Avaliação da concentração de elementos traço e metais em sedimentos superficiais do Rio Tiête, Estado de São Paulo, pela técnica de INAA

Heloise Ribeiro de Almeida Henrique e Deborah Inês Teixeira Fávaro Instituto de Pesquisas Energéticas e Nucleares - IPEN

INTRODUÇÃO

O rio Tietê nasce na cidade de Salesópolis, possui 1100 km e desagua no Rio Paraná. Banha 62 municípios ribeirinhos e 6 subbacias hidrográficas. É famoso pelo seu alto nível de poluição decorrente da falta de cuidados com o solo em seus arredores, desmatamentos e retirada de matas ciliares, descarte indevido de lixo, recebimento de esgotos in natura devido à falta de saneamento básico, de aterros sanitários e poluição difusa. [1,2]

Os sedimentos de fundo desempenham um papel importante no esquema de poluição dos rios por metais pesados. Eles refletem a qualidade corrente do sistema aquático e podem ser usados para detectar a presença de contaminantes que não permanecem solúveis após seu lançamento em águas superficiais. [3]

Para a determinação de elementos traço e metais em diversas matrizes, a análise por ativação neutrônica (NAA) se destaca por permitir a determinação de vários elementos com alta sensibilidade e ser uma técnica não destrutiva.

OBJETIVO

O presente estudo teve por objetivo avaliar a concentração de metais e elementos traço em

12 amostras de sedimentos superficiais captados desde Porto Feliz (ponto 8) até Laras/Anhembi (ponto 19), pela técnica de Análise por Ativação com Nêutrons Instrumental (INAA).

METODOLOGIA

As amostras de sedimento foram peneiradas (< 2mm), secas, maceradas e novamente peneiradas em malha de 0,075 mm.

Amostras, materiais de referência e padrões sintéticos foram submetidos à irradiação no reator nuclear IEA-R1 do IPEN-CNEN/SP. sob um fluxo de nêutrons térmicos de 1 a 5 10¹² n cm⁻² s⁻¹, por um período de 8 horas. A primeira contagem foi realizada, após um tempo de 5 a 7 dias, por 1 hora para amostras e materiais de referência e de 15 a 30 minutos, para os padrões sintéticos. Nessas condições os radioisótopos de T_½ (tempo de meia vida) intermediária foram detectados: ⁷⁶As, ⁸²Br, ⁴⁷Ca, ⁴²K, ¹⁴⁰La, ²⁴Na, ¹⁴⁷Nd, ²³⁹Np, ¹²²Sb, ¹⁵³Sm e ¹⁷⁵Yb. A 2º contagem foi realizada, após 15 a 20 dias da irradiação, durante 1 hora e os radioisótopos de T_{1/2} longa: ¹³¹Ba, ¹⁴¹Ce, ⁶⁰Co, $^{57}\mathrm{Cr}, \ ^{134}\mathrm{Cs}, \ ^{152}\mathrm{Eu}, \ ^{59}\mathrm{Fe}, \ ^{181}\mathrm{Hf}, \ ^{177}\mathrm{Lu}, \ ^{233}\mathrm{Pa}, \\ ^{86}\mathrm{Rb}, \ ^{124}\mathrm{Sb}, \ ^{46}\mathrm{Sc}, \ ^{75}\mathrm{Se}, \ ^{182}\mathrm{Ta}, \ ^{160}\mathrm{Tb}, \ ^{169}\mathrm{Yb}$ e ⁶⁵Zn, foram detectados.

RESULTADOS

Para a verificação da precisão e exatidão dos resultados do método de INAA, utilizou-se o critério do Z-Score (Z) [4]. Todos os valores se encontraram dentro de -3<Z<3, indicando que o método de INAA foi preciso e exato. O fator de enriquecimento (FE) e o índice de geoacumulação (Igeo), ferramentas avaliação de influência antropogênica no meio em estudo, foram calculados utilizando-se os valores do NASC (North American Shale Composite) como valores de referência e o Sc, como elemento normalizador (somente para o FE). Os elementos As, Br, Ce, Hf, La, Sm, Ta, Th, U e Zn apresentaram, para todos os pontos amostrados, valores de EF> 1,5 o que indica poluição com provável origem antropogênica. Outros elementos apresentaram FE> 1,5 somente em alguns pontos: Ba (8, 9, 10 e 19), Cs (10), Eu (8 ao 11, 14 e 15), Lu (8 ao 10, 12, 14 ao 16 e 19), Nd (8 ao 17 e 19), Rb (8,9,10), Tb (8 ao 17), Yb (8 ao 10, 12, 14 ao 16, 19). A maior parte

dos valores de *Igeo* foram <1, sendo os pontos considerados não poluídos. Alguns valores de As, Br, Hf, Nd e Zn estiveram entre 1 e 3, avaliados como moderadamente poluídos a poluídos. (Figura 1)

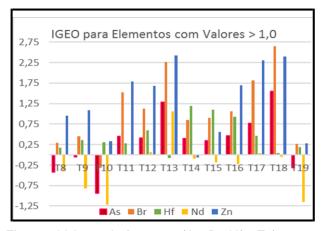


Figura1: Valores de *Igeo*>1,0 (As, Br, Hf e Zn) e seus respectivos pontos de amostragem

Usando-se os valores orientadores para a qualidade da água da CCME [5], verificou-se que o ponto 18, excedeu os valores de PEL para os elementos Cr e Zn, e excederam o valor de TEL para o semi-metal As e o elemento Cr, com os seus sedimentos sendo classificados como de péssima qualidade para Cr e Zn e de boa qualidade, para As. (TABELA 1).

TABELA1: Concentração dos elementos (mg kg⁻¹), Respectivos Pontos e Localizações e Valores de TEL e PEL [5]

Pontos	As	Cr	Zn
Т8	2,2	49,1	248
Т9	2,9	56,2	272
T10	1,6	34,9	161
T11	4,1	90,4	439
T12	4,0	79,5	410
T13	7,3	145,8	685
T14	3,9	46,0	122
T15	3,8	56,9	187
T16	4,1	77,3	412
T17	5,1	116,7	629
T18	8,8	141,9	669
T19	2,4	41,7	154
TEL	5,90	37,3	123,0
PEL	25,5	135,0	473,0

TEL- Threshold Effect Level; **PEL** – Probable Effect Level

CONCLUSÕES

A técnica de INAA se mostrou bastante adequada, apresentando precisão e exatidão para análise de elementos traço e metais, em amostras de sedimentos.

Concluiu-se, a partir dos resultados obtidos, que os pontos de amostragem 13 e 18 foram aqueles que apresentaram as maiores concentrações para a maioria dos elementos analisados e foram classificados como de péssima qualidade, para os elementos Cr e Zn, de acordo com o critério do CCME [5].

REFERÊNCIAS BIBLIOGRÁFICAS

[1] SOS MATA ATLÂNTICA. Observando-o-Tietê. São Paulo, 2004. Disponível em: https://www.sosma.org.br/wp-content/uploads/2014/02/Observando-o-Tiete.pdf p. 11-29. Acessado em: abril de 2016.

[2] MORTATTI J., HISSLER C., PROBST J., Rev. Geol. USP, Ser. Cient, São Paulo, Vol. 10, n.2, p. 3-11, 2010.

[3] QUINÁGLIA, G. A. Caracterização dos Níveis Basais de Concentração de Metais nos Sedimentos do Sistema Estuarino da Baixada Santista. Tese (Doutorado). Instituto de Química da USP, São Paulo, 2006.

[4] BODE, P. INSTRUMENTAL AND ORGANIZATIONAL ASPECTS OF A NEUTRON ACTIVATION ANALYSIS LABORATORY, Delft, Interfaculty Reactor Institut, Netherlands, p.147, 1996.

[5] CCME - Canadian Council of Ministers of the Environment, Canadian Environmental Quality Guidelines. Canadian Sediment

Quality Guidelines for the protection of Aquatic Life -Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, 1999. Disponível em:

http://ceqgrcqe.ccme.ca/download/en/317 Acessado em: 07/03/2016.

APOIO FINANCEIRO AO PROJETO

FAPESP (Processo nº 2014/20805-6) e CNPq