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Abstract Rare earth elements (REEs) have several appli-

cations and their market demands have increased.

Recently, coal fly ash (CFA) has been considered as a

source of these elements. The purpose of this study was to

evaluate the REEs content in a CFA from a Brazilian coal

power plant by instrumental neutron analysis, to classify it

according to commercial purposes and to assess the

weathering impact in the REEs content, since it is held in

fields nearby the power plant. The results pointed no sig-

nificant REEs leachability and indicated this CFA as a

promising REEs source.
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Introduction

Rare earth elements (REEs) are present in our daily life in

many technological applications from electronic displays

to green energy technologies. Nowadays, REEs supply has

faced off some challenges. China is the main supplier of

REEs in the world, controlling more than 90 % of rare

earth elements market. Since 2009, Chinese government

has imposed some export restrictions [1, 2]. In this context,

prospection of new mineral deposits and the reopen of old

mines have been considered. As an alternative, many

countries have intensified a pursuit for new ores, industrial

wastes or post-consumer materials with considerable REEs

content to be used as secondary raw materials [3–5].

Recently, coal fly ash (CFA) has been considered a

source of REEs and the offspring of this new use of this

industrial waste has intensified the number of studies on

determination of REEs content aiming their extraction

[6–11].

CFA worldwide production is estimated on 415–600

million ton annually and is considered as an environmental

concern [12]. In Brazil, only fifty percent of coal ashes

generated are reutilized [13].

On the last couple of years, Brazilian southeast region

has faced a serious drought and hydroelectricity is the main

source of power in this region of the country [14]. Because

of that, coal power plants have been operating in their

maximum capacity and have enhanced the production of

CFA reaching around 3 million ton per year [15]. Several

studies on its reutilization have been conducted [16–20]

but, so far, none considering Brazilian CFA as a possible

source of REEs. The aim of this study was to perform a

preliminary estimative of the potential use of Figueira

power plant CFA as a source of REEs based on the

approach adopted by Seredin and Dai [6]. These authors

suggested the evaluation of coal and coal ashes as lan-

thanides and yttrium (REY) raw material based on current

market trends of individual REY. They have divided the

REEs into critical (Nd, Eu, Tb, Dy, Y and Er), uncritical

(La, Pr, Sm and Gd) and excessive (Ce, Ho, Tm, Yb and

Lu) and proposed a proportion of the critical and excessive

elements (critical/excessive) denominated as ‘‘outlook

index’’. Besides that, a long-term column leaching exper-

iment simulating a slight acid rain was performed to

evaluate the weathering impact on some REEs content in

CFA, since ashes are usually stored in uncovered fields on

the power plant vicinity.
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Experimental

Coal fly ash sampling and preparation

Three CFA samples were collected from bag filters from

the Figueira Coal Power Plant (CPP) of Paraná State,

Brazil (Fig. 1), during 6 months. At every 2 months, 1 kg

of CFA was collected. The samples were mixed and

homogenized. Sampling procedure and sample preparation

were described previously [21].

Leaching experiment

Fifty grams of CFA were packed into acrylic columns

(inner diameter of 8 cm) and supported by a 5 cm layer of

inert sand or soil. The CFA columns were leached with a

dilute solution composed of HNO3 and H2SO4 (pH 4.5) in

order to simulate an acid rain over 336 days. The solution

volume (6.3 L) used was based on monthly rainfall data

from 1933 to 2008 for the city of São Paulo [22]. The

experiment was conducted on 10 replicates.

Sample preparation for rare earth elements

determination

The particle size of the CFA was measured using a laser

based particle size analyzer, namely a Malvern MSS

Mastersizer 2000 Ver. 5.54 and the result indicated that the

majority of particles (90 %) lies below 62.6 lm. Based on

these results, no sieving was performed CFA to INAA

sample preparation. Non-leached (NL) samples and lea-

ched samples were separately homogenized and oven dried

at 40 �C for 48 h. Nearly 50 mg for short irradiation and

100 mg for long radiation of powdered samples and the

Polish reference certified material fine fly ash (ICHTJ-

CTA-FFA-1) were accurately weighted in polyethylene

bags. Aliquots of 50 lL of a rare earth multi-element

solution (SPEX CMLS-1) were transferred to small sheets

of analytical filter paper (Whatmann No. 42). After drying,

these papers were placed onto polyethylene bags and

wrapped in aluminum foil. The La, Ce, Nd, Sm, Eu, Gd,

Tb, Dy, Tm, Yb and Lu content was analyzed in the ashes

before and after leaching.

Elemental determination by instrumental neutron

activation analysis (INAA)

For INAA, two types of irradiation, using two separate sub-

samples, were carried out at the IEA-R1 nuclear research

reactor, one for long-lived isotopes and the other for short.

First, samples and standards (ICHTJ-CTA-FFA-1 and

SPEX-CMLS-1) were irradiated during 8 h, approxi-

mately, at a thermal neutron flux of 3.5–5 1012 n cm-2 s-1

for La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu deter-

mination. Uranium content was also measured to evaluate

interference of fission products, such as La and Ce. The

counting was divided in three series: the first one 7 days

after irradiation, the second one 15 days after irradiation,

and the third one after 2 months. The counting times varied

from 1 to 2.5 h. The interference of 153Gd in the determi-

nation of 153Sm was evaluated by calculating the ratio of

the 103.2 keV and the 94.5 keV peak of 153Gd. The con-

tribution of 153Gd in the peak of 103.2 keV of 153Sm was

negligible (less than 1 %), under the irradiation and

counting conditions employed. In the second irradiation,

samples and standards were irradiated during 15 s. After a

decay time of 10 min, approximately, Dy was measured,

and the counting times varied from 5 to 15 min. The ele-

ments Er, Pr and Ho were not detected, even measuring

few hours after the short irradiation. The induced gamma-

ray activity was measured in a gamma-ray spectrometer

consisting of a Ge-hyperpure detector and analysed by

Fig. 1 Location of Figueira–Paraná coal power plant (CPP), Brazil
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CANBERRA S-100 system software. The detector used

had a resolution (FWHM) of 1.9 keV for 1332 keV gamma

rays of 60Co.

Data quality control

For the statistical accuracy evaluation, the En-number

[23] was used. The En-number is defined by the Eq. (1):

En ¼
XLab � XCert
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ULab
2 þ UCert

2
p ð1Þ

where the numerator gives the absolute difference between

the experimental result (XLab) and the assigned

value (XCert) of elemental concentration, and UCert and

ULab are the expanded uncertainties (k = 2) of the rec-

ommended assigned and experimental mass fraction,

respectively. Table 1 presents the analytical results of three

replicates as well as the assigned values with confidence

level of 95 %, considering the certified reference material

ICHTJ-CTA-FFA-1. All the calculated En-number were

below 1, showing that the results were satisfactory within

95 % confidence level.

Uranium fission products interference correction

Uranium concentration in the CFA samples was measured

and the mean obtained was 332 ± 15 lg g-1. This high

content of U may cause a super estimative on 140La, 141Ce,
143Ce, 147Nd and 153Sm contents because of uranium fission

products interference [24, 25]. Ribeiro et al. [25] recently

evaluated these interference factors in U rich samples at the

IEA-R1 reactor and the factors obtained (in lg of element/

lg of U) by these authors were applied in the present study,

as it was performed in the same reactor and the irradiation

and counting conditions were similar. The interference

factors used were as following: (0.0021 ± 0.0001) for 140La

for a decay time equal to 168 h, (0.250 ± 0.006) for 141Ce,

(0.187 ± 0.018) for 147Nd and (0.0521 ± 0.0003) for
153Sm. In each sample, the lanthanide concentration due to

the uranium fission was calculated using the mentioned

factors and the obtained value was subtracted from the

lanthanide concentration determined.

Results and discussion

Leachability of La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm

and Lu

Table 2 presents the analytical results of some REEs con-

tent in CFA before and after leaching. The associated

uncertainty is the standard deviation of the correspondent

replicates.

For a statistical evaluation of REEs concentration varia-

tion in the ashes, before and after leaching, the ANOVA

single factor analysis was applied. The results indicated no

statistical difference between REEs concentration before and

after leaching at 95 % confidence level. This apparently

reflects the fact that REEs in CFA are usually associated

with the glass phase and, in a less proportion, with the fer-

romagnetic fraction, so few REEs leachability was expected.

Other authors [26–28] also verified a very low REEs

leachability in an open system experiment in coal fly ashes

from other power plants located at the South of Brazil.

REEs total concentration in Figueira CFA

Table 3 presents the concentration of REEs measured by

INAA for Figueira CFA. As there were no statistical dif-

ferences between CFA before and after leaching, the

reported value is an average of all the analyzed replicates

(16) and the uncertainty is their standard deviation. The

same table presents REEs content reported in two other

studies in Figueira CFA [29, 30], as well as in CFA from

two other coal power stations in southern Brazil (Jorge

Lacerda-SC and Candiota-RS) [27, 28] and also the world

coal ash mean [31].

REEs total concentration in Figueira CFA detected in

the present study was distributed in the following order:

Ce[La[Nd[Dy[Gd[Sm[Yb[Lu[Eu[Tb[
Tm. As reported previously [29, 30] to Figueira CFA, a

similar distribution was observed for Ce, La, Nd, Dy, Gd,

Sm and Yb with some variation in Lu, Eu, Tb and Tm

distribution. Although the sampling period and batches of

Figueira CFA analysed were not the same, comparing the

results of this study with the mentioned ones (Table 3),

the sum of the measured REEs contents reported was

similar, since 541 ± 32 lg g-1 was determined and the

Table 1 Concentration of Ce, Dy, Eu, Gd, La, Lu, Nd, Sm, Tb, Tm

and Yb in the certified reference material ICHTJ-CTA-FFA-1

(lg g-1) and En-number

Element This study Values of the certificate En-number

Ce 121 ± 7 120 ± 7 0.05

Dy 8.4 ± 0.8 9.09 ± 1.45 0.32

Eu 2.31 ± 0.09 2.39 ± 0.06 0.42

Gd 9.2 ± 1.8 10.6 ± 2.6 0.21

La 57 ± 3 60.7 ± 4.0 0.45

Lu 0.63 ± 0.06 0.658 ± 0.043 0.22

Nd 59 ± 7 56.8 ± 3.7 0.15

Sm 10.4 ± 0.8 10.9 ± 0.6 0.29

Tb 1.25 ± 0.15 1.38 ± 0.14 0.39

Tm 1.04 ± 0.18 0.705 ± 0.200 0.80

Yb 3.7 ± 0.9 4.24 ± 0.19 0.30
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mean value reported by those authors ranged from 517 to

582 lg g-1. Figueira CFA presented the highest measured

REEs content compared with Jorge Lacerda complex and

Candiota CFAs. According to the selected data presented in

Table 3, REEs content in south Brazil CPP CFA was dis-

tributed in the following order: Figueira Jorge Lacerda

Complex Candiota. REEs content of Candiota CFA was

lower than the world coal range and Jorge Lacerda and

Figueira CFAs presented higher REEs content. The REEs

content in the present study was 1.7 higher than world coal

ashes.

REEs distribution in Figueira CFA

In Fig. 2, concentration of the studied elements in Figueira

CFA were normalized to upper continental crust (UCC)

according to Taylor and McLennan [32].

The light REEs (LREE), which includes La, Ce, Nd and

Sm, have shown similar pattern in UCC normalized curve,

their average varying from 3.2 to 4.8 higher than the

average of the earth́s crust. Higher ratios were observed for

medium REEs (MREE), Eu, Gd, Tb and Dy, with values

ranging from 4.9 to 7.4 and for HREE (heavy REEs), such

as Tm, Yb and Lu, whose values observed ranged from 5.5

to 14.0. As mentioned previously, the coal used in Figueira

CPP is U-rich type and it also presents high pyrite content

(7 %) [33–35]. According to Dai et al. [9], this type of coal

may presents positive Eu anomalies and HREE?Y and

MREE?Y enrichment. Eu positive anomalies in coal can

be estimated by Eq. (2), suggested by Bau and Duski [36]:

EuN=EuN �¼ EuN= SmN � 0:67ð Þ þ TbN � 0:33ð Þ½ � ð2Þ

where EuN, SmN and TbN are the ratio of each element

concentration in the investigated samples versus their

concentration in the UCC. EuN/EuN* ratio is commonly

used to quantify decoupling of Eu from the other REE ? Y

(REY), and produces Eu anomalies (positive or negative)

in REY distribution [9]. The average of EuN/EuN* obtained

for CFA sample in this present study was 1.06, which

indicates Eu positive anomaly. Distribution for Figueira

CFA is an H-type (LaN/LuN\ 1) according to Seredin and

Dai [6] typical of REY-rich coal ashes.

Figueira CFA as REEs raw material estimative

According to Seredin and Dai criterion [6], for a prelimi-

nary estimation, the cut-off grade of REY (REE ? Y) in

coal combustion products for beneficial recovery expressed

in REO (rare earth oxides) is C1000 lg g-1 (0.1 %), or

C800–900 lg g-1 for coal seams more than 5 m in

Table 2 Concentration of Ce, Dy, Eu, Gd, La, Lu, Nd, Sm, Tb, Tm

and Yb obtained in the Non Leached CFA and Leached CFA after

336 days slightly acid leaching

Element Non Leached CFA (n = 10) Leached CFA(n = 10)

(lg g-1)

La

Mean 116 ± 4 119 ± 5

Median 115 120

Range 112–122 110–125

Ce

Mean 206 ± 17 207 ± 17

Median 208 209

Range 197–216 197–216

Nd

Mean 112 ± 30 130 ± 33

Median 100 127

Range 89–166 93–181

Sm

Mean 15.9 ± 2.4 17.8 ± 1.1

Median 16.8 18.0

Range 12.8–18.1 16.2–19.4

Eu

Mean 4.35 ± 0.20 4.31 ± 0.11

Median 4.35 4.30

Range 4.05–4.60 4.11–4.50

Gd

Mean 23.1 ± 3.8 22.5 ± 3.8

Median 22.8 22.9

Range 21.0–25.5 20.7–23.4

Tb

Mean 4.02 ± 0.50 4.00 ± 0.40

Median 4.00 3.95

Range 3.60–4.40 3.40–4.60

Dy

Mean 25.1 ± 2.3 26.3 ± 1.8

Median 26.2 26.3

Range 22.6–27.2 22.9–28.6

Tm

Mean 2.05 ± 0.26 2.08 ± 0.27

Median 2.00 2.19

Range 1.85–2.22 1.65–2.54

Yb

Mean 11.8 ± 1.6 12.4 ± 1.5

Median 11.4 12.0

Range 10.3–13.8 10.7–14.7

Lu

Mean 4.49 ± 0.20 4.48 ± 0.21

Median 4.45 4.50

Range 4.31–4.80 4.20–4.80

n Number of replicates
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thickness. In the same study, these authors have reported

coal and coal ashes from specific places in China, Russia

and Tajikistan with REO content up to 2.03 %, but the

average are mostly between 0.1 and 0.2 %. Some authors

[8, 10] have reported total REO between 297 and

579 lg g-1 in CFA from Poland and UK. Blissett et al. [8]

highlighted CFA as derived samples from industrial pro-

cesses without costs of mining and exploration associated

and suggested further work to access the easy REEs

extraction which might reduce the cut-off grade value.

Figueira CPP uses coal extracted from the Cambuı́ mine,

where coal seam occurs at 40 m depth subdivided in a

lower seam (40 cm thickness) and upper seam (20 cm)

[35]. In this study Ce, Dy, Eu, Gd, La, Lu, Nd, Sm, Tb, Tm

and Yb content was measured and total REO obtained was

643 ± 37 lg g-1. REEs assessment in Figueira CFA is

scarce. Bentlin [29] had measured the lanthanides content

in Figueira CFA samples by inductively coupled plasma

optical emission spectrometry (ICP-OES), and by trans-

forming this author data in REO, the obtained value was

723 lg g-1, although Y content was also not available.

Campaner [30] had measured the REEs Ce, Dy, Er, Eu, Gd,

Ho, La, Nd, Pr, Sm and Y content in Figueira CFA by

inductively coupled plasma mass spectrometry (ICP-MS,

and, by transforming the reported REY content determined

by this author in total REO, the value obtained was

933 lg g-1, but Tm, Tb and Lu content was not reported.

Seredin and Dai [6] also proposed an index to evaluate the

commercial viability of REEs extraction based on REEs

content, applying Eq. 3:

Coutl ¼ Nd þ Eu þ Tb þ Dy þ Erð

þY
.

X

REY
�.

Ce þ Ho þ Tm þ Ybð

þ Lu
.

X

REY

Þ

ð3Þ

where Coutl is defined as ‘‘outlook index’’, the sum of

(Nd ? Eu ? Tb ? Dy ? Er ? Y) is defined as critical

REY, the sum of (Ce ? Ho ? Tm ? Yb ? Lu) is defined

as excessive REY and
P

REY is defined as the sum of all

lanthanides ?Y. As previously highlighted, the measured

REEs concentration in Figueira CFA was similar to the

concentration obtained by Bentlin [29] and Campaner [30].

For this reason, the values applied to calculate Coutl index,

to estimate Figueira CFA as a REEs raw material, were

divided as follows: the concentration of La, Ce, Dy, Eu,

Gd, La, Lu, Nd, Sm, Tb, Tm and Yb showed on Table 3,

performed by INAA, measured in this present study; the

mean concentration data of Pr (\0.0012 lg g-1), Ho

(2.46 lg g-1) and Er (23.5 lg g-1) reported by Bentlin

Table 3 Concentration of Ce, Dy, Eu, Gd, La, Lu, Nd, Sm, Tb, Tm and Yb obtained in the Figueira CFA sample compared with other CFA

samples in lg g-1

Element Figueira Jorge Lacerda [28]b Candiota [27] World Coal Ash [31]

This Study Bentlin [29] Campaner [30]

La 118 ± 5 121 ± 1 102 ± 6.47 70.5 ± 4.1 52.7 69

Ce 207 ± 17 238 ± 2 203 ± 5.17 185.9 ± 10.8 113.3 130

Nd 123 ± 16 114 ± 1 98.8 ± 6.66 76.21 ± 4.13 55.2 67

Sm 17.1 ± 1.9 25.0 ± 0.52 23.5 ± 2.96 16.2 ± 0.9 9 13

Eu 4.32 ± 0.14 6.29 ± 0.32 5.7 ± 0.83 2.2 ± 0.2 –a 2.5

Gd 22.7 ± 3.8 28.1 ± 1.7 29.7 ± 4.77 16.1 ± 0.9 12.1 16

Tb 4.01 ± 0.39 \0.009 –a 2.2 ± 0.2 1.8 2.1

Dy 25.9 ± 2.0 27.6 ± 0.3 36.6 ± 7.01 12.7 ± 1.1 10.5 14

Tm 2.07 ± 0.27 4.39 ± 0.08 –a 1.3 ± 0.1 0.74 2

Yb 12.2 ± 1.5 15.7 ± 0.1 17.6 ± 2.87 7.6 ± 0.7 6.3 6.2

Lu 4.48 ± 0.20 2.35 ± 0.03 – 1.3 ± 0.1 1.3 1.2

Sum 541 ± 32 582 517 392 263 323

a Not reported by authors
b Arithmetic mean of reported results
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Fig. 2 Rare earth elements normalized to the upper continental crust
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[29] and Y (203 lg g-1) as described by Campaner [30],

Based on Seredin and Dai [6] evaluation of REY-rich coal

fly ashes considering individual REY composition and not

only the total REY by the Coutl index and critical elements

(%), Figueira CFA, can be classified as a promising REEs

raw material, since, according to these authors’ evaluation,

a promising CFA is defined as a CFA with a percentage of

REY critical elements from 30 to 51 % and Coutl index

from 0.7 to 1.9. The value of Coutl index obtained in this

study was 1.7, the percentage of critical elements in total

REY was 50 % and the total REO estimated was

922 lg g-1.

Conclusions

In this paper, Figueira CPP coal fly ash REEs content was

determined aiming to evaluate its commercial application.

No leachability of the ashes with an acid dilute solution

was verified indicating no weathering impact on REEs

content in CFA. The main results of this study suggested

that this fly ash can be considered a promising REEs

source, considering its total REEs content and individual

element concentration and distribution. The uranium con-

tent in this fly ash is also remarkable, about 120 times

higher than UCC values [32], which may indicate this coal

fly ash as a potential source also for uranium. Nevertheless,

a more detailed study should be done to evaluate the

commercial possibilities for uranium.

Modern society has a life style that depends on energy

consumption and one of the most important challenges of

XXI century is to supply the ascendant demand of energy

with renewable sources and to reduce waste generation by

not renewable sources. Coal is the world́s most abundant

fossil fuel and one of drawbacks on its utilization is the

production of ashes waste. The utilization of coal fly ashes

as REEs source depends on several issues, as environmental

hazards, workers safety, logistic, costs, applicability,

extraction methods, particle size, recovery rate etc. Such

issues are beyond the scope of this study, but are strongly

recommended to be taken into account in future studies.
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