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bstract

oped barium cerate is a promising solid electrolyte for intermediate temperature fuel cells as a protonic conductor. However, it is difficult to
inter it to high density at a reasonable temperature. Moreover, it presents a high grain boundary resistivity at intermediate temperatures. Flash
rain welding was applied to compacted samples, starting from a temperature of 910 ◦C and applying, for a short time, an ac electric polarization
f 40 V, 1000 Hz. At that frequency, the resulting current flows through the grain boundaries promoting a welding via a local Joule heating. A large

ecrease of the grain boundary resistivity was observed by impedance spectroscopy. Scanning electron microscopy observations of polished and
tched surfaces revealed highly sintered regions. Attempts were also made to combine flash grain welding with conventional sintering.

 2012 Elsevier Ltd. All rights reserved.
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.  Introduction

Solid electrolytes having higher ionic conductivity than that
f yttria-stabilized zirconia (YSZ) in the intermediate tem-
erature (IT) range 600–800 ◦C would improve the operating
onditions of the solid oxide fuel cells (SOFC).1–4

Various compounds have been proposed, as electrolytes,
ncluding GDC and SDC (Gd- and Sm-doped cerium oxide),5,6

iMEVOX (Bi metal vanadium oxides),7 and LSGM (doped
anthanum gallates),8 all of them with an oxide ion conduc-
ivity higher than that of YSZ at intermediate temperature.
urrently, peculiar drawbacks complicate their implementa-

ions. Doped cerias undergo a partial reduction, inducing an
dditional electronic conduction in contact with the anodic
tmospheres; BiMEVOXs show structural phase transitions pre-
enting their stabilization in the high conductivity structure; and

n LSGM, secondary phases precipitate at the grain boundaries,
educing the material conductivity. Protonic conductors such as
ttrium or rare earth-doped barium cerates and zirconates9 are
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otential alternatives. The main advantage of proton conduction
s the generation of the combustion product, H2O, on the air
ide. This prevents the dilution of the combustible by this gas, a
ommon technical problem with the oxide ion conductors.10 The
arium cerate-based ceramic proton conductors also have their
wn problems to be solved, such as a chemical instability under
ater vapor.11–14 High sintering temperatures are also required

o obtain dense materials and the high grain boundary resistivity
eriously limits their performances.15 The use of sintering aids
llows a lowering of the sintering temperatures16–31 but without
lleviating the grain boundary problem.

Several alternatives to the conventional sintering of green
ompacts composed of nanosize particles have been proposed,
n the search for better mechanical and electrical properties asso-
iated with higher density and smaller average grain size. One
f these, called SPS (spark plasma sintering), or electric current
ssisted/activated sintering (ECAS) or field activated sintering
echnique (FAST), promotes densification by the simultane-
us action of a high direct current through graphite dies and

niaxial pressure. Very high heating rates are reached. SPS
as been widely used for the sintering of ceramic oxides.32,33

nhanced sintering rate and finer grain size were also obtained
n yttria-stabilized zirconias34–44 under a simple dc polarization.

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2012.01.032
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Fig. 1. Impedance plots of BaCe0.8Gd0.2O3−δ recorded at 525 ◦C before and
after a flash grain welding starting at 910 ◦C. The inset shows a zoom of the
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 detailed account of the differences between “flash sintering”
nd “field assisted sintering” has been reported.41 The former
ethod occurs at low temperatures and high electric fields while

he latter occurs at high temperatures reached at high heat-
ng rates and low electric fields. Very recently a single phase
nd highly dense 10 mol% Y-doped barium zirconate pellet was
btained by SPS, with a 5 min dwell at 1700 ◦C.45

Recent results obtained by flash grain welding (FGW) on
SZ46 suggest that the technique could also tackle simultane-
usly both problems found in the preparation of doped barium
irconates: enhancement of densification and decrease of the
rain boundary resistivity.

The flash grain welding technique consists, basically, in pass-
ng an ac current through a compacted green body heated to a
emperature sufficient for the material to become an electrical
onductor. Choosing suitable frequencies enables heat dissipa-
ion at the grain boundaries. This technique is here applied for
he first time to Gd-doped barium cerate compounds.

. Experimental

BaCe0.8Gd0.2O3−δ ceramic powders were synthesized by
ixing thoroughly, in an agate mortar, stoichiometric amounts of

arium carbonate, cerium oxide and gadolinium oxide, all from
lfa Aesar, and calcining three times the mixture at 1250 ◦C

or 15 h with intermediate attrition millings. X-ray diffraction
easurements carried out on the powder ascertain that the cal-

ination and grinding steps were sufficient for attaining the
xpected perovskite phase.

Before pressing into pellets, the ceramic powders were fur-
her comminuted in a homemade attritor with a ptfe-lined
tainless steel container, ptfe blades, and 1 mm diameter 3Y-TZP
osoh grinding medium immersed in isopropanol. The attrition
as carried out four short times with 15 min intervals for avoid-

ng particle neck formation due to local heating. The powders
ere then uniaxially pressed under 30 MPa and then isostat-

cally under 200 MPa. The green density was in the 35–40%
ange (2.2–2.5 g/cm3). Typical dimensions of the green pellets
ere 5.0 mm in diameter and 4.5 mm thickness.
For the flash grain welding experiments, the green pellets had

heir parallel bases painted with platinum paste (Degussa 308A)
nd were heat treated at approximately 500 ◦C for elimination
f the organic solvent.

Basically, the flash grain welding setup is composed of a
ample chamber described in detail elsewhere,46 a furnace, a
omemade power supply (0–62 V, 1000 Hz) and a data logger
or collecting simultaneously the applied voltage and current
ersus time.

A FGW experiment consists in: (a) placing the ceramic spec-
men (either green or pre-sintered as described below) between
wo platinum meshes, connected, via Pt–Ir wires, to the power
upply or to a Hewlett Packard 4192A impedance analyzer;
b) heating up the sample to a temperature TZ and collect the

mpedance data. The temperature TZ is chosen such that the
mpedance plot covers the frequency range of both the grains
nd the grain boundaries. For most of our experiments, it is
bout 525 ◦C; (c) heating to a suitable “start” temperature of

F
t
i
w

mpedance plot after flash grain welding. The numbers near the arrows stand for
elding the logarithm of the frequency (Hz).

pproximately 910 ◦C where the sample resistance is of about
0 Ohms and then apply the FGW ac voltage; (d) turning off the
c voltage as soon as the flash occurs. Otherwise an avalanche
urrent could melt the specimen (with some commercial power
upplies a threshold limiting current can be set to control this
urrent runaway); (e) cooling down to TZ to collect again the
mpedance data to be compared to the pre-FGW ones.

Besides the conventional FGW experiments described above,
GW on a pellet pre-sintered at 1600 ◦C was carried out and
lso a further sintering at 1600 ◦C of a pellet already flash grain
elded.
For collecting and analyzing the impedance plots in the

0 Hz to 10 MHz frequency range, a special software was used,
llowing the deconvolution of the grain and grain boundary
emicircles.47,48

Scanning electron microscopy observations were carried out
n a Philips XL 30 microscope on polished (SiC and diamond
olishing media down to 1 �m) and thermally etched surfaces.

. Results  and  discussion

.1.  Flash  grain  welding  of  green  pellets

Fig. 1 compares the impedance diagrams of
aCe0.8Gd0.2O3−δ (BCGd) before and after FGW. The
0 V, 1000 Hz flash lasted 5 s. The flash profile is shown in
ig. 2. The maximum current is 2.7 A and the duration at
alf-width, 2 s. It is important to emphasize that with the ac
ulse no overall mass transport occurs. The blackening effect,
nown to occur in zirconia upon dc bias at high temperatures,
ue to reduction of the specimen, is not observed here.

The impedance plot of the green pellet is typical of a porous
pecimen apparently with two overlapping semicircles: the high
requency one for log f > ∼4 (bulk) and the low frequency one
or log f  < ∼4 (interfaces = grain boundary + pores). The effect
f the ac current pulse is evident. The electrical resistance after
GW decreases from 130 kOhm to 7.5 kOhm. An estimate of
he capacitances of the two responses may be done, assum-
ng an equivalent circuit composed of a resistance in parallel
ith a capacitance. The capacitances were evaluated taking the
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ig. 2. Current flash across a BaCe0.8Gd0.2O3−δ green pellet during application
f 40 V, 1000 Hz at 910 ◦C. Inset: zoom showing a 2 s half-width.

alue of the frequency at the apex of the semicircles and making
se of the usual relationship �RC = 1. After the FGW proce-
ure, only the semicircle for log f  > ∼5 remains, evidencing that
he current flash welded the grains, reducing drastically the
locking of charge carriers. Capacitance values, CHF, of about

−11 −11
.0 × 10 F and 1.6 × 10 F were obtained for the high fre-
uency semicircle, respectively, before and after FGW. Before
he FGW, an estimate of the capacitance of the interface yields

LF = 1.3 ×  10−9 F, typical of grain boundaries. These values

i
t
b

ig. 3. (a and b) SEM micrographs of BaCe0.8Gd0.2O3−δ just heated to 910 ◦C (blan
c) overall picture; (d) inside of open surface holes.
eramic Society 32 (2012) 2311–2316 2313

re of the same order of magnitude as those already reported
or the “bulk” response (Cbulk = 10−11 F and Cgb = 10−9 F,49

bulk = 4 × 10−11 F and Cgb = 5 ×  10−9 F45).
The microstructures of BaCe0.8Gd0.2O3−δ specimens after a

hermal cycle to 910 ◦C without FGW (blank experiment) and
fter FGW are shown in Fig. 3a and b (blank) and Fig. 3c and

 (FGW). The image in Fig. 3a shows a porous microstructure.
or this relatively low curing temperature, it can be observed

hat a slight sintering has started and that some grains are being
tructured (Fig. 3b, higher magnification). After FGW (Fig. 3c
nd d), the specimen shows a duplex-type microstructure with
ense and porous regions, indicating that the FGW proceeded
long a preferential path, probably related to a heterogeneous
acking of the particles. Fig. 3c shows the dense region. The
icrostructure is highly homogeneous. Even though the thermal

tching at 1200 ◦C/20 min was not sufficient for clearly delin-
ating the grains, a segregation of small spheroid particles are
een at the grain boundaries and give an acceptable definition
f the polygonal grain boundaries. These precipitated particles
ight be yttrium oxide.20,50 The structured grains have different

izes, larger than 1 �m. After FGW the evaluated geometrical
ensity is ∼5.2 g/cm3 (∼84% of the theoretical density). The
reen density was 48% TD.

A further confirmation of the flash localization can be found

n holes on the specimen surface. Focusing the observation inside
he holes (Fig. 3d) reveals a dense region with welded grain
oundaries.

k specimen) with different magnifications; (c and d) after flash grain welding:
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Fig. 4. Impedance plots at 525 ◦C of BaCe0.8Gd0.2O3−δ before flash grain weld-
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.2.  Sintering  before  and  after  flash  grain  welding

Pre-sintering and post-sintering effects on the flash grain
elding were also investigated. In the pre-sintering experi-
ent, a green specimen was initially sintered at 1600 ◦C, 4 h.

ts impedance plot was taken at 525 ◦C. Then it was regularly
ashed as described above and its impedance plotted again at
25 ◦C. In the post-sintering experiment, a green specimen was
egularly flash grain welded and had its impedance plot taken
t 525 ◦C. Then it was sintered at 1600 ◦C, 4 h. The idea was
o see whether the improvement of the grain contact by the
ash grain welding would improve a conventional densification,
hich occurs via mass transport around the grain boundaries.
The impedance plots of post-sintered and pre-sintered spec-

mens are shown in Figs. 4 and 5, respectively. The green
ellets show an overall electrical resistance of about 175 kOhm
t 525 ◦C (green pellets slightly different in geometrical factors

ave slightly different resistances). After FGW, the electrical
esistance measured at 525 ◦C is drastically reduced (∼20 times)
o ∼9 kOhm. Post-sintering promotes a further reduction (∼10
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imes) of the electrical resistance to ∼0.7 kOhm. Then, the
iagram allows an unambiguous separation of the grain and
ntergrain responses. We would conclude from this observation
hat the applied ac field does weld the grains. However, as the
ulse is very short (∼2 s) the generated heat is not enough to
eally sinter them. A further sintering appears to be promoted
y the presence of necks generated by the welding.

The impedance diagrams before and after the subsequent
GW (Fig. 5), in the post-FGW experiment, demonstrate that
GW does not result in any significant improvement (see inset
f Fig. 5). This comparison points out a major feature: the phys-
cal property implemented in the FGW is associated to crude
ontacts between the grains. As soon as they are sintered, in
ther words, as soon as the grains are linked by necks, the mate-
ial behaves as a simple electrical resistor and the passing of a
urrent induces a Joule effect more uniformly distributed.

Impedance plots were also recorded at temperatures close to
30 ◦C for a better resolution of the grain responses (Fig. 6).
he responses of the samples submitted to a priori and a pos-

eriori FGW indicate that there is not a large difference in the
ntragranular resistances which are of the order of 4 kOhm. This
llows us to conclude that the densification is about the same in
oth cases.51

.  Conclusions

The application at a relatively low temperature (910 ◦C) of 40
ac to gadolinium-doped barium cerate polycrystalline ceram-

cs in the green state promotes a large increase of the grain
oundary conductivity as well as sintering of a part of the sam-
le along the current passway. Even though a more detailed
lectron microscopy analysis is required to characterize what
appens in the intergranular welded zone, this experimental

rocedure opens a way for obtaining high proton conductivity
arium compounds under simple laboratory conditions, by the
ecrease of the charge carrier blocking at the grain boundaries.
ore experiments are also needed to improve the densification

omogeneity.
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