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Abstract - [RIS, the International Reactor Innovative and
Secure. 1$ an international program that aims to develop
an integrated primary system reactor with innovative fea-
tures that can meet most of the requirements considered
in the Generation [V Roadmap Study as a Near-Term De-
ployment System, IRIS philosophy is the Safery by De-
sign Approach, The IRIS concept raises many challenges
that only can be addressed by an international cooperative
effort. This paper analyzes and presents many results of a
possible solution for one of these challenges, the rran-
sients’ classification and identification that may be used
to help the safe operation of IRIS. The approach studied
in this paper is based on self-organized maps (SOM), a
specialized class of artificial neural networks (ANN). The
results presented complement previous reports and show
that SOM is a quite promising tool in the identification of
initiating transients of the IRIS reactor. The ability of this
kind of ANN in promptly identufy the deviation from
normal operation, with the aid of only few process sen-
sors signals, may be used to develop the IRIS Transient
ldentification System (TIS).

[. INTRODUCTION

IRIS is an international cooperation effort to design a nu-
clear energy system capable of meeting many of the re-
quirements for the new generation of nuclear power
plants. IRIS takes advantage of its integral configuration
to implement a safety by design approach to meet chal-
lenging safety goals [Carelli et al., 2001]. In this philoso-
phy. every possible source of “safety vulnerability” has to
be addressed and adequately coped with [Packer. 2002].
Safety by design and the safety barriers recommended by
the principle of defense in depth can eliminate some and
attenuate many of the consequences of mechanical, elec-
trical and human fails, but to provide a really confident
plant. modern tools 1o provide “good information” for the
operation team are required.

This paper describes a promising tool able to identify
transient events, classifying them into normal or abnormal
transients. The system under study can provide operator
support, helping the safe operation of IRIS. The approach
1s based on self-organized maps (SOM), a special class of
artificial neural networks (ANN), operating on-line with
the reactor instrumentation. This kind of representation
can allow to the operator to watch how a given transient is
evolving with respect to its severity, as the time path of
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the activated units is migrating owards the border of a
new class of transients.

The central idea is to develop a system capable of idenufy
and classify a transient type in its early stage. This system
was first described in 2003 [Baptista and Barroso, 2003],
and after this ume it was improved and tested with more
data considering a greater set of transient simulatons. The
data consist of sets of eight key process variables recorded
in the first 30 seconds of several types of transients, nor-
mal and abnormal and also in steady state conditions.

II. IRIS BRIEF DESCRIPTION

IRIS is a modular, integral, light water cooled reactor, de-
signed for a power of 335 MW(e)/module. The most rele-
vant technical characteristics of IRIS are discussed in de-
tail in references {[Carelli et al., 2000], [Carelli et al.,
2001a], [Carelli et al., 2001b], [Petrovic et al., 2000],
[Oriani et al., 2001], [Conway et al., 2001]}. Its “safety by
design™ approach, where accidents are “designed out” to
the maximum extent possible, instead of engineering how
to cope with their consequences is presented in [Carelli et
al., 2001].

The IRIS integral vessel houses the reactor core, its sup-
port structures, upper internals, control rod drives, eight
steam generators, internal shields, pressurizer and heaters,
and eight reactor coolant pumps (Fig.1). Hot coolant ris-
ing from the reactor core to the top of the vessel 1s
pumped into the steam generators annulus. The integral
vessel configuration is essential to the safety by design
approach as shown in [Conway et al., 2001] and thus it is
key to satisfy the enhanced safety requirement.

[II. SELF-ORGANIZED MAPS

Self-organized maps are artificial neural networks with a
single layer where the umits are placed in a 1-D or 2-D
grid. In the 2-D SOM, the units are placed in a square or
hexagonal lattice (Fig.2). The training of the SOM is
based on the competitive learning concept: units compete
with each other to be activated when a specific pattern is
presented and the result is that just a single unit is really
active at a given moment. The original idea of the com-
petitive learning —winner takes all- was proposed in 1958
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Fig. 1. IRIS Integrated Primary System.

[Rosenblatt. 1958] but the most general model was devel-
oped in the 80°s [Kohonen, 1982].

The principle of the topographical maps formation, as
formulated by Kohonen is: the spatial location of an out-
put unit m a topographical map corresponds to a domain
or peculiar feature extracted from the input space. This
concept reproduces one of the features of the brain: the
organizaton of the sensorial inputs in the higher planes,
represented by topographical maps. The units in this gnd
are assigned to specific features of the input. producing
topographical maps related to specific classes of patterns,
1.e.. the spatial locatons of the units are indicative of the
statisucal features of the input patterns. These indications
can be seen as a non-linear generalization of the Principal
Component Analysis (PCA).

[n the SOM there are not any known or desired output.
The objecuve of the network is to search similarities
among patterns and to promote the classification of the
mput data into groups, in a non-supervised learning
methud. An incoming patiern triggers a competition
among the units and the winner weights are updated to be-
come more close to the input pattern. These maps are such
that. patterns close to that which have previously actuvated
one unit, will either activate the same unit or one of its
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Fig. 2. 2-D SOM.

neighbors. The winner unit is the one whose weights vec-
tor is the closest to the input pattern, based on a Euclidean
distance. There are lateral communications between the
units in the grid. which obey a neighborhood function,
usually represented by a gaussean like funcuon:

V“.-,(H)=exp —M th

where jO indicates the winner unit: llrj — rjOIl 18 the Euclid-
ean distance between the unit ) and the winner unit. sin)
defines the width of the neighborhood, which starts as
wide as possible and decreases with increasing n, i.e., with
training:

o(n)=0, exp(—=) (2)
r(}'

The weights are updated according with:

w{(n+])=w‘,(n)«l-r}(n)[x(m—h'l,(nJ] (3)

where x(n) is the input vector. The leamning rate, h, varies
as a function of the distance berween the unit j and the
winner unit (by the V functon) and as function of the ume
(n):

niny=n, exp (=22)V_.(n) )
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SOM is an excellent tool for the exploratory phase of data
analysis. It projects the input space into prototypes of
lower dimensionality, i.e., into 1-D or 2-D regular-in-
shape grids that can be used to explore the data feawres.
‘Visualization™ is the first step in the pattern classific a-
tion, and it 1s completely done by SOM in an unsuper-
vised mode.



In this step only qualitative features of the input data can
be obrained. ‘Selection” is the “extraction™ of the chara ¢-
teristics. The next step is ‘tlassification,” when the s e-
lected characteristics of the input data are assigned to in-
dividual classes. [t 1s know that, in the pattern classifica-
tion phase. the performance is improved if the “sele ction™
18 followed by a supervised classification, i.e.. it is con-
venient the use of an “adaptive pattern classifier.” In the
previous work we have used the learning vector quantiza-
tion (LVQ) scheme proposed by Gersho [Gersho and
Gray. 1992], now we present results without quantization.

[V. THE TIS CONCEPTION AND TESTING

A The Transient Identification System

A nuclear reactor can be subjected to different kinds of
transients. In this paper only few of them are considered:
positive and negative step load changes of 10% of full
power; positive and negative ramp load transients at a rate
of S%/min.; a turbine tip; SCRAM; the inadvertent relief
valve opemng: a large power excursion simulated by a
step of 30% of full power; a negative power step of 70%
of full power: and, a small loss of coolant accident. To-
gether with these transients, the training data set contains
several steady state conditions patterns from 20% to 110%
ot full power.

[t 15 important to observe that the response of the reactor
systems to each one of these transients depends on the
control system. which is being developed. At this early
stage of development, when the control architecture and
parameters are not optimized, simplified models are good
enough 10 provide basic data to characternize [RIS behav-
1or. Barroso |Barroso et al., 2003] describes the simplified
tools that produced the data used in this paper and also
presents results for many transients. Fig.3 illustrates the
temperature response during a SCRAM from full power,

The Transient Identitication System (TIS) was conceived
with the idea that the behavior of few variables, like the
reactor and the steam generators power; the temperature
at different points: and the pressurizer pressure and water
level. can characterize a single transient. as the transient
identity, The system has a buffer to collect data for few
seconds of the main variables, which will form a spec-
trum. being the input for the SOM. Fig 4 illustrates how
the pressure varation during a small loss of coolant acci-
dent (left side) is translated into 16 seconds packages
(each package contains information of 16 seconds of tran-
sient time and the ume difference between packages is |
second).
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Fig.3. SCRAM: Temperature Response.
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Figd. LOCA: Pressure vanaton (a) and Contents (b) for a 16 sec
buffer.

Fig.5 shows a diagram that represents the basic idea of
TIS: where the input is a 2-D matrix with the vertical di-
rection representing the variables and the horizontal direc-
tion the time. At each moment the buffer contains a pack-
age of few seconds of the acquired variables values and its
contents is changed at each second.

Considering that each cell is previously assigned to 4 kind
of transient, its lightening will revel the kind of transient
in course. The TIS® screen will light a single cell each
second. Although we have tested two different-size buff-
ers (from 6 t 16 seconds) with different acquisition
times. the data presented in this paper was limited only to
the results for a 16-seconds buffer, containing data of the
first 30 seconds of each wansient beginning (previous
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Fig. 5. Schematics of the Transient Identification System.

works present data from 20-seconds buffer-size with 2
minutes of acquisition time).

B. Transient data and training results

Eight variables were selected to be the input for TIS [in
previous works this number was 9]: reactor power, SG’s
power, core outlet temperature, riser mean temperature,
SG mean temperature, downcomer temperature, primary
system pressure, and pressurizer water level. It was used a
sampling interval of I seconds during 30 seconds for each
transient, Fourth five different transients/conditions were
used in the system training; more twelve conditions in its
testing. The overall transients list is presented in Table I:
the transients not presented in the training phase are in
bold text.

In the previous work, the data was normalized only with
respect to each vanable value; the new system has an op-
uon for the buffer contents normalization. The paper pre-
sents results for a network with a 10x10 square array,
trained in the unsupervised mode for 2000 époques'. The
objective was to verify TIS ability to make clear distinc-
tion between four kinds of operating conditions: steady
state. ramp transients, step transients, and abnormal and
accidental events.

After the training the sensibility of each cell of the SOM
was tested and assigned to the ‘most closest transient
class.” This “most closest class” refers to the shortest
Euchidean distance of the cell to the input: the shortest dis-
tance 10 a specific class assigns the class number of the
input to the cell class (1 for steady-state, 2 for ramps. 3 for
steps and 4 for not normal events).

After training, TIS was tested in the monitoring mode
showing which cell lights, at each second. when a specific
transient is presented. Each transient presented is a set of
16x8x16 data (16 buffer contents of 8 variables by 16 ac-
quisition periods),

! Epogue means "a single presentation of the complete training
set.

TABLE |
TRANSIENT LIST

Normal Transients

1 20% Steady siate 28 100% Ramp -5%/min
2 25% Steady state 29  50% Ramp -5%/min
3 309% Steady state 30 80% Ramp —5%/min
4 35% Steady state 31 70% Ramp —5%/min
5 409 Steady state 32 60% Ramp —5%/min
6 45% Steady state 33 50% Ramp -5%/min
7 50% Steady state 34 40% Ramp -5%/min
8 55% Steady state 35 30% Ramp —5%/min
9 60% Steady state 36 1009~ Step -10%
10 65% Steady state 37 90% - Step-10%
11 70% Sready siate 38  80% > Siep 10%
12 75% Steady state 39 70% > Step-10%
13 B0% Steady state 40 60% > Step -10%
14 B5% Steady state 41 50% > Step 10%
15 90% Steady state 42 40% = Siep -10%
16 95% Steady state 43 30% - Step -10%
17 100% Sieady state 44 20% = Step +10%
18  105% Steady state 45 30% - Step +10%
19 110% Steady stale 46 40% - Step +10%
20 25% Ramp +5%/min 47 50% = Step +10%
21 30% Ramp +5%/min 48  60% - Step +10%
22 40% Ramp +5%/min 49 70% = Step +10%
23 50% Ramp +5%/min 50 80% = Step +10%
24 60% Ramp +5%/min 51 90% > Step +10%
25 70% Ramp +5%/min

26 80% Ramp +5%/min

27 90% Ramp +5%/min

Abnormal transients

52 100% > Step -70%
53 Safery Valve Opening
54 100% Small LOCA
55 1009% SCRAM

56 60%—> Step +50%
57 100% Turbine trip

Fig.7 shows the classes assignment for each cell for one
training performed with pattern normalization in the
buffer, and the sequence of cells lighted for few samples.
The cells with the number 17 are assigned to steady -state
conditions. The cells with number *2" are assoc iated 10
the ramp transients, the cells with number ‘3" 1o the step
transients and the cells with number ‘47 to the not normal
transients. The wide red line traces the sinuous path of
steady-state conditions from 20% to 110% of full power.
The thin blue lines represent the sequence of cells lighted
during the presentation of positive steps of 10% of power
and the thin green lines the negative steps. The brown
lines represent the beginning of ramp transients from the
power fractions of 30%. 40%, 50%, 60%. 70%, 80% and
90%. Three abnormal and accidental events were repre-
sented in Fig. 7 by the thick dotted lines, the turbine trip,
SCRAM and a Small LOCA. The separation between
normal and abnormal events is evident. It was observed
also, that the most abrupt events provoke the lightening of
cells farther from the steady-state line,



3 2*?- -
i ‘,ﬁ.‘f ; 3 3
- P 72 |1 2
s L Al —fs :
SCRAM : Zhcll U
. L ] AT '
A Sk
3 3 fz\ {r"“r—-»a“‘*,'l '3
2 2,011 1 2 / *
" - ;’"ﬁ'; : 3
LOCARREEE 1/ o1 A aul [ ol
- B Rog /2 |1 ol
gL ../ t_\J 2 }3 3
1603085

Fig 7. TIS screen: results obtained in the monitoring mode.

In Fig. 7, the cells classification was based on the mini-
mum Euclidean distance, i.e., the Euclidean distance be-
tween the input vector and the weight vector of each cell
is checked and the cell class is set as the class of the cor-
responding data class. This method of sensitivity meas-
urement may cause the imperfect response o patierns not
present i the training set. The inadequate transient classi-
fication may also be responsible for imperfect responses:;
further refinement with vector quantization may improve
the system accuracy but will not be discussed in this pa-
per.

Fig. 8 shows the results after a identical training but with
the classificanion performed in accordance with the fre-
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Fig. 8. TIS screen: Sensitivity by frequency.

quency of activation, i.e., each cell class is set by the most
frequent activating transient class: if the cell activation is
more frequent for abnormal events, it class is set to 4"
The result showed a perfect agreement with the previous
classification method.

Fig.8 shows that many cells are not associated with any
one of the transient classes (the “white -cells” with a “0”
class association): these are the ‘never lighted cells.”
These cells did not *win” for any input pattern of the
training set. Although these cells can respond 1o new pat-
terns, they were not associated with any one of the first
three classes. The main conclusion of this analysis is that,
up to this moment, the classification on the basis of the
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Fig. 9. TIS screen: Training with a reduction on the power influence.



minimum Euchdean distance seems 10 be a good choice.

The strong association observed between transient type
and power was analyzed to verify if its cause was the use
ot two variables associated with the thermal power, i.e.,
the reactor and steam generators power. To do this analy-
sis. the normalized power values were divided by two, re-
ducing their influence on the input pattern. At the same
time the temperature-normalizing factor was reduced 1o
merease their relanve importance. The sensitivity by fre-
quency method was applied and few tests were performed.
The results are plotted in Fig. 9, which shows that, besides
the different topological arrangement that was constructed
due the different ininal weights, the general arrangement
of cells classes around the sinuous power line follows
similar pattern. Fig. 9 right shows the contour that sepa-
rates the normal from abnormal transients.

Similar results were obtained for different buffers size.
Results for systems with bigger gnds size will be pre-
sented in future.

C. Tests of the system performance

Grids with 5x5 10 25x25 cells were tested in a 2.2MHz
clock Intel Pentium 4 PC. The CPU 1time spent in the
training task. Fig.10, showed a squared relation with N,
the number of lines and/or columns of the grid.

Tests with different buffers size were performed to meas-
ure the relation between buffer size and the relative im-
portance of each type of transient attributed during the
classificaton process and also the effect of data normali-
cation. The analysis consists of counting the number of
units associated with each class, in proportion with the
quantity of correspondent data used in the training. Fig.11
shows the results for the training with and without nor-
malization in the buffer data.

The classes defined in Fig.11 correspond to the transient
classes: C-1 o steady-state conditions, C-2 o ramp tran-
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Fig. 10. CPL-time versus grid size.

with normalization

h-)
@
c
&
7
o
k]
K]
]
15 —
& 8 a 12 4 &
Buftfer size
——0C1 = C2 ——C3 =—C4
without normalization
4 — -
a5
k-]
@
e
=
B
L]
an

Buffer size
01 —a—0C2 4 C3 »-C4

Fig. 11. Assignment of cells to the classes of wransients.

sients, C-3 to steps and C-4 to abnormal and accidental
events. Two main effects observed due normalization
were: the sensitivity with buffer size has greater mean de-
viation; but the differentiation of classes by grid area as-
signment is greater. To better analyze this aspect, the re-
sults were averaged with respect to the buffer size and af-
ter this, corrected proportionally to the number of wan-
sients per class. The results showed that the SOM had as-
sociated much more importance to the abnormal events,
followed by step, then ramps and finally the sieady-state
conditions: the corrected values, in this order, is in Table
2.

TABLE 2
TRANSIENT ASSOCIATION LIST
S8 Ramp Step Abnormal
15 20 27 39

D, Future work

Next steps will consider the following tasks: a) New
analyses with grid sizes up to 25 x 25 cells, or more; b)
Detailed studies on the number and type of input vari-
ables: ¢) Testing of different schemes of vector quantiza-
tion; d) Implementation and testing of a tnangular pitch
grid; e) Studying the use of the Mexican hat” -type
neighborhood function: and, f) Development of an algo-
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rithm 1o convert the irregular topological map into a regu-
lar display screen.

V. CONCLUSIONS

The results presented in this paper, together with previous
pubhshed results. confirm that the TIS concept based on
SOM looks very promising. Its capability in identifying
transient and operating conditions, in special normal from
abnormal transients, was demonstrated.

[t was possible to observe that relatively slow processes
near the sinuous hne that represents the steady-state
conditions characterize the behavior of a reactor under
operational transients. Abnormal and accidental events
provoke the prompt detachment from the neighborhood of
this line.

The present work reports results of TIS being trained with
very short portions of transients, i.e., 30 seconds, follow-
g a recommendation cited in [3].

The recommendation to analyze the effect of ‘buffer con-
tent normalization,” a task considered important to im-
prove SOM performance. also was performed, although
not vet ended.

VI. NOMENCLATURE

ANN — Artificial Neural Network
DOE — US Department of Energy
GIF — Generation IV International Forum

I-NE+RI - International Nuclear Energy Research Initia-
tive

[PSR — Integrated Primary System Reactor

IRIS — International Reactor Innovative and Secure
LVQ - Learning vector quantzation

NE — Nuclear Engineering

PCA — Principal Component Analysis

SCRAM - "Safety Conuol Rod Axe Man™ the sudden
shutting down of a nuclear reactor

SG - Steam Generator
SOM - Self-Organized-Map

TIS - Transient [dentification System.
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