

CONSEQUENCES FOR NUCLEAR PHYSICS OF A fuN\% AND A N*N: TIME REVERSAL ViOLATING VERTEX

F. A. BEZERRA COUTINHO

publicação iea n.o 90

Junho - 1973

INSTITUTO DE ENERGIA ATOMICA
Caixa Postal 1104!, (Pinheiros)
CIDADE UNIVERSITARIA "ARMANDO DE SALLES OLIVEIRA" SAO PAULO - BRASIL

CONSEQUENCES FOR NUCLEAR PHYSICS OF A NN γ AND A $\mathbf{N}^{*} \mathbf{N}_{\gamma}$ TIME REVERSAL VIOLATING VERTEX

F.A. Bezerra Coutinho

Divisão de Física Nuclear
Instituto de Energia Atômica
São Paulo - Brasil

Instituto de Energia Atômica

Conselho Superior

Eng ${ }^{\text {O Roberto N. Jafet - Presidente }}$
 Prof.Dr.Emilio Mattar - Vice-Presidente
 Proi Dr.josé Augusto Martins
 Dr.Affonso Celso Pastore
 Prof.Dr.Milton Campos
 Eng: Helcio Modesto da Costa

Superintendente

Rômulo Ribeiro Pieroni

CONSEQUENCES FOR NUCLEAR PHYSICS OF A NN, AND A N* \mathbf{N}_{γ} TIME REVERSAL VIOLATING VERTEX

F.A. Bezerra Coutinho

Abstract

This pape: stugres ine effects in 'ow energy nucrear physics of a cossibie ${ }^{T}$ me Reversat Invarance IT R I) violation in the etectomagnetic interaction it is shown that this effect appears as a two body short 'ange T R I viotaring transition operator or as a two and incee body TRI volating potentral Two cases are sticed Firstly a TRI volating NNy vertex s considered and found to nave verv' we effect Seconal, the TRI wolation is assumed to occur in the NN * γ vertex and it is snown that it the violation is max mat ene contribut on to the imagrary part of the "mixing ration δ is $\operatorname{lm} \delta \approx|\delta| 10^{-"}$ This should be meas's'able

1. Introduction

The suggestion that Time Reversal Invariance (T R.1.) is violated by the electromagnetic interaction was put forward by Bernstein et al and by Lee ${ }^{2-31}$. The purpose of this paper is to exam!ne the consequences of such an assiumintiún in iow energy nuclear physics.

Several papers have been published on this subject. For example Huffmar, ${ }^{41}$ derived a two body. T.Fi.I violating potential assuming a T R.l. violating $\mathrm{NN} \gamma$ vertex and used it to calculate T R. 1 violating effects in direct reactions. A different approach was followed by Clernent and Heller ${ }^{51}$ who calculated the effects of a four garticis iNNMY) TR.I violating ve tex in the form (where M signifies a meson field) of a two body T R.I violating transition operator (Fig. 1) and in the form of a three body TR.I violating potential (Fig 2).

In this paper we choose two models for TRI violation and calculate their effects In section II the effects of a TRI, violating NNy vertex are dealt with. This vertex was choosen because it has the theoretiral apeal of stemming naturally from a more fundamental theory ${ }^{4}$ such as the Lee ${ }^{31}$ " a " particle theory

In section 1l: the TRI violation is assumed to occur in the $\mathbf{N}^{*} \mathbf{N}_{\gamma}$ vertex (where \mathbf{N}^{*} is the $J=3 / 2 \mathrm{I}=3 / 2 \mathrm{in}=1236 \mathrm{MeV}$ nucleon resonance) and its effects are calculated

The suggestion that the N * N y vertex could be T.R.I violating is not new. In fact Barshay ${ }^{61}$ calsclated the eifects of such an assumption in modifying the reciprocity reiationship between the differential cross sections for the reactions $\gamma+d \rightarrow n+p$ and $n+p \rightarrow \gamma+d$

2. The "Lee" vertex

The nost general expression for the matrix element of a T.R.I violating electromagnetic current with respect to nucleon states has been written down by Bincer ${ }^{71}$ and Lipshutz ${ }^{81}$. Assuming parity conservation there are twelve independent terms if both nucleons are off the
masa irell, six if only one nucleon is off the mass shell and the matrix element vanishes if both nucleons are on shell This latter feature is very important since. because of it, the T.RI volar ialit of the current only contributes to nuclear phenomena when other nucieons are invol.ed, that is as an exchange effect. For our purposes we take the simplest possible form for the I R I volating matrix element of the current, nameiy,

$$
\begin{equation*}
\therefore p^{\prime}\left|K_{p}\right| \rho=\left(\bar{u}_{p}^{\prime}\left|F^{\prime} i u^{\prime} j i y_{\mu} \bar{F} G-d r \cdot\right| \mid u_{p}\right) \tag{1}
\end{equation*}
$$

whe e

$$
F^{\prime}\left(4^{2}\right)=F^{\prime 5}\left(q^{2}\right)+F^{\prime v}\left(q^{2}\right) z_{z}
$$

and

$$
q=p^{\prime}-p \text { and } p=p^{\prime}+p
$$

The expression (1) is parity conserving, satisfies the Ward identity and, as mentioned earlier, stems iaturally from a theory such as the Lee ${ }^{3 \prime}$ ' $a^{\prime \prime}$ particle theory.
l'sing the above matrix element it is possible to calculate a resultant T.R.I violating elertromagnetic transition operator and two and three body T.RI volating potentials.

Ihe T R | violding vaneıtion operators are extracted trom the Feymann graphs shown in Fig 3 in those graphs the waved line is a photon, the broken line is a pion and the bubble is the T. A I violating verrey.

The two body TRI viglating potential arises from a set of graphs a few of which are shown in Fig 4

In the graphs of Fig 4 the bubble again represents the TRI, volating vertex and the point on the other end of the virtual photon is the normal electromagnetic vertex. Because of the extra facior e due to this normal vertex it is possible, at least as a first approximation, to assume the effect of the two tody T R I violating potentrai to be small compared with the YRI volating transition overators.
ilie three body potential arises from the grapis of fig 5

Il.e part of the three body potential connecting ine third nimleon (left hand side in the sraph 5 a and right hand side in graph $5-b$ is a long range one due to the fact that the virtual photon exchanged is a massless particle. This implies that its matrix elements between states diagonal with respect to (A-21 nucleon orbitais ${ }^{5 \text {) }}$ will include a factor $Z e$ (where Z is the alomic number) instead of the factor e as in the two body potential. Therefore for large nuclei (and; ter. .e large 2) it is perhaps appropriate to expect that the effect of the three body T.R.I. violding potential will dominate. This is unfortunate since calculations with three body ;oten 3ls die complicated. For this reason we will focus attention mainly on light nuclei where the TH 1 volating transition operarors are expected to dominate.

The tiansition operator is extracted from the graphs of $\mathrm{Fig}_{\mathrm{g}} 3$ by means of well known snethods (see for example ret 9 and 20). The results is
$V^{T R V}\left(r_{1}, r_{2} E\right)=\frac{f^{2} F^{\prime V}}{m} \sigma_{1} \cdot E\left(r_{1}\right) \sigma_{2} \cdot\left(r_{1}-r_{2}\right)\left(\tau_{(1)} \times \tau_{(2)}\right)_{2} F\left(r_{12}\right)+(1 \leftrightarrow 2)$

In eq. (2) $E\left(r_{1}\right)$ is the electric field and $F\left(r_{12}\right)=-\frac{1}{4 \pi}\left(\frac{\mu}{\left|r_{1}-r_{2}\right|^{2}}+\frac{1}{\left|r_{1}-r_{2}\right|^{3}}\right) e^{-\mu\left|r_{1}-r_{2}\right|}$
f is the pion nucleon coupling constant, μ is the pion mass and $F^{\prime \prime}$ is the value of the vector part of the form factor for $\mathbf{q}^{2}=0$.

To obtain the three body operator coresponding to the graphs of Fig. 5 it is sufficient to replace the electric field $\mathrm{E}\left(\mathrm{r}_{1}\right)$ by

$$
E\left(r_{1}\right)=\frac{e\left(r_{1}-r_{3}\right)}{\left|\left(r_{1}-r_{3}\right)\right|^{3}} \frac{1}{2}(1+\bar{\tau}(3)
$$

The right hand side of this equation is of course the electric field \mathbf{E} produced by the third nucleon in the position of the first one.

The operator given by equation (2) has exactly the same form as the one given by Ciement and ifieiier'). Full advantage will be taken of this fact in the estimates given below.

Expanding the operator given by equation (2) in electric ($\left.E^{\top R V}(L)\right)$ and magnetic ($M^{\top R V}$ (L!) multipoles and using the same phases and overall normalization as Clement and Heller ${ }^{5}$ (we obtain

$$
\begin{align*}
& E^{T R V}(L)=\frac{f^{2} F^{\prime V}}{4 \pi m}\left(\frac{4 \pi}{3}\right)^{1 / 2} 2[L(2 L+1)] 1 / 2 \underset{i<i}{\sum}\left(\tau_{(i)} \times \tau_{(j)}\right)_{2} \frac{d}{d r_{i j}}\left(\frac{\exp \left(-\mu r_{i j}\right)}{r_{i j}}\right) \\
& {\left[\frac{1}{3} a_{i} \cdot a_{i} R_{i j}^{L-1}\left[Y_{L-1}\left(R_{i j}\right) \oplus Y_{1}\left(P_{i j}\right)\right]_{M}^{(L) *}-\sum_{L^{\prime}}^{E}\left[5\left(2 L^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
L^{\prime} & 2 & L \\
1 & L-1 & 1
\end{array}\right\} R_{i j}^{L-1}\right.} \\
& {\left[\left[Y_{L-1}\left(R_{i j}\right) \otimes Y_{1}\left(\bar{r}_{i j}\right]^{\left(L^{\prime}\right)} \bullet\left[\begin{array}{lll}
\sigma_{i} & \sigma_{i j}
\end{array}\right]^{(2)}\right] \begin{array}{l}
(L) \\
M
\end{array}\right]^{\bullet}} \tag{3}
\end{align*}
$$

$$
\left[\frac { 1 } { 3 } R _ { i j } ^ { L } \sigma _ { i } \cdot \sigma _ { j } \left[Y_{L}\left(R_{i j}\right) \cdot Y_{1}\left(\dot{F}_{i j}\right)^{(L)^{*}}+R_{M}^{L}{\underset{L}{\prime}}^{\Sigma}\left[5\left(2 L^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{lll}
L^{\prime} & 2 & L \\
1 & L & 1
\end{array}\right\}\right.\right.
$$

4

$$
\begin{aligned}
& \left.\because R_{i}^{\prime-1}\left[Y_{1},(\hat{R}) \times\left[\begin{array}{lll}
0 & \sigma_{1}
\end{array}\right]\right]_{M}^{\prime 11}\right] \\
& \text { id }
\end{aligned}
$$

In equations (3) and (a) $r_{\text {, }}=r-r_{1}, R_{1}=1 / 2\left(r+r_{1}\right), K$ is the photon energy, $[a \otimes b]_{A}^{\prime \prime}$ means the tensor product of the vectors a and b and Y_{2} is a spinerical harmonic Details of t tearnques used can be found in the paper by Clement ${ }^{10}$.

The effects of (3) and (4) will now be estimated We will consider only the effects of possible TRI violation in r ray oriented angular correlation tests (Jacobson and Henley' and Lobov ${ }^{\prime 2}$ ', Those effects are proportional to the imaginary part of the mixing ratio defined as follows

$$
\delta=\frac{1\|E\|+i) \| 1\rangle}{\langle\|M(L)\|\rangle}
$$

The imaginary part of δ, introduced by the operators given by equations (3) and (4), c be calculated easily noting that $\epsilon^{N O R}(L)\left(M^{N O R}(L)\right)$ the $T R 1$ consering Electric (Magnet mult- noie has real reduced matrix elements

Fiom equat on (5; i is seen that the effect depends on the ratio between the TF violating multrpole and the corresponding normal ones, and on

$$
\delta_{Q}=\frac{\left\langle 1\left\|E^{N D^{R}}(L+1)\right\| \mid\right\rangle}{\left\langle 1\left\|M^{N O^{R}}(L)\right\|\right\rangle}
$$

This is useful since it implies that it is possible to use any one of the many definition multipole operators found in the literature (see Brink and Rose ${ }^{131}$ for a review) to calcul these ratios withou worring about phase and normalization problems One must however t_{i} note of these conventions when using values of δ from experimental data.

Our task therefore is to estimate the two ratios

$$
\frac{1 \| E^{T R V}\left(L+\| \|\left\|^{N O R}(L+1)\right\| 1\right\rangle}{1 \| E^{N O R}\left(L\left\|M^{T R V}(L)\right\| \|\right.} \text { and } \frac{\left\langle 1\left\|M^{N O R}(L)\right\| 1,\right\rangle}{\langle 1 \|} \text { in equation }
$$

(5) Now a close look at equations (3) and (4) will reveal that all the multupole operators are such that as with the usual multipole operators an additional factor $K R_{o}$ (where R_{o} is the nuclear radius) is introduced when there is an unit increase in multipolarity Thus to compare to the normai transition operators, it is sufficient to consider the ratio of the lowest multipole operators As remarked before the transition operator given by equation (2) has the same form as the operator obtaıned by Clement anci Heller ${ }^{5 \prime}$ Using their results and using the 'maximal estimate, $F^{\prime \prime}=\frac{e}{m}$ where m is the mass of the proton we obtarn

$$
\begin{aligned}
& \left\langle(E 1)^{\mathrm{RA} V}\right\rangle \approx \frac{2 \mathrm{ef}}{4 \pi \mu}\left(\frac{\mu}{m}\right): \frac{1}{\left(\mu R_{o}\right)^{4}} \\
& \left\langle(\mathrm{M} 1)^{\mathrm{R} v}\right\rangle \approx \frac{2 \mathrm{ef}}{4 \pi \mu}\left(\frac{\mu}{m}\right) \cdot \frac{K R_{o}}{\left(\mu R_{o}\right)^{2}} \\
& \left\langle(E 1)^{N O R}\right\rangle \approx e R_{0} \\
& \left\langle(M 1)^{N O R}\right\rangle \approx \frac{e}{m}
\end{aligned}
$$

where R_{0} is the nuclear Radins, K is the energy of the r-ray. μ is the mass of the pion and m is the mass of the proton

Therefore we obtain from (5), for 1 MeV energy γ rays

$$
\operatorname{Im} \delta=\delta_{R} \times 10^{\circ}
$$

This value of Im δ is much too small to be detected at present

3. The $\mathbf{N}^{*} \mathbf{N}$ r vertex

In this section a TRI violating $N^{*} N_{r}$ vertex is introduced and its consequences work.ad out. The suggestion that the $N^{*} N$) vertex could be T.R.I violating is not new in fact Barshay ${ }^{61}$ calculated the effects of such an assumption in modifying the reciprocity relationship between the differential cioss sections for the reactions $\gamma+d \rightarrow n+p$ and $n+p \rightarrow y+d$

The $N^{*}(J=3 / 2,1=3 / 2$ and $M=1236 \mathrm{MeV})$ is a nucleon resonance with both spin and I-spin $3 / 2$ and mass $M=1236 \mathrm{MeV}$ The Rarita-Schwinger formalism is used to describe it. To take in account the four charged states a column vector Ψ_{λ} is introduced, together with a spinor Ψ for the nucleon, thus

6

Ire N*NM vertex is taken to be ${ }^{\text {' } 7:}$

$$
L_{N \cdot N \pi}=-\frac{G}{\mu} \Psi_{\lambda} \quad \because \alpha \Psi\left(\frac{\partial_{A_{h}}}{\partial x_{\lambda}},-\frac{\vdots}{\mu} \Psi r_{a}^{*} \Psi \lambda\left(\frac{\partial \phi_{\alpha}}{\partial x_{\lambda}}\right)_{i} \sigma\right)
$$

where ϕ_{a} is the pion field and T_{α} are the following matrices

Whee take for the $N N^{*}$; vertex the form (Satan ${ }^{151}$, Barsha, ${ }^{\circ}$;

Where f $\lambda_{\mu}=\partial_{\lambda} A_{\mu} \cdots \partial_{\mu} A_{\lambda}$ is the electromagnetic tensor The vertex (7) is T R.I. violating if we take the matrix to be complex that is
$\left|\begin{array}{ccc}0 & 0 \\ \cdots \epsilon & 0 \\ 0 & \varepsilon_{1} \cdots \cdots \\ 0 & 0\end{array}\right|$

The transition operator $W(B)$ is extracted from the graphs of Fig 6 by using the methods already mentioned in section 1 (for details see ref. 16).

The result is

$$
\begin{equation*}
W(B)=W_{1}(B)+W_{2}(B) \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& W_{1}(B)=\frac{1}{3} \frac{G f i}{\mu(M-m) 2 m^{2}} B\left(r_{1}\right) \cdot \sigma_{1} \times v_{2} F\left(r_{12}\right) \cdot\left[\frac { 2 } { \sqrt { 2 } } T _ { 2 0 } \left(\tau_{\left.(1)^{\prime} \tau_{(2)}\right)\left(\epsilon_{p}^{*}-\epsilon_{p}+\epsilon_{N}^{*}-\epsilon_{N}\right)}^{\left.+\frac{2}{\sqrt{3}}\left(\epsilon_{N}^{*}-\epsilon_{N}-\epsilon_{p}^{*}+\epsilon_{p}\right) \tau_{z}^{(2)}\right]+\frac{1}{3} \frac{G f(-i)}{\mu(M-m) 2 m^{2}} B\left(r_{1}\right) \sigma_{1} \times\left(r_{1}-r_{2}\right) \sigma_{2} \cdot \frac{r_{i}-r_{2}}{\left|r_{1}-r_{2}\right|}}\right.\right. \\
& K\left(\left|r_{1}-r_{2}\right|\right)\left[\frac{2}{\sqrt{2}} T_{20}\left(\tau_{(1)} \tau_{(2)}\right)\left(\epsilon_{p}^{*}-\epsilon_{p}+\epsilon_{N}^{*}-\epsilon_{N}\right)+\frac{2}{\sqrt{3}}\left(\epsilon_{N}^{*}-\epsilon_{N}-\epsilon_{p}^{*}+\epsilon_{p}\right) \tau_{Z}\right]+(1 \leftrightarrow 2)
\end{align*}
$$

$W_{2}(B)=\frac{(-12}{3} \frac{G f}{\mu(M-m) 2 m^{2}} B\left(r_{1}\right) \quad \sigma_{2} F\left(r_{12}\right)\left[\frac{i}{\sqrt{3}}\left(\epsilon_{\mathrm{D}}^{*}-\epsilon_{\mathrm{D}}-\epsilon_{N}^{*}+\epsilon_{N}\right)\left(\tau^{(1)} \times \tau^{(2)}\right)_{2}\right]$

$$
+\frac{2}{3} \frac{G f}{\mu(M-m) 2 m} B\left(r_{1}\right) \quad\left(r_{1}-r_{2} \left\lvert\, \sigma_{2} \frac{r_{1}-r_{2}}{\left|r_{1}-r_{2}\right|} K\left(\left|r_{1}-r_{2}\right|\right)\left[\frac{1}{\sqrt{3}}\left(\epsilon_{p}^{*}-\epsilon_{\mathrm{o}}-\epsilon_{N}^{*}+\epsilon_{N}\right)\right.\right.\right.
$$

$$
\begin{equation*}
\left.\left(\tau^{(1)} \times \tau^{(2)}\right)_{z}\right]+(; \leftrightarrow 2) \tag{10}
\end{equation*}
$$

where

$$
F(r)=-\frac{1}{4 \pi}\left(\frac{\mu}{r^{2}}+\frac{1}{r^{3}}\right) e^{-\mu r}
$$

and

$$
K(r)=\frac{d}{d r} F(r)
$$

The three body operator corresponding to the graphs of Fig. (7) can be obtained from the transition operators given by equations (8), (9) and (10) by replacing $B\left(r_{1}\right)$ by the magnetic field produced by the third nucleon in the position of the first, viz.

$$
B\left(r_{1}\right)=\frac{e}{m}\left[3 \frac{\mu \sigma_{3} \cdot\left(r_{1}-r_{3}\right)}{\left|r_{1}-r_{3}\right|^{s}}\left(r_{1}-r_{3} \left\lvert\,-\mu \frac{\sigma_{3}}{\left|r_{1}-r_{3}\right|}\right.\right]\right.
$$

$19: 3$

$$
\mu=\frac{1}{2}\left(\mu_{0}-\mu_{0}\right)-\frac{1}{2}\left(\mu_{n}-\mu_{D}\right) \tau^{2}(\xi)
$$

s sex val. a ayneter dipole of the nucteon in nuclear magnetons

The opetator (8) : an now be expanded into multipoles as was carried out for the operator \because ven 0, equation (2) The results for the electric L.multpoles siemming trom $W,(B)$ and W. (B) are despectively
$N_{i}+i=\frac{1}{2} \frac{G f}{\mu(M \cdots m) 2 m^{2}} \frac{2}{\sqrt{3}} \cdot\left(\epsilon_{N}-\epsilon_{N} \cdots \epsilon_{0}+\epsilon_{0}\right) S_{i<i} K\left(\frac{L}{L+1}\right)^{1 / 2} R_{\cdot i}^{L}\left[Y_{1}\left(R_{i i}\right) *(0 \times \sigma)\right]_{M}^{* L}$

$$
\left.\left\{\left[a_{1} \times\left(r_{1}-r_{j}\right)\right] \sigma_{1}\left(r_{1}-r_{j}\right)+\left[\sigma_{j} \times\left(r_{i}-r_{j}\right)\right] \sigma_{i}\left(r_{1}-r_{1}\right)\right\}\right]_{M}^{-1} T_{i}\left(\tau_{1}, \tau_{10}\right) \frac{k\left(\left|r_{1}, r_{1}\right|\right.}{1 r_{1}}
$$

$$
W_{L}(M L)=\left(+1 \frac{2}{3} \frac{G f}{\mu(M-m) 2 m^{2}}[L(2 L+1)]^{1 / 2} \frac{1}{\sqrt{3}}\left(\epsilon_{p}^{*}-\epsilon_{p}-\epsilon_{N}^{*} \epsilon_{N} \vdots R_{1}\right.\right.
$$

$$
\left[Y_{L-1}\left(R_{1,}\right) \otimes\left(\sigma_{i} \cdots \sigma_{i}\right)\right]_{M}^{* L} F\left(r_{i j}\right)\left(\tau^{(1)} \times \tau^{(1)} l_{2}+(-) \frac{2}{3} \frac{G f}{\mu(M-m) 2 m} \frac{1}{\sqrt{3}} \epsilon_{0}^{*}-c_{0} \quad i_{i}+t_{n}\right)
$$

$$
[L(2 L+1)]^{1 / 2} \sum_{i<i}\left|r_{1}-r_{1}\right| K\left(\left|r_{1}-\mathbf{r}_{1}\right|\right) R_{1 /}^{L-1}\left[Y_{L \ldots 1}\left(R_{1 i}\right) \times\left(\sigma_{1}-\sigma_{1}\right)\right]_{M}^{*}\left(\tau^{(1)} \times r^{(1)}\right)^{1}+
$$

$$
+\frac{2}{3} \frac{G f}{(M-m) 2 m^{2} \mu} \frac{i}{\sqrt{3}}\left(\epsilon_{p}^{*}-\epsilon_{D}-\epsilon_{N}^{*}+\epsilon_{N}\right)[(2 L+1)]_{i<1}^{1 / 2} R_{1}^{1--1}\left[Y_{L-1}\left(R_{4}\right) s_{i} \mid\left(r_{1}, l_{1}\right)\right.
$$

$$
\begin{equation*}
\left.\left.\left[\left(r_{1}-r_{1}\right) \times\left(\sigma_{1}-\sigma_{1}\right)\right]\right]\right]_{\mathrm{ivi}}^{* L} \frac{K\left(\left|r_{i}-r_{1}\right|\right)}{\mid r_{1}-r_{1}!} \quad\left(T^{1 / 1} \times \tau_{1}^{\left.1_{1}\right)}\right. \tag{14}
\end{equation*}
$$

Before proceeding with a more detailed caiculation it is woith noting that the eftects of the electric multipoles $\left.\left.\left(W(E L)=W_{1}(E L)+W_{2}\right) E L\right)\right)$ stemming from $W\left(B_{i}\right.$ are negligrte compared with the effects of the magnetic multipoles $\left(W(M L)=W_{1}(M L)+W_{2}(M L)\right.$, for low energy photons, so that the following relation holds.

$$
\begin{aligned}
& \left.+\frac{1}{3} \frac{G f}{\mu(M-m) 2 m^{2}}-\frac{2}{\sqrt{3}} i\left(\epsilon_{D}^{*}-\epsilon_{D}+\epsilon_{N}^{*}-\epsilon_{N}\right)[L!2 L+1)\right]^{1 / 2} \sum_{i}^{1}, \quad i n,
\end{aligned}
$$

10

$$
\begin{equation*}
\frac{1 \| W M(1 \|\rangle}{\left\|\left\|M^{N O R}(L)\right\| 1\right\rangle}>\frac{1\|W(E L)\|\rangle}{\left\langle 1\left\|E^{N O R}(L)\right\|!\right\rangle} \tag{19}
\end{equation*}
$$

To see this an estimate similar to the one carried out in section II is made below for one term only of the transition operator WIBI noting that all terms have the same order of magnitude

The first term of equation (12) is

$$
{ }_{W}(B)=1-\frac{2}{3} \frac{G f}{\mu m(M-m) 2 m} \frac{\cdot}{\sqrt{3}}\left(\epsilon_{0}^{*}-\epsilon_{0}-\epsilon_{N}^{*} \cdot \epsilon_{N}\right)\left[\mathbf{B}\left(\mathbf{r}_{1}\right) \sigma_{2}-\mathbf{B}\left(\mathbf{r}_{i}\right) \quad \sigma_{1}\right]
$$

Fir: ; $\left.T^{(1)} \times \tau^{(2)}\right)_{z}$

This can be expanded in multipoles and we call ${ }_{(a)}^{(a)}(E L)$ and $W_{i}^{(a)}(M L)$ the electric and riagnetic mu'tupoles stemming from W (B) Those multipoles have the same form as the ones 'esulting from the special scalar meson vertex in the paper by Clement ${ }^{10}$), Therefore by using the estimates given there we have

$$
\frac{\left.W_{:}(E 1)\right\rangle}{\left.\because(E 1)^{\text {NOH }}\right\rangle} \quad \text { (KR) } \frac{\left\langle W_{0}(M L)\right\rangle}{\left(\mu R_{0}\right)} \text { and } \alpha \frac{m R_{o}}{\left\langle\left(M R_{o}\right)^{\text {NOR }}\right\rangle}
$$

Since $m \geqslant K$ the nequality (15) is justified

4 Calculation for ${ }^{*}$ F

An estimate of the contribution of the operators given by equations (11) to (14) to the value of $\operatorname{in} \delta$ given by equation (5) was carried out for the transition from the level (J) $31 \cdots 1 E-306 \mathrm{MeV}$) to the 'evel $(\mathrm{J}=3 \mathrm{I}=0 \mathrm{E}=094 \mathrm{MeV})$ in ${ }^{1} \mathrm{~F}$. The wave functions tor the 'evels were taken from the work by Elliot and Flowers ${ }^{171}$, viz

It is evident that only the isospin antisymmetric part of the operators given by equations (13) and (14) will contribute By using some recoupliny of angular momentum it results that the contribution to $\mathrm{M}, 1$ antisymmetric in isospin from equation (13) and (14) will be respectively

$$
W_{1}(M .1)=M_{1}^{(a)}(M .1)+W_{1}^{(b)}(M .1)+W_{1}^{(c)}(M .1)
$$

where
$W_{1}^{(a)}(M .1)=\frac{G f}{\mu(M-m) 2 m^{2}} \frac{1}{\sqrt{3}} i\left(\epsilon_{N}^{*}-\epsilon_{N}-\epsilon_{p}^{*}+\epsilon_{p}\right)\left(\frac{3}{4 \pi}\right)_{i<1}^{1 / 2} \sum_{i}\left(\sigma_{1} \times \sigma_{i}\right)_{M}^{* 1}\left(\tau_{2}^{i}-\tau_{2}^{1}\right) F\left(r_{11}\right)$
$W_{1}^{(b)}(M, 1)=\frac{1}{3} \frac{G f}{\mu(M-m) 2 m^{2}} \frac{2}{\sqrt{3}} i\left(\epsilon_{N}^{*}-\epsilon_{N}-\epsilon_{p}^{*}+\epsilon_{p}\right)\left(\frac{1}{4 \pi}\right)^{1 / 2}\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & \Sigma_{j}\end{array}\left(0_{1} \times \sigma_{j}\right)^{* 1}\right.$ $\left.\mid \tau_{2}^{i}-\tau_{z}^{\prime}\right)\left|r_{i}-r_{1}\right| K\left(\left|r_{i}-r_{j}\right|\right)$
$\left.W_{1}^{(c)}(M, 1)=\frac{(-)}{3} \frac{G f}{\mu(M-m) 2 m^{2}} \frac{2}{\sqrt{3}}\left(\epsilon_{N}^{*}-\epsilon_{N}-\epsilon_{p}^{*}+\epsilon_{p}\right)[6 \times 5 \times 3]^{1 / 2}\left\{\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 1\end{array}\right\} \quad \begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$
$\sum_{i<j}(-i)\left[\left[\sigma_{1} \otimes \sigma_{1}\right]^{(1)} \otimes Y_{2}\left(r_{i 1}\right)\right]_{M}^{*(1)}\left(\tau_{z}^{(i)}-\tau_{2}^{(i)}\right)\left|r_{1}-r_{j}\right| K\left(\left|r_{i}-r_{j}\right|\right)$
and

$$
W_{2}(M 1)=\stackrel{(a)}{W_{2}}(M 1)+\stackrel{(b)}{W_{2}}(M .1)+\stackrel{(c)}{W_{2}}(M .1)+\stackrel{(d)}{W_{2}}(M .1)
$$

where
$W_{2}^{(a)}(M, 1)=\left(-1 \frac{2}{3} \frac{G f}{(M-m) 2 m^{2} \mu} \frac{i}{\sqrt{3}}\left\langle\epsilon_{p}^{*}-\epsilon_{p}-\epsilon_{N}^{*}+\epsilon_{N}\right)\left(\frac{3}{4 \pi}\right)_{i<i}^{1 / 2} \sum_{i}\left[\sigma_{i}-\sigma_{j}\right]_{M}^{* 1}\left\langle\tau^{(1)} x \tau^{(i)}\right)_{z} F\left(r_{i i}\right)\right.$
$W_{2}^{\prime n!}(M, 1)=\left(+1 \frac{2}{3} \frac{G \bar{i}}{(M-m) 2 m^{2} \mu} \frac{i}{\sqrt{3}}\left(\epsilon_{p}^{*}-\epsilon_{p}-\epsilon_{N}^{*}+\epsilon_{N}\right)\left(\frac{3}{4 \pi}\right)^{1 / 2} \sum_{i<j}\left|r_{1}-r_{j}\right| K\left(\left|r_{1}-r_{i}\right|\right)\right.$
$\left[\sigma_{1}-\sigma_{i}\right]_{M}^{* 1}\left(\tau^{(1)} \times \tau^{(1)}\right)_{2}$

$$
\begin{aligned}
& W_{2}^{(c)}(M 1)=(-) \frac{2}{3} \frac{G f}{\mu(M-m) 2 m^{*}} 3 \cdot\left(\epsilon_{c}^{*}-\epsilon_{0}-\epsilon_{N}^{*}+\epsilon_{N}\right) W(1111 ; 01)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\frac{1}{4 \pi}\right)^{1 / 2} \quad \sum_{1}^{\Sigma} \\
& \left(\sigma_{1}-\sigma_{i}\right)_{M}^{* 1}\left(\tau_{i} \times \tau_{i}^{\prime}{ }_{2}\left|r-r_{1}\right| K\left(\left|r_{1}-r_{i}\right|\right)\right.
\end{aligned}
$$

$$
W_{2}^{(d)}(M .1)=(-) \frac{2}{3} \frac{G f}{\mu(M-m) 2 m} \sqrt{3} \times 5 i\left(\epsilon_{0}^{*}-\epsilon_{p}-\epsilon_{N}^{*}+\epsilon_{N}\right) W(1111 ; 21)\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \sum_{<j}
$$

$$
\left[Y_{2}\left(r_{1}\right) \otimes\left(\sigma_{1}-\sigma_{1}\right)\right]_{M}^{* 1}\left|r_{1}-r_{1}\right| K| | r_{1}-r_{1}| |\left(\tau, x \tau_{1}\right)_{2}
$$

The TRI conserving one body usual magnetic dipole transition operator is written with the same phases and over all normalization factor

$$
(M 1)^{N O R}=\left(\frac{3}{\Lambda_{\pi}}\right)^{\frac{1}{z}} \frac{1}{2 m} \Sigma\left[\frac{e}{2}\left(1+\tau_{z}^{\prime}\right) \ell+\left[\frac{1}{2}\left(\mu_{n}+\mu_{0}\right)-\frac{1}{2}\left(\mu_{n}-\mu_{p}\right) \tau_{2}^{(i)}\right]^{\sigma_{1}}\right]_{M}^{* 1}
$$

It is now a simple matter to calculate the relevant matrix elements. Short range correlation are introduced by evaluating the radial integrals from a hard core radius r_{c} taken to be ${ }^{\prime}{ }_{c}=05 \mathrm{fm}$ for the purposes of the estimate given below a "maximal value" ($\left(\epsilon_{\mathrm{p}}^{*}-\epsilon_{\mathrm{p}}-\epsilon_{N}^{*}+\epsilon_{N}\right)=\mathrm{e}$ was taken (and the value $\mathrm{G}=207$ from Gourdin ${ }^{18)}$). There results

$$
\operatorname{Im} \delta=\operatorname{l} \delta_{R}\left[\frac{\langle\| W(M\| \|\rangle}{\left\langle\left\|M^{\text {NOR }}(1)\right\|\right\rangle}\right]=\delta_{R} 45 \times 10^{-3}
$$

This is a relatively large result and therefore very encouraging. However, for this particular transition the "mixing ratio" is (using Warburton et al ${ }^{19)}$ convention) much too small, $\delta_{R} \approx 006$. The effect E to be observed in the oriented angular correlation experiment is

$$
E=\frac{\delta_{R}}{1+|\delta|^{\prime}} \operatorname{lm} \delta \approx 27 \times 10^{-4}
$$

This value is a little outside the experimental possibiilty at present, but nor far enough to preclude the experimental investiqation in a few years time

Aknowledgement

The author takes this opportunity to thank Protessor R J. Blin-Stoylefor suggesting the problem and for guidance and encouragement. The author would also like to express his sincere thanks to Prof J.P Ellot and to Drs A M Kahn and W D. Hamilton for valuable discussions

Resumo

Neste trabatho sảo estudajas as poss vers consequencras em Fisca Nuciear de ba:xa energ'a de uma volação ta sımetra de riversão temporal na interação eletromagnet ca Mostra se que o eferto aparece como um onerador de vans ção eletromagnérico de dors corpos, de curto a'cance e violando a sumet'ra de inversão temporal (T RIV) ou como potencrats TRiV de do's ou t'ès cordos Dors casos são cons derados Prameramente um verrex $N N Y T R!V$ e cons derado e mostrase que saus efertos são muito pequenos Em sequndo lugar, sudõe se gue a TRIV ocor'e em um N*NY "verrex" e mostra-se que se a violação e

Résumé

On presente unte etude tes consequences en phisique nucleare a basse energie dune violation de la
 comme un operateur de transition elecromagnet-que de deux corps, a courte echeance, en violant la symmetrie dinversion temoorale (TRIV) on comme TRIV potentels de deux on wors corps On cons.dere deux cas Piemerement. un "vertex' NNY TRIV est cons.dere et on montre que ses effets sont "ès petrts Deuxiemement, on supdose que ta TRIV a lien dans un "vertex" N*NYet on montre aise, sila volavion es! "rraximar", la conrribution a la partie imaginave du "mixing'atio" δ est $1 \mathrm{~m} \delta \approx|\delta| 10$ ", qui pent ètre mesuré

References

1) J Bernstern, G Feunberg and T D Lee - Phys Rev 139 (1965) 1
2) TD. Lee - Phys Rev. 140 (1965) B959.
3) T D Lee - Phys. Rev. 140 (1965) B959.
4) A H Huffman - Phys Rev. D1 (1970) 882.
5) C F Clement and L Heller - Phys. Rev. Lett. 27 (1971) 545
6) S Barshay - Phys Rev. Lett. 17 (1966) 46
7) A M Bincer - Phys Rev. 118 (1960 855.
8) NR Lipshutz - Phys Rev. 158 (1967) 1491
9) D Tadic and E. Fischbach - Preprint of Pardue University
10) C.F Clement - Harwell preprint - T.P. 460.
11) E. M. Henley and B A Jacobson - Phys. Rev. 113 (1959) 225.
12) PA. Krupchitshy and G.A Lobov - Atomic Energy Review - VII (1969) 91
13) Brink and Rose - Review of Modern Physics.
14) T Matsumoto, T. Hamada and M. Sugawara - Prog. Theor. Phys 10 (1953) 199
15) Ph Salin - If Nuovo Cumento 28 (1963) 1294 and 27 (1363) 193.
16) F.A.B. Coutinno - D Phil dissertation - University of Sussex (1972).
17) J.P. Elliot and B.H Flowers - Proc. Roy Soc. A229 (1955) 536.
18) M. Gourdin - Diffusion des Electrons de Haute Énergie - Masson \& Cie Éditeur Paris 1966
19) EK Warburton. J.W. Olness and A R. Polettı - Phys. Rev 115 (1967) 1164
20) M Chemtob and M Rho - Nucl. Phys. A163 (1971) 1

Figure Captions

F. 1 - Contribution to a TRI violat ing electromagnetic transition operator. The bubble represents a four vertex defined in Ref, 5).
Fig 2 - Contribution to a TRI. violating three body potential
Fry 3 - Contribution to a TRI violating electromagnetic transition operator. The bubble represents the vertex given by equation (1)
Fig 4 - Some of the graphs contributing to a T.R.I violating two body operator.
Fig 5 - Contribution to a three body TRI, violating potential.
F.g 6 - Contribution to a TRI violating electromagnetic transition operator. The heavy line in the graphs represents the $N^{*}(\mathrm{~J}=3 / 2 \mathrm{I}=3 / 2 \mathrm{M}=1236 \mathrm{MeV})$ nucleon isobar. The eftective couplings $N^{*} N \gamma$ and $N^{*} N M$ are given by equations (6) and (7).
Fig 7 - Contribution to a three body TRI violating potential. The heavy line in the graph ${ }^{\prime} \mathrm{e}_{\mathrm{N}}$ resents the N^{*} nucleon isobar

Fig. 1

Fig. 2

(a)

(b)

Fig. 3

(a)

(b)

(c)

Fig. 4

Fig. 5

(a)

(b)

Fig. 6

(a)

(b)

Fig. 7

