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ABSTRACT 

 

Eutectic fibers consisting of an ordered arrangement of LiF fibrils inside a LiREF4 matrix 

(RE = Y, Gd) can be grown with the micro-pulling-down method at sufficiently large pulling rate 

exceeding 120 mm/h. The distance between individual fibrils could be scaled down to 1 µm at 

300 mm/h pulling. LiF-LiYF4 has stronger tendency to form facetted eutectic colonies than LiF-

LiGdF4, explained by the larger entropy of melting of the former. 

 

INTRODUCTION 

 

In eutectic systems {x A + (1-x) B} at the eutectic composition xeut (0≤ xeut ≤1) both 

components A and B are crystallizing simultaneously at the eutectic temperature Teut. As the 

eutectic is an invariant point of the corresponding system, the shares of both components in the 

eutectic microstructure are almost fixed. Just minor variations from the eutectic composition xeut 

of a few per cent are typically allowed – if the deviation is larger, first the pure excess 

component crystallizes until the melt composition approaches the eutectic. 

 

The morphology of eutectic microstructures depends on a variety of parameters, such as the 

volume fraction xVA/{ xVA + (1-x)VB} of the constituents (VA, VB are the molar volumes of the 

components), the entropies of fusion, the thermal gradients GT at the solid-liquid interface, and 

on the solidification rate v. Only v and GT are experimental parameters that can be chosen within 

certain limits almost arbitrarily for a given system, whereas the other parameters depend only on 

the substances themselves. If  is the average distance between neighboring particles of one 

component, then one can show that the product 
2
 v is constant for a given system. For 

sufficiently large v one can expect motif scaling down to microns, making such eutectics 

interesting e.g. for photonic applications. In the THz range alkali halide ordered fibrous eutectics 

have been studied as polaritonic metamaterials [1], showing hyperbolic dispersion relations and 

thus potential for sub-wavelength resolution and THz imaging. The suitable wavelength depends 

on the materials combination chosen so that exploration of other eutectics that achieve ordered 

microstructures and hyperbolic dispersion at different wavelengths is of interest. At optical 

wavelengths (VIS and NIR), light guiding is expected [2]. For a more comprehensive 

introduction to the directional solidification of eutectics in general, the reader is referred to Orera 

et al. [3]. 

 



Barta et al. [4] performed a quantitative analysis of the microstructure of LiF−LiYF4 eutectics 

that were directionally crystallized in graphite crucibles with conical tip and 15 mm diameter 

(Bridgman method). This large sample diameter, together with the substantial transport of heat 

through the well conducting crucible wall, restricted thermal gradients GT to 30–80 K/cm. 

Growth rates between 6 and 20 mm/h were used in that work. 

 

In this study micro-pulling-down (µ-PD) is used for LiF−LiYF4 and LiF−LiGdF4 eutectics as an 

alternative method. The eutectic rods produced by this technique are much thinner; typically the 

diameter is well below 2 mm. The significant scale reduction enabled larger temperature 

gradients up to several 100 K/cm and consequently growth rates up to several 100 mm/h. 

 

The change from Bridgman to µ-PD is not straightforward, because the surface/volume ratio of 

thin rods is much larger, and the surface is more exposed. This can result in severe contamination 

because fluorides are sensitive against hydrolysis. 

EXPERIMENT 

Phase diagrams 

 

 The phase diagrams LiF−YF3 and LiF−GdF3 were described first by Thoma et al. [5,6] 

and later basically confirmed by the group around Sobolev [7,8]. The eutectics that are studied 

here are situated between the intermediate scheelite type LiREF4 (RE = Y, Gd) and LiF. Both 

systems LiF−YF3 [9] and LiF−GdF3 [10] were re-investigated and for the first time a 

thermodynamic assessment for the Gibbs free energies G(T) of the line compounds LiF, YF3, 

LiYF4 and G(T,x) of the {x YF3 + (1-x) LiF} melt was performed. The scheelite type 

intermediate phase is a “borderline peritectic” where the liquidus of both YF3 and LiYF4, as well 

as the peritectic line of LiYF4 meet at one point. LiGdF4 forms a real peritectic: the LiF−GdF3 

has a topology similar like Fig. 1, with the difference that the GdF3 liquidus and the LiGdF4 

peritectic line (at 1028 K) extend to x = 0.34, beyond the LiGdF4 composition. 

 

 
Fig. 1: Assessed phase diagram LiF-YF3 with Teut = 975 K (702°C) and xeut = 0.202 [9]. The 

inset shows self-ordered LiF fibrils inside a LiYF4 matrix forming during solidification at 

composition xeut. 



 

Fiber growth 

 

 Eutectic LiF/LiYF4 and LiF/LiGdF4 rods were grown in a µ-PD apparatus that was 

recently used for the growth of LiYF4 single crystals [11]. The whole setup (Fig. 2) is placed 

inside a 35 liter vacuum-tight steel chamber that is evacuated prior to growth below 10
−5

 mbar. It 

should be noted that rare earth fluorides are highly sensitive against hydrolysis with traces of 

moisture. Extreme dry conditions during all heat treatments, such as growth from the melt, are 

mandatory. Ar atmosphere (1 bar, 99.999% purity, <1 ppm water) was used. 

 

 
Fig. 2: Micro-Pulling-Down (µ-PD) growth of eutectic fibers. 

 

Lithium fluoride, yttrium fluoride and gadolinium fluoride with 99.99% purity were mixed in 

appropriate ratio to form the corresponding eutectic mixture. The purity, and especially the 

absence of significant oxygen contamination, was controlled by DTA measurements and the 

phase transformation or melting temperatures found there were in good agreement with literature 

data, proving good purity (Fig. 3). A platinum wire was used as seed. Pulling rates ranging from 

15 to 300 mm/h were used for the µ-PD experiments, which extends significantly the range that 

is accessible by the Bridgman method (4–60 mm/h). 

 
Fig. 3: DTA heating curves of the starting materials LiF (melting) and YF3 (phase transformation 

and melting). (Measured with a NETZSCH STA 449C with vacuum-tight Pt/Rh furnace, 

literature data from FactSage [12]). 



 

RESULTS AND DISCUSSION  

 

 Fig. 4 shows SEM micrographs of transverse cross-sections of LiF-LiGdF4 samples 

grown by the micro-pulling down method. For slow pulling rates between 15 and 60 mm/h, a 

coupled interpenetrated microstructure was found for both systems, LiF-LiYF4 and LiF-LiGdF4. 

SEM images reveal a transition in the microstructure when increasing the pulling rate from 

coupled interpenetrated to macrofacetted (Fig. 4a and Fig. 4c) in both systems. These 

macrofacetted cells consist of LiF rods embedded in a LiYF4 or LiGdF4 matrix, respectively. The 

crossover pulling rate occurs between 60 and 120 mm/h for the LiF-LiYF4 system whereas for 

the LiF-LiGdF4 system it is found at faster pulling rates between 120 and 300 mm/h. Areas of 

fibrilar ordered arrangements at least 100200 μm
2
 large have been observed. In the LiF-LiGdF4 

eutectic there is a range of pulling rates (between 120 and 300 mm/h) where LiF rods inside 

LiGdF4 matrix are observed. 

 

a) b) c)
 

Fig. 4: SEM images of transverse cross-sections of LiF-LiGdF4 rods grown at 60 mm/h (a), 

120 mm/h (b) and 300 mm/h (c) by the µ-PD method. The coupled interpenetrated 

microstructure (a) changes into a macrofacetted one with a fibrilar arrangement (c) when 

increasing the pulling rate. Dark phases correspond to LiF. 

 

Phase interspacing was obtained from SEM images by using the software Digital Micrograph 

from Gatan Inc.) The experimental data can be fitted by the empirical Jackson-Hunt law 
2
v=K 

(Fig. 5). Values obtained for K were 106.1±0.2 μm
3
/s for the LiF-LiYF4 and 87.15±0.04 μm

3
/s 

for the LiF-LiGdF4 system. The nominal volumetric fractions were 40vol% LiF for the LiF-

LiYF4 and 33vol% LiF for the LiF-LiGdF4 system, in good accord with the estimates from image 

analysis. The interfiber spacing could be scaled from 5 down to 1 µm by increasing the pulling 

rate from 15 mm/h to the maximum accessible value 300 mm/h. Short-range ordering between 

the LiF fibers is usually good even for the largest pulling rates, with change in orientation of the 

triangular lattice of rods that is commonly found in rod eutectics. 

 

The K values of the Jackson-Hunt relationship are very similar for both eutectics. The difference 

in the slopes of the liquidus curves around the eutectic point might be enough to substantiate the 

20% larger K for LiF-LiYF4, even without taking into account possible differences in diffusion 

constant or surface tension between the components. 

 



 
Fig. 5: Interfiber spacing as a function of the square root of the pulling rate for the eutectic 

systems LiF-LiYF4 (circles) and LiF-LiGdF4 (triangles) grown by the µ-PD method. 

 

Even if both eutectics are very similar (concerning microstructure and interphase spacing), the 

formation of macrofacetted cells (characteristic of uncoupled growth) sets on earlier (at slower 

pulling rates) in LiF-LiYF4 than in LiF-LiGdF4. Usually, the question whether non-facetted or 

facetted growth appears is discussed in term of the Jackson parameter  ≈ S/R (S – entropy of 

fusion, R = gas constant). For  ≤ 2 almost isotropic (non-facetted) growth can be expected [3]. 

The transformation of these ideas to eutectics with more than one component is not 

straightforward; especially if one of the components melts under peritectic decomposition in its 

pure form (LiGdF4), and S is not well defined. Fortunately at the eutectic temperature the 

eutectic mixture is in direct equilibrium with the melt, without formation of the rare earth 

fluoride. Thus, one can define a S’ for the eutectic itself by calculating the difference of S for 

the mixture xeut just above and below Teut. For LiF/LiGdF4 this was performed with the 

assessment data for the LiF-GdF3-LuF3 system [13] and data for the LiF-YF3 system where 

published recently [9]. For LiF-LiGdF4 one calculates S’ = 28.2 J/(molK) = 3.4R and for LiF-

LiYF4 S’ = 34.4 J/(molK) = 4.1R. The larger value of S’ for the LiF-LiYF4 can explain why 

the faceting is more pronounced in this system. It should be noted that the values for both 

systems are large, compared e.g. with intermetallics: For Pb-Sn one finds at the eutectic point 

(36.1% Sn, 151°C) S’ = 15.1 J/(molK) = 1.8R (FactSage data [12]). 

 

Further research of the crystallographic orientation relationships and their influence on the 

microstructure will be done. The objective is to find out the growth conditions to achieve fibers 

with large domains of aligned rod-like or interpenetrated microstructures with sizes that allow 

tailoring light propagation in the material. A preliminary evaluation of the THz behavior of LiF-

LiYF4 composite has been done [14]. For this composition also selective etching of the LiF 

phase has been observed. 

CONCLUSIONS 

 

The growth of eutectic fibers from lithium fluoride – rare earth fluoride systems is 

possible, if very dry growth conditions are used, avoiding hydrolysis. With sufficiently large 

pulling rates >120 mm/h self-organized ordering of LiF fibrils inside a LiREF4 matrix (RE = Y, 



Gd) occurs. The interphase spacing follows the Jackson-Hunt rule and can be scaled down to ca. 

1 µm with 300 mm/h pulling rate; options for further minimization with even faster pulling 

cannot be ruled out. The stronger tendency to faceting of LiF-LiYF4 can be explained by the 

larger entropy of melting of this eutectic. 
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