consider the following parity violating

potential (TadicedEman - 1971)

-

S N a2
Ve %m lfcl-pl, £(1,2)] [02 pz,f(l,z.)]] T

™

where s

1" %2
We have

i [gv kielGepsa+z®oe)ar®), v =
X [0, Wa(r,) +0,-W Gir,)]1(1,2) T‘ LK v, ;0[O pes) ¥ 2)]T"
and therefore
\f&fw [or A(r))+G- Alr, )IE@, 2)T " + [(cr +P, =0, P, )FF(r 'K)f(l,z)]'r+

(A9-2)

The potential V'rr was derived from field theory from the diagram in Fig. A9-1

- - -

Fig. A9-1

where the crossed bubble is the p. v. vertex.
Tadic and Fischbach (1971) show that gauge invariance is obtained by considering

the graphs of Fig. (A9-2).
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()

Fig. (A9-2)

which gives

(> _ :Ej( - > + _
V'rr (A) = om (ol.A(rl) + 02- A(r2)) f(1,2) T ] | (A2 _3)

and the diagram of Fig. (A9-3)

>

Fig. (A9-3)

which gives

§ T, -p O.-p
Vw(b)(x)=—ieki[l 1 ¢(1,2)] ™ . [2 2 ¢(1,z£} T(+)€ (A9-4)

2m 2m ’

where

-
o) (1,z)=§d3r3 [£(3,2) (‘.st(1,3)) - £(1,3) (\ng(3,2))]' A(r,)
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Comparison of equations (A9-2) to (A9-3) and (A9-4) shows that the
phenomenological approach agrees with the field theoretical approach if we

choose
F (xR = f [ﬁ ;; (7, £1,3) - f(i Z’; W16, 2)] - Ar,)

This would of course be quite impossible to guess in the absence of a
detailed theory. However for T.R.I. violating forces where no detailed theory

exists one might use a phenomenological treatment and choose a simple form for HT
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APPENDIX 10

AVERAGE PROCEDURE

This Appendix describes how to obtain a one body operator that is equivalent to
a given two body T.R.I. violating operator in the sense that it has the same matrix
element between two Slater determinants differing by just one orbital.
The T.R.I. violating potential considered is due to Huffman (1970) and was

given in equation (5-29), namely

> =

r.-r,
Vin=g i a2 = X\Y Z. -1%1%)+h.c.
Gt e B P Q ([T Tl (-0 (T %) =% ) e

(A10-1)

where Q(p,] r.l—rj}) is a short range function given in the Huffman paper.
The matrix element of a two body operator between Slater determinants differing by

just one orbital (denoted below by u and p) is given by equation (5-20), namely

< V(i,j) > = V(irect) + V(exchange) (A10-2)
where V(direct and V(exchange) is given by equations (5-21) and (56-22).

»

We consider first the V(direct) term i. e.

V(direct) = I Id(l) d) U* (1) W*_K(Z) vVi,2)v 1) WK(Z)
k
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e.r - 1% <% o4 @y )
12 @ w6 0

element vanishes.

Since - =T it is easy to see that this matrix
The exchange matrix element is

V(exchange) = - 2 S)d(l) d2) U*Q1) WIE‘ 2) V(1,2) v (2) WK(l)
k

which is first written in the form V(1,2) = VX(1,2) Vc 1,2) V (1,2) separating

the space, spin and i-spin parts. Thus,

V(exchange) =- |Z Xg @ Xy @ V0(1,2) X g (2) Xo (1)] X
g, U k v k
k ..
k *
Zx @Mx @V G2y x O x fod(l) d(2) U*(1) We@) V_(1,2)
LR Y 1 1y k :

v (2) Wk(l):!
We now treat each part separately, the aim being to obtain -

V =-V (spin)xV (i-spin) x V- (space A10-3
eq eq(pm) eq( pin) eq(p ) ( )

Consider first the spin part. We have

* *
b ,tit) X5 (2) .Vo(l,Z) XO(Z) X, 1) =

%
K k vk

o, u v k

_ _1_ * /* #
=5 2 W X, @ [Voa,m P+ PV (z,1>] X ® x, @)
k
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where

1
=—(1+0
P 2(

& 1°9)

i's the usual spin exchange operator. In the Huffman case Vcr 1,2)= crl- 0‘2. We

therefore define

=L * = -
Veq(spln) =3 2) [Vo(l,Z) P0+ PV 2,1) ]Xo (2)=3 1T (A10-4)

E %k

X
% %k k
where T is the unit 2 x 2 matrix. Similarly

% *
& ox @ x
Yy 2. {

@) V\‘. @,2) x
k % ¢

@ x, @ =
bk .

k v

*(1) *(2 [V, (@,2) P PV 2,1)] 1 2
) R ,
)§ X‘, ) ‘g( 7 12( ) XZ()XI()

1
2 1, g T "

~

1 . .
where P‘é =3 @+ ‘:1- Lz). We therefore define

. 1 * *
Veq(l spin) =3 213 X (2)- [v‘[ (1,2) P1+ P, V,@,1)] >%

) =
k %k _

k

D
iy

1 Z Z
z 2y =1 - 2
%P 20 ) X @

The last result is approximated (see Michell 1965) by
N-Z Z

s 1 N-Z _
Veq(l-spm)—~ > al 3 1(1)) (A10-5)

Finally the space part' is calculated in the following way. First write

Z)ﬁd(l) d@) U*(1) W_(2) V_(1,2)v @) W, 1) =
k

*
jldu) Ux(1) jd(z) W,_(2) -;- [V a.2)p _+ P: V_@,D]W @) v @)
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The operator PX is given by (Sachs - 1948)

1 - | n
P =T ((xpry) Vz * (rz'rl)'vﬁ

The first two terms of PX are
P . 1 4 -39 ~7 - +
= i (rl r2) (p1 pz) cens

Because the potential (A10-1) is a short range one we can approximate PX ~ 1,

Therefore
>

2
——— 1 2 .’n) _‘) -
Veq(space) =G lZ{:{d(z) W (@) E{—‘%l ®,D,) Q(ulrl ré) + h, c.} W, (2)

and therefore

= ?1";2 \
v =GP, |d@2) W@ ' - W (2)}+h.c.
oq (S02CE) = G P, (kf QW@ g Qulr; -1y 1) k(}+ c

or (see Blin~Sioyle 1955)

Tt \ Qulf )
V (space)GB..F [T laeywr @ f - 23 l 2  w@) +he
eq R R | k |2 ¥ -T T

k

(A10-6)

Now is we put (A10-4), (A10-5) and (A10-6) in (A10-3) we get

- 770\ Qb
Veq(exchange) = - G (Pl‘ rl) {3 E Sd(Z) W* (2) (1 - 'rl 2 ’rl_rz[ Wk(Z)}

1 Z N-Z
> ( -7, ( - )) the. (A10-7)
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Now (see Blin-Stoyle - 1955) define

B
1 Ty Ty \ QU ry )
3 * })2'?1 Qe ;)
=-3 Z S‘d s wnlm (rz) h’.‘l [2 -t lrl-rzl ¢nlm (rz)

nlm

Hh * Hi r-r -
p(r,rh) =3 i ¥ i @) (];rg ) Y m @)
Qulr-r'] )
Izl =

so that

Pa) =- XJ(‘r -y p@,)d®

and now using Blin-Stoyle results.

-y 2@l+1) 3 getad L 4 2
%(r)~n21 3 5 (SJ(&)S ds) @ [fn,l )]

where fnl (r) is the radial function for a single particle in the state (nl) and is

related to the mean density distribution of particles P (r) by

o . 2. @l+1)
ey =2 £ e S
. dp
4T 3 ' R 1 nl
P = - s %‘1, ([r s% as =

or

_k dp ()
‘fh(r)"r dr

(A10-8)

(A10-9)

(A10-10)

(A10-11)

(A10-12)
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where

k=-2f jQ (us) S3 ds (A10-13)

Now if we substitute A10-12 and A10-13 in A10-7 we have equation 5-30a.



-151-

RETFERENCES

Akhiezer and Berestetski (1965) - Quantum electrodynamics, John Wiley and Sons,
N.Y. (1965).

Barshay (1966) - Phys. Rev. Lett. 17 (1966) 46.

Bernstein et. al. (1965) - Phys. Rev. 139 (1965) B1650

Bincer (1960) - Phys. Rev. 118, 855 (1960)

Blatt and Weisskopf - Theoretical Nuclear Physics, John Wiley and Sons

Blin-Stoyle (1955) - Phys. Mag. 7 (1955) 973

Blin-Stoyle and Nair (1966) - Advances in Physics 15, (1966) 493

Bohr and Motelson {1969) - Nuclear Structure Vol. 1., W. A, Benjamin Inc. N.Y. (1969)

Brennan and Sachs (1952) - Phys. Rev. 88, (1952) 824

Brink and Rose (1967) - Rev. of Mod. Phys. (1967)

Brink and Satchler (1968) - Angular Momentum ~ Oxford University Press.

Broadhurst (1971) - D. Ph. Thesis- University of Sussex; Nuclear Physics B20 (1970) 603

Brown and Riska (1970) - Nuclear Phys. A153 (1970), 8

Chemtob (1968) - Nuclear Phys. A123 (1969) 449

Chemtob (1969) - Ph. D. Thesis, University of Paris

Chemtob and Rho (1971) - Nucl. Phys. Ai63 (1971) 1

Chollet et. al. (1969) - CERN preprint 69-7

Clement and Heller (1971) - Phys. Rev. Lett. 27 (1971)

Clement (1971) -~ Harwell preprint T. P. 460.

Coutinho and Ridley - University of Sussex Internal Report (1947%)

Cronin (1968) - 14th International Conference on High Energy Physics, Vienna,

p. 281



~152-

Dalitz (1954) - Phys. Rev. 95 (1954) 799
Das (1968) - Phys. Rev. Letts. 9 (1968) 409
‘Drell and Zachariasen (1961) - Electromagnetic Structure of nucleons - Oxford

University Press

Elliott and Flowers (1955) ~ Proc. of the Royal Soc. 229 (1955) 536.
Fano (1951) - National Bureau of Standards Report A 1214
Foldy (1953)-Phys. Rev. 92 (1953) 178

Frauenfelder and Steffen (1965) - see Sieghahn (1965)

Glashow (1965) - Phys. Rev. Letts. 14 (1965) 35
Gourdin (1966) - Diffusion des Electrons de Haute Energie, Masson Cie Editeurs - Paris
Green (1971) - Phys. Lett. 34B (1971) 451

Green and Schucan (1971) - Nucl. Phys. A188 (1972) 289

Hamilton (1971) - Private communication

Hannon and Trammel (1968) - Phys. Rev. Letts. 16 (1968) 726
Henley and Jacobson (1958) - Phys. Rev. 113 (1959) 225 and 224
Henley and Jacobson (1966) - Phys. ﬁev. Letts. 16 (1966) 706
Henley (1969) - Annual Review of Nuclear Science 19 (1969) 367
Herczeg (1965y-Nuclear Phys. 75 (1966) 655.

Holmes (1972) - To be published in Nuclear Physics

Huffman (1970) - Phys. Rev. D1 (1970) 882

Kuo and Brown (1966) - Nucl. Phys. 85 (1966) 40

Lee (1965a) - Phys. Rev. 140 (1965) B 959
Lee (1965b) - Phys. Rev. 140 (1965) B967

Lipshutz (1967) - Phys. Rev. 158 (1967) 1491



-153-

Lobov (1969) - Atomic Energy Review vol. VIIno. 3

Lurie (1968) - Particles and Fields - John Wiley and Sons

Maqueda and Blin-Stoyle (1967) - Nucl. Phys. A91 (1967) 460

Michell (1965) - Phys. Rev. 133 (1964) B329

Nishijima and Sank (1966) - Phys. Rev. 146 (1966) 1161

Nishijima and Sank (1967a) - Nucl. Phys. B3 (1967a) 553

Oakes (1968) - Phys. Rev. Letts. 20 (1968) 1539

Osborne and Foldy (1950) - Phys. Rev. 79 (1950) 795

Rarita and Schwinger (1941) ~ Phys. Rev. 60 (1941) 61.

Sachs (1948) - Phys. Rev. 74 (1948) 433

Sachs and Austern (1951) - Phys. Rev. 81 (1951) 705

Sakurai (1964) - Invariance Principles and Elementary Particles, Princeton
University Press.

Salin (1963) - Nuovo Cimento 28 (1963) 1294 and 27 (1963)193

Siegbahn (1965) - Alpha, Beta and Gamma Ray Spectroscopy -~ North-Holland

Siegert (1936) - Phys. Rev. 52 (1937) 787

Sugawara (1953) - Prog. Theor. Phys. 10 (1953) 199.

Tadic and Fischbach (1971) - Preprint of Pardue University
Tadic and Eman (1971) - Phys. Rev. C 4 (1971) 661

Takahashi and Umezawa (1953) - Prog. Theor. Phys. 9 (1953) 1
Walborn (1964) - Phys. Rev. 138 (1965) B530
Warburton et. al. (1967) - Phys. Rev. 155 (1967) 1164

Wheeler (1936) - Phys. Rev. 50 (1936) 643
Wolfenstein (1964) - Phys. Rev. Letts. 13 (1964) 562



	0000100
	0000200
	0000300
	0000400
	0000500
	0000600
	0000700
	0000800
	0000900
	0001000
	0001100
	0001200
	0001300
	0001400
	0001500
	0001600
	0001700
	0001800
	0001900
	0002000
	0002100
	0002200
	0002300
	0002400
	0002500
	0002600
	0002700
	0002800
	0002900
	0003000
	0003100
	0003200
	0003300
	0003400
	0003500
	0003600
	0003700
	0003800
	0003900
	0004000
	0004100
	0004200
	0004300
	0004400
	0004500
	0004600
	0004700
	0004800
	0004900
	0005000
	0005100
	0005200
	0005300
	0005400
	0005500
	0005600
	0005700
	0005800
	0005900
	0006000
	0006100
	0006200
	0006300
	0006400
	0006500
	0006600
	0006700
	0006800
	0006900
	0007000
	0007100
	0007200
	0007300
	0007400
	0007500
	0007600
	0007700
	0007800
	0007900
	0008000
	0008100
	0008200
	0008300
	0008400
	0008500
	0008600
	0008700
	0008800
	0008900
	0009000
	0009100
	0009200
	0009300
	0009400
	0009500
	0009600
	0009700
	0009800
	0009900
	0010000
	0010100
	0010200
	0010300
	0010400
	0010500
	0010600
	0010700
	0010800
	0010900
	0011000
	0011100
	0011200
	0011300
	0011400
	0011500
	0011600
	0011700
	0011800
	0011900
	0012000
	0012100
	0012200
	0012300
	0012400
	0012500
	0012600
	0012700
	0012800
	0012900
	0013000
	0013100
	0013200
	0013300
	0013400
	0013500
	0013600
	0013700
	0013800
	0013900
	0014000
	0014100
	0014200
	0014300
	0014400
	0014500
	0014600
	0014700
	0014800
	0014900
	0015000
	0015100
	0015200
	0015300
	0015400
	0015500
	0015600
	0015700
	0015800

