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Abstract

The own supply of LEU U,Si, is crucial for IPEN, since the whole scale-up of IPEN MTR IEA-
R1m reactor will rely on it. The Brazilian request for radioisotopes production is fully linked with
the already made power scale-up from 2 to 5 MW for this reactor. [IPEN now depends on fuel
element material upgrading from U,O; towards LEU U,Si,. The fuel plate productive technology
from the powdered material is already well established, only needing simple making of minor
adjustments, but to reach the stage of producing U,Si, we need a fully settled chemical pilot plant
in order to reach a LEU UF, productive routine. Complementing this process, it was also needed to
scale down the previous practice of uranium magnesiothermic reduction to around a sub-critical
safe uranium mass of approximately 3000g. To complete the metallurgical processing, it is being
developed the production of U,Si, in a vacuum induction furnace. Some experiments to get this
intermetallic, using natural uranium, have already been carried out in order to build up a general
idea of the future process of LEU U,Si,. These experiments are described in this paper and also
some of the initial characterization results, such as the qualification pattern of the ingot. It is also
discussed some new features of inhomogeneity of solidified phases that may be deleterious to
future production routine.
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IEA-R1m Research Reactor

Since the Brazilian request for radioisotopes has increased vigorously in recent years, for medical
diagnosis and therapy, IPEN decided to increase IEA-RIm(*) power from 2 MW towards 5 MW
and to operate it continuously throughout the week. This is effective since September 16th, 1997.
The pair ”Mo-""Tc¢ will be the main radioisotope to be produced, for this, other projects have been
developed in the last three years: structure and component modifications of [EA-R1m; adequacy of
reactor systems; adequacy of radioisotope production and finally the adequacy and new fuel
material development. That is the main approach of nowadays concern of IPEN.

Recently, in the last RERTR Seoul meeting, it was presented a paper' with a full description of our
reactor IEA-R1m main history, showing a sequence for fuel utilization. Reviewing and expanding
it, we have now:

(a) First Stage - Since September 16th, 1957 (first criticallity), the IEA-RIm reactor operated
under the nominal power, designed for SMW, but always operated as 2MW one. The
charged fuels, during this period, was 20wt% enriched U-Al alloy fiel, made by B&W. 19
curved plates were used. These fuel failed in the earlier stage due 1o pit corrosion and
replaced by new ones in 1938, All this material worked well until discharge.

(h) Second Stage - (1968) The fuel was based in a loading of U-Al alloy, 93% enriched, having
18 flar fuel plates bought from UNC (USA). At this time, the core was transformed from
LEU to HEU. Some of this fuel were until recently operating in the reactor. The control fuel
element assembling were faubricated by CERCA (France), using the same material concept.

(¢) Third Stage - (1981) Due to the restriction to HEU, IPEN bought from NUKEN (Germany),
5 fuel elements of UAly-Al dispersion type, with 20 wt% enrichment and having 18 flat fuel
plates per fuel element. The amount of 233U in this LEU fuel plate was almost the same as
the HEU fuel plate and the the geometry was the same. With this partial LEU core load, the
HEU fuels, that stayed in core, began to have a higher burn-up and the pieces of elements
inside the reactor core increased ever since.

(d) Fourth Stage - (1988) This stage started with IPEN deciding to fabricate its own LEU fuel
and to replace gradually the high burn-up HEU fuels in the core. This stage has been most
characterized by the continuous replacing of old fuel elements by the IPEN U30g-Al type
using 1.9 gUlem3.

(e) Fifth Stage -(1995 till presently)Recently, the amount of the last assemblies passed from a
concentration of 1.9 gUlem3 to 2.3 gUlem3 (1996 - Elements 153-161). Since Sep, 16th
1997, re-inauguration day for the fully SMW reactor, denominated ever since by IEA-RIm
(“m" for modified). the whole reactor core is fed with IPEN own produced U3z0g-Al
dispersion.

**m” stands for modified, IEA-R1m is now the official name of this MTR reactor of IPEN.
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(f) Sixth Stage - (1998?) The sixth stage is programmed to start replacing the elements based
on U30g-Al dispersion by LEU U3Siz-Al (3.0 gUlem3). Initially using CERCA material
and, from 2001 on, using IPEN production of this intermetallic.

Fuel Material

At the time being, there is a whole project, which has already started in order to develop skills on
U,Si, fuel fabrication technology, sponsored by IPEN/CNEN and Brazilian Government. So, many
of the present citations in this paper, may change in future, because our production basis has not
been fully established yet. The main object of this paper is to describe our present activities in LEU
U,Si, fuel development.

Plate Fabrication

The fuel plate fabrication itself has already been well clarified and there are, as far as we foresee,
no major questions about its technology. Some new equipment are being purchased, such as rolling
mill and quality control devices; some adaptation in the facilities will be made and some crew
training is envisaged.

Our present major concern is the area ahead of plate fabrication, because this last stage depends on
several internal developments to be reached. First of them is the chemical process development
based on stannun chloride route to get UF, from UF, 20wt% enriched in *“U. This is followed by
magnesiothermic reduction to obtain LEU metallic uranium and then also the U,Si, alloy
fabrication and preparation to be employed in the fuel plate meat. The chemical and metallurgical
processes are under development and will be commented bellow in more detail.

Chemical Process

Since 1993, IPEN produces the raw material to fabricate the fuel based on U,O,. in order to supply
its reactor IEA-R1m. It was chosen the route through hydrolysis of enriched UF, with subsequent
precipitation of ammonium diuranate (ADU). After calcination of this material we can get the
product U,QOy.

Knowing the necessity to replace the U,O; by U,Si1,, to face the needs of scaling up the reactor
power to SMW and relying on a previous experience of acquired skill in hydrolysis process and
ADU precipitation, it was decided to obtain UF, by a route starting with hydrolysis solution. The
main reason for that was the possibility of keeping up using the available facilities and equipment.
The adopted route uses hydrolysis solution treated with SnCl,, where occurs the reduction of U** to
U*, with a subsequent precipitation of UF, with HF. The Fig.l shows the sequence of previous
operation to get U,0Oy and the proposed one to get U;Si,.

The hydrolysis is essentially based on aqueous dissolution of UF,. The UF, is a crystalline
substance in normal conditions of pressure and temperature, for this the process heats the UF, to
90°C. reaching a pressure of 3 kgf/cm” and then passing to the gaseous state. The cylinder of UF, is
placed inside an autoclave which is connected to a stainless steel reactor, which is chemically
protected internally. This reactor has a continuous re-flow of distilled water. From an injection
nozzle, the UF, enters in contact with the water, promoting the following reaction:
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UF, + H,0 — UO,F, + 4HF (1)

Once with the ion U™ in solution, it is necessary that the chemical reduction towards U™ uses
addition of a reductant agent solution. Several reductant agents have been tested, such as: SnCl,,
CuCl, FeCl,, Na,S,0,. The most interesting reductant agent was SnCl,.

This solution is heated to a pre-determined temperature under constant solution re-flow. The
reductant agent is added, followed by the gradual addition of the precipitation agent HF. The
reaction of precipitation is:

UO,F,+ SnCl, + HF — UF, + SnCl, + 2H,0 (2)

Once the precipitation of UF, is made, the suspension pulp is left to rest until it reaches the room
temperature. After 12 hours, the separation solid/liquid is made by a vacuum filtering.

The UF, humidity is very deleterious for the yield performance in metallic uranium reduction, so a
project of UF, drying is being carried out for the time being, using basically three possible routes:
controlled heating under vacuum, heating with flowing of inert gas (argon) and microwave drying.
Those studies are just in the beginning.

This process aiming at producing UF, has been developed since 1995, using natural UF,. A batch of
obtained UF, has already been used in the reduction process with a fair result in terms of yield
(60%). probably due to a higher humidity. The product UF, obtained is passing nowadays for a
rigorous evaluation test in order to furnish better understanding of its behavior during metallic
uranium production.

Metallurgical Process

Uranium Magnesiothermic Reduction

Since 1995, we have made experiments in order to produce metallic uranium. The reduction bomb
used for these experiments is shown in Fig.2. The charge of the mixture (UF, + Mg in excess of
16wt%) was prepared as cylindrical briquettes with ©100mm x 50mm compacted under a pressure
of 64kgf/em’. The apparent density of this briquette is around 2.6 g/cm’. The whole load for each
batch 1s 7 of those briquettes, which makes an average total load of 6000g.

The heating follows a sequence of 8 hours in two stages of 4 hours each, with the temperature set,
for each plateau, at 550°C and 1000°C. The product is delivered in two days, after opening the
bomb and collecting the metallic uranium. The metallic yield results, for the whole set of
experiments ranged from 50 to 90%. We had many unsuccessful experiments, which are probably
due to the humidity of the material (in the earlier experiment lots we had around 10% of free water,
presently we are working in a 3% level) and also an unbalanced heat supply to the load inside the
bomb. We know that in a smaller scale such as ours, the yield should not be expected very high, but
as we obtained in a few cases higher yields as 90-92%, we think it is possible to reach this point.
We established, as a guide, our starting metallic yield to be 80%.

We also have developed a routine to recover back the metallic uranium from the slag of Mgk,.
which will bring us back to around 97% of metallic recovering in total. We think that our
productive routine of uranium, once fully operative, will lead to a better skill with a reasonable
performance in terms of yield. The dingots presented a macroscopic appearance as expected, but
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some of the dingots presented a heavy interpenetration of slag within the dingot top. Since we used
all the time only crucibles made of graphite, the pick-up of carbon was not so high. It was less than
1000ppm.

IPEN used to produce previously, natural uranium in higher weight scale (up to 100kg dingots), but
it has not been easy to re-achieve our previous skill in this metallurgy, since the downscaling of the
process requires new plant adaptations and more advanced controlling equipment.

After a year and so of the recent practice, we can say that many improvements have been made, but
there a plenty of parameters to control, mainly in preparing the charge and crucible and bomb
design. The major drawback has been the process yield, for its heavy economical factor. In the area
of process control, we are also trying to study a heat transfer modeling in order to get a fully
controlled advancing thermal front inside the bomb during process. Controlling and data
acquisition system for the reduction plant will be installed in future to provide a more adequate
reduction process control.

U,Si, Experiments

We aim to have IPEN production routing in a vacuum induction furnace. Nowadays, our available
furnace needs a fully revamp in terms of new control facilities. This is a 40kW furnace, working in
a fixed 10 kHz frequency as indicated in Fig.3. Some experiments using this equipment have been
made with interesting results in terms of the aimed alloy U,Si,. The most representative of them
was the UNSIO02 that we consider to be closer to the product we aim to produce. So it has been
studied in order to characterize it.

The experiment UNSI02 was made with a direct load of the whole charge inside the crucible. The
charge was 2622¢g Uranium (<762ppm C) + 228¢g Silicon (8wt%), in form of chunks with less than
50mm in diameter. The fusion followed a pattern of 10min at 20kW, 8min at 40kW. After 2 min. at
40kW, we have the whole bath fully molten. The melt was kept under 40kW till the casting. The
product was poured into a cylindrical copper mould of 29mm of internal diameter. The total mass
obtained was 2810g, corresponding to 96.6% of weight yield. A chemical analysis revealed that the
material was in average with 7.64 wt%Si. There was no serious silicon segregation from top to
bottom of the rod (+0.05wt%Si, from 7.62 to 7.68wt%Si).

The chemical analysis of the product revealed a high pick-up in carbon (aprox.2000ppm). The
product was cut in radial directions and prepared in metallographic specimens revealing the radial
section of U,Si, rod for analysis. Those specimens have been microanalysed using EDAX MEV
Phillips XL30. Some powdered material was analysed in x-ray diffractometry and revealed the
major phase presence for U,Si,, but also minor presence of U,Si and USi.

EDAX microanalysis in a pace of 800um, analyzing individual macro-areas of 6.10°um’,
throughout the radial direction, revealed a decreasing variation of silicon content from the ingot
border towards the center, as shown in figure 4d. In this figure, three representative micrographic
pictures are shown (fig.4a, 4b, 4c). Figure 5 and 6 show the variation of EDAX silicon content in
the nominated phases USi and U;Si,. from the border until it was reached 2000pum in the radial
direction. The fig.7 shows the radial direction path composition of a 50um-band micrographs in
order to characterize the microstructure evolution of the material formation from the border to the
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center of the rod.
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Table 1 - U;Si, Physical and chemical specification for nuclear use in
MTR IEA-RIm and the results for an experiment UNSI02

Elements Specification Exp. UNSIO2

Uranium balance 91.45%

Si 7.50% +0.40% -0.10% 7.64%

U;51, =80 wt% Mainly U;Si, phase

Al 600 ppm 20 ppm

B 10 ppm 0.7 ppm

C 2000 ppm 2665 ppm

Cd 10 ppm 0.1 ppm

Co 10 ppm 10 ppm

Cu 500 ppm 60 ppm

Fe+Ni 1500 ppm 150 ppm

H 200 ppm

Li 10 ppm

N 2500 ppm

O 7000 ppm

Zn 1000 ppm 10 ppm

Others 500 ppm individually, 2500 ppm in | Mg = 3.24 ppm
total F =3.15ppm

[sotopic Concentration 19.73% +/-0.20% for **U Natural uranium

Density 11.7 g/em’ 11.67 giem’

Particle Size 44-89um not available
with max. 20w1% <44pum

Gathering the obtained information, we came to the conclusion that most of the present phase in the
structure is U,Si,. The x-ray diffraction results is fairly coincident with the observed metalography.
Some of the information shown above reveal an interesting arrange of phase microstructures, that
the authors could not understand very well in the light of the described microstructures in the
literature(2.3.4). Snelgrove(4) and Domagala(3) comments the impossibility of having in practice a
theoretical homogeneous and monophase U,Si, due to the presence of impurities. In our case,
carbon is pretty much high and typically non-equilibrium process. Durand(5) showed recently that a
new phase exists in between U,Si, and USi, which is U.Si, under 1200°C, which also shows an
eventual unstable structure for U,Si, in a over stochiometric area under special conditions. Most of
the literature is based on arc melted (and many times remelted) U,;Si,, which displays a much more
continuous phase formation different from the one we got, since it is closier to the equilibrium
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situation. But we did not come across to analyses of non-equilibrium microstructures and no
comments have also been furnished for eventual varition in silicon content in U,Si,

In our case, we had, during solidification (continuous temperature gradient) of the rod ingot, a
silicon gradient from the border towards the center (macro-areas — fig 4d). Some may argue saying
that this feature is a inhomogeneity in the bath, having not enough agitation before casting. which
caused a probable segregation. This is not the case since there was no major segregation of silicon
from the top to the bottom of the ingot. It was in fact a minor variation (less than 0.05% (*)).

We had a very big variation in silicon percent from border to center (varying from 43 to 37 at%S1).
Without much ground on the subject on our own, we register that we came across to a potential
instability of U,Si, chemical composition in a non-equilibrium situation, which vary strongly with
the directional cooling imposed during the casting of molten alloy inwards of a copper mould. We
hope that much more scientific work should be done to prove that, since its technologically very
important.

Another relevant experimental fact is the variation of EDAX silicon content in nominated USi
phase which varied not much around the expect 50at%. If we compared with its neighbor phase in
the same region of analysis, U;Si, phase should be very close to 40 at%Si (figure 6), but varied
dramatically along the cooling direction. Commenting about the microstructure observation, we
also saw a region of heavily cracked microstructure in a internal ring ranging from 600-2000pm
from the border. This area were most of time 40at%Si, as shown by EDAX evaluation, in total
agreement with the brittle nature of the equilibrium U,Si,. We are not assuring that the existence of
this chemical tendency is a general rule, we are just registering it for further future scientific
analysis.

In the more inner core of our solidified rod (>7000um from the border) we found a much more
constant microstructure of a EDAX Si-poor(around 38-37atwt%Si) U,Si, surrounded by smaller
regions of intergranular structures containing uranium rich phase and a nominated U,Si. Describing
this structure as shown in figure 4c, we can notice an interface (gray) between an almost full
uranium material in the interior of the region {white) and the external grains of U,Si,.

The EDAX analysis for this material denotes the presence of U,Si. Formed by U,Si, + U° — U,SL.
It would be expected to have this reaction in a more time-temperature dependent way. but it
appeared to happen much more promptly in a solidification cooling pattern.

All this lead us to the point to have problems of homogeneity if we really decide for induction
route with casting, but the produced cast ingot of U,Si, in the present experiments of IPEN already
revealed our possibilities of reaching the aimed fuel material in future adopting this route.
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Fig.2 - Reduction Bomb for magnesiothermic reduction of UF, to produce metallic uranium.
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Fig.3- Schematic drawing of Vacuum Induction Furnace (SINDUS) to fabricate the
intermetallic U,Si,
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Fig.7- Assembling of micrographs to show the path of EDAX analysis along the radial
direction in the specimen from experiment UNSI02
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