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Due to coronavirus disease 2019 (COVID-19), many cities implemented strict lockdown

to stop the spread of this new disease. Consequently, it was reported lower levels of air

pollution due to less human activity outdoors. The changes were registered using surface

monitoring stations or satellite observations. However, modeling those environmental

changes has remained a challenge because of our limitations in the emissions estimation

and also, for the numerical modeling itself. In this study, the vehicular emissions were

estimated for March 2020 in the megacity of São Paulo using the Vehicular Emissions

INventory model (VEIN). The emissions estimation showed an increment of VOC/NO2

downtown, due to the decrease in circulation of urban transportation and light vehicles.

Then, a set of Weather Research and Forecasting models with chemistry (WRF-Chem)

simulations were performed with different chemical mechanisms and initial conditions.

The modeled diurnal cycles represent the variations observed in March 2020 for the

periods pre-lockdown, transition, and lockdown. However, it is imperative to include other

sources than vehicular to have a local and comprehensive emissions inventory.

Keywords: air pollution, COVID-19, emissions, lockdown, VEIN, WRF-Chem

INTRODUCTION

The world has been under an unprecedented global health crisis due to the Coronavirus disease
(COVID-19) Pandemic. To date, there are more than 360 million and 5.5 million registered
COVID-19 cases and deaths, respectively, across the world (Dong et al., 2020). COVID-19
originated in the Chinese city of Wuhan and was officially reported on 30 December 2019
(Infectious Diseases, 2019). This disease proved to be deadly to vulnerable groups with rapid spread
(Chan et al., 2020; Wang et al., 2020). Therefore, governments across the world started to impose
strict lockdowns to avoid the spread of COVID-19 (Hamzelou, 2020). Lockdown measures, despite
being called “war tactics” to impose families of whole countries to stay at home, with all the related
economical costs and changes in our normal way of live (Hamzelou, 2020; Biroli et al., 2021), have
shown to be effective to control COVID-19 (Alfano and Ercolano, 2020). For instance, Ibarra-
Espinosa et al. (2022a) found that increasing the isolation by 5% would avoid 438 cases and 21
deaths per day in São Paulo, Brazil.
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There is evidence that lesser human activities reduce levels of
air pollution. In a global analysis, it was found reductions up to
–70% for nitrogen dioxide NO2, between –30 and –40% for fine
particulate matter of PM2.5 (Sokhi et al., 2021). Bao and Zhang
(2020) found that human mobility was reduced by about –70 and
the air pollutants PM2.5, NO2, and CO were reduced by –5.93,
–24.7, and –4.6%, respectively, similar to other observational
studies (Venter et al., 2020; Barua and Nath, 2021). Nevertheless,
it was discovered that the secondary pollutant O3 presented
increments because of lockdown. For instance, O3 increased by
40% inMexico city (Hernandez-Paniagua et al., 2021) and by 30%
in European cities (Grange et al., 2021). However, the transport
of air masses and air pollution have a significant impact on local
air pollution and this aspect must be considered when studying
air pollution. In this sense, Thunis et al. (2021) identified that in
Europe, the local emissions impact mostly the city center, while
other areas are largely impacted by the transport of pollution
originating in other cities. In the US, Li et al. (2015) found that
the city of Phoenix in the state of Arizona is frequently impacted
by the air pollution originating in California.

During the current COVID-19 crisis, Internet companies
such as Google, Apple, and TomTom started releasing public
and anonymized data about daily changes in mobility in cities
across the world and changes with basis on pre-lockdown periods
(Apple, 2022; Google, 2022). Then, these data have been used
as a proxy to represent the emissions changes. Hence, Guevara
et al. (2021) presented an emission inventory for Europe with
factors derived frommobility datasets, finding reductions of 33%
for nitrogen oxides (NOX), 8% for volatile organic compounds
(VOC), 7% and sulfur oxides (SOX). Their study showed that
the transport sector presented stronger reductions. Similarly,
Forster et al. (2020) applied mobility adjustment factors applied
to the Emissions Database for Global Atmospheric Research
(EDGAR) (Crippa et al., 2020) while Gettelman et al. (2021)
applied the same factors to the Shared Socioeconomic Pathway
(SSP) to represent the change in emissions associated to COVID-
19. Despite that the use of these factors has been useful, they
do not explicitly represent emissions changes. Applying this
methodology equally in space is not the best approach because
of the inherent heterogeneity of pollution sources, especially for
the different driving patterns of types of vehicles. Therefore, the
activities that generate pollution must be properly and detailed
characterized during this period of time.

Few studies have attempted to represent the air pollutant
observations using air quality modeling. Guevara et al. (2021)
modeled over Europe finding reductions of similar magnitude
to the observations. Forster et al. (2020) estimated the global
emissions reductions due to the COVID-19 and their potential
effects on global temperature, finding that emissions declined
30% during April 2020, which aligned with the global decrease of
energy consumption of 25% in countries that applied lockdowns
(IEA, 2022). Furthermore, it was found to have a negligible direct
effect of –0.01 ± 0.005◦C by 2030. Also, Gettelman et al. (2021)
applied the Community Earth System Model version 2 (CESM2)
model (Danabasoglu et al., 2020) finding that lower aerosol and
gases (precursors) emissions resulted in a small increment of
Effective Radiative Forcing (ERF) of +0.29± 0.15 in 2020.

The objective of this study is to do a complete characterization
of vehicular emissions and their impact on air quality during the
lockdown period in the metropolitan area of São Paulo, Brazil.
To achieve this goal, we determined real traffic flows for the area
of study for each hour of March 2020. Then, the emissions were
estimated and grouped for different chemical mechanisms. We
aim to represent the air pollutant concentrations according to
each lockdown phase and compare with observations. This will
allow us to identify which chemical mechanisms performs better.
We focused on the concentrations of, nitrogen monoxide (CO),
nitrogen monoxide (NO), and ozone (O3).

MATERIALS AND METHODS

The area of study covers the metropolitan area of São Paulo
(MASP), located in southeast Brazil, as shown in several studies
(Ibarra-Espinosa et al., 2022b). MASP consists of a homogeneous
conurbation of more than 36 municipalities, then the transport
planning management covers this area from the Company of
Transportation and Engineering (CET, http://www.cetsp.com.
br/). Hence, there are travel demand model outputs available
which are inputted into the Vehicular Emissions INventory
model (VEIN) to process flows and estimate emissions (Ibarra-
Espinosa et al., 2018). One of the key characteristics of VEIN is
the ability to temporally interpolate traffic flows for each type of
vehicle, resulting in dynamic inventories. The flows covered the
groups of light-duty vehicles, trucks, and public transportation.
These flows are further separated into different vehicle categories
according to the registered fleet data for MASP. Temporal factors
are applied to interpolate traffic flow to other hours of the month.
Temporal factors are the ratio between the hourly traffic count by
the hour of the morning rush hour, 08:00–09:00 in this case, as
shown by Ibarra-Espinosa et al. (2018). The hourly data used to
represent the month of March 2020 in the inventory comes from
toll stationslocated in MASP available by the Transport Agency
of São Paulo (ARTESP, http://www.artesp.sp.gov.br). Another
relevant characteristic of this estimation is that the activity data is
calibrated so that the fuel consumption estimate matches the fuel
sales for March 2020 in MASP, as explained by Ibarra-Espinosa
et al. (2020).

The inventory covers exhaust, evaporative, and fugitive paved
road emissions. The exhaust and evaporative emission factors
were obtained from the official emissions inventory for São Paulo
State (CETESB, 2020). The exhaust emission factors have units
in g/km and the evaporative process covers hot-soak (g/trip),
running losses (g/trip), and diurnal (g/day). The emission factors
with units g/trip were transformed to g/day with the average
number of trips per day. Consequently, the units g/day were
transformed to g/km with the average daily km/day as explained
by Ibarra-Espinosa et al. (2020). Paved road emission factors were
obtained from the U.S. EPA/AP42 (USA-EPA, 2016).

The fuel sold for road transportation has unique
characteristics. All gasoline sold in the territory has 27%
of ethanol (ETOH), which results in high levels of ethanol
and carbonyl compounds emissions (Nogueira et al., 2015).
Furthermore, all diesel contains 8% of bio-fuels. Consequently,
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there is the presence of ethanol in the exhaust emissions
which is measured and there are available emission factors
(CETESB, 2020). Then, we generated speciation for non-
methane hydrocarbons (NMHC) representative of the Brazilian
conditions, based on laboratory studies in Brazil (Martins
et al., 2006; Martins and Fátima Andrade, 2008; Andrade
et al., 2015; Fatima Andrade et al., 2017) and the US-EPA
tool Speciate (Simon et al., 2010). As Speciate is designed for
Microsoft Access, we ported it as an R package (Ibarra-Espinosa
and Ropkins, 2021). The speciation is available in the VEIN
model1. Each species of VOC is associated with the groups of
the chemical mechanism following the methodology of Carter
(2015). For example, see the function emis_chem2 available
in VEIN2. Therefore, it was possible to cover the following
chemical mechanisms: RADM2 (Stockwell et al., 1990), CB05
(Yarwood et al., 2005), CBMZ (Zaveri and Peters, 1999) and
SAPRC99 (Carter, 2000).

RADM2 is an improvement of the RADM1 mechanism
including other critical chemical reactions. It is 63 chemical
species (inorganic and organic), 124 thermal reactions, 21
photolysis reactions, and 5 true reactions. The organic species
are treated explicitly (those in general with large emissions) and
in groups, which are lumped based on reactivity and weight.
The Carbon Bond mechanism CB5 results from the other’s
previous versions and does not is the last one available. The
mechanism is condensed and lumped the VOCs based on the
carbon bond (structural-lumping approach, e.g., olefinic C=C).
Version 5 (CB5) has 51 chemical species and 156 reactions.
CBMZ is also a Carbon Bond Mechanism, but version Z
(Zaveri and Peters, 1999) was derived from CB4, however,
with mechanistic modifications in the organic chemistry, besides
revisions of inorganic reactions and all rate constants. CBMZ
treats 52 chemical species and 132 chemical reactions. The
apportionment of NMHC into the groups in the CBMZ is
different (mole of species per mole of NMHC) compared to
the CB4. Methane, ethane, and RO2 (a product of NMHC
oxidation) are treated explicitly. Finally, SAPRC99 is a detailed
atmospheric chemical mechanism of VOC and NOx. In the
regional models, a condensed mechanism is used (62 species in
the base of the mechanism), with the organic species lumped
based on kOH reactivity.

The Weather Research and Forecasting model with chemistry
(WRF-Chem) was used in this study for the atmospheric
chemistry simulations (Grell et al., 2005; Skamarock et al.,
2005). It was configured in two machines at the Department of
Atmospheric Sciences at the University of São Paulo, one had the
initial condition of 1 degree (National Centers for Environmental
Prediction, National Weather Service, NOAA, U.S. Department
of Commerce, 2000) which was used to run the mechanisms
RADM2, CB05, and CBMZ and another with 0.25 degrees
(National Centers for Environmental Prediction, National
Weather Service, NOAA, U.S. Department of Commerce, 2015)
for SAPRC99. The configuration was chosen because of the
availability of computer power and the data already downloaded

1https://atmoschem.github.io/vein/reference/speciate.html
2https://atmoschem.github.io/vein/reference/emis/_chem2.html

in each cluster. The description of the model configurations is
shown in Table 1.

Periods of Study
The lockdown restrictions started on March 23 according to the
official municipal decree (Estado de São Paulo, 2020). In order to
study the effect of lockdown, we estimated the hourly emissions
for all hours of March 2020 at each street of the São Paulo
metropolitan region. Then, we considered the following periods
of days:

• Spin-up: March 02 to March 08.
• Pre-Lockdown: March 09 to March 15.
• Transition: March 16 to 22.
• Lockdown: March 23 to 29.

The spin-up period represents the period of time where the
model requires to stabilize. In this way, we are able to compare
full weeks, from Monday to Sunday. Finally, we calculated
diurnal cycles to each period to understand the volume,
emissions, and concentrations.

RESULTS

Traffic Volume
Temporal factors used to interpolate transportation flow for
March 2020 are shown in Figure 1 for passenger cars (PC),
light commercial vehicles (LCV), light trucks (LT or trucks with
2 axles), medium trucks (MT or trucks with 3 axles), heavy
trucks (HT or trucks with more than 4 axles), buses (BUS),
and motorcycles (MC). The spatial representation of volumes is
shown by Ibarra-Espinosa et al. (2020). We added smooth lines
as LOESS regression made with ggplot2 and R (Wickham, 2016;
R Core Team, 2021). The trend lines show that the biggest drop
is for urban transportation, during Pre-Lockdown, values were
about one but during Lockdown 0.5. This is important because
buses in Brazil mostly consume diesel, then a decrease in these
vehicles could imply less NOX and more favorable conditions to
increase ozone. On the contrary, we see those heavy trucks and
medium trucks increased circulation during Transition, while
medium trucks dropped again, heavy ones remained almost
constant. This means that previous to Lockdown, there was an
increase in demand for goods and their transportation. There was
a decrease in all the other types of vehicles. When we consider the
average values during Pre-Lockdown and Lockdown, we see that
the drop for PC, MC, and BUS were about 50%, while for LCV
33%, LT 23%, MT 18%, and HT only 1%.

Air Pollutant Concentrations
In order to obtain an overview of the air pollutant concentrations,
we used data from air pollutant observatory stations from
CETESB and averaged monthly values for the periods 2019,
2020, and 1998–2018. These averages covered all the stations
CERQUEIRA CESAR, CONGONHAS, PARQUE PEDRO II,
and IBIRAPUERA, locations shown in Figure 2. The average
monthly concentrations, in general, are lower during the years
2019 and 2020 than the historic average for CO, NO2, and NO.
In the case of PM10, the values are closer and for PM2.5, the
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TABLE 1 | Model configuration for WRF-Chem.

Description Domain 9 km Domain 3 km

Simulation period 2020-03-02 00:00 to 2020-03-29 23:00 2020-03-02 00:00 to 2020-03-29 23:00

Bounding box Long: –50.56750 –42.13248 Lat: –27.05956 –19.88815 Long: –47.39993 –45.65500 Lat: –24.17458 –22.90289

Number of points x = 95, y = 90 x = 61, y = 49

Vertical levels 34 layers from surface to 50 hPa (20.5 km, approximately) 34 layers from surface to 50 hPa (20.5 km, approximately)

Thickness of the first layer 56 m 56 m

Microphysics Lin et al., 1983 Lin et al., 1983

Cumulus Grell and Freitas, 2014

Longwave radiation RTTM (Mlawer et al., 1997) RTTM (Mlawer et al., 1997)

Shortwave radiation Chou and Suarez, 1999 Chou and Suarez, 1999

Land use NOAH (Tewari et al., 2004) NOAH (Tewari et al., 2004)

Boundary layer Hong et al., 2006 Hong et al., 2006

Surface Zhang and Anthes, 1982 Zhang and Anthes, 1982

Topography wind Jiménez and Dudhia, 2012 Jiménez and Dudhia, 2012

FIGURE 1 | Temporal factors for transportation volume in São Paulo in March 2020 including Passenger Cars (PC), Light Commercial Vehicles (LCV), Light Trucks

(LT), Medium Trucks (MT), Heavy Trucks (HT), Buses (BUS), and Motorcycles (MC). Temporal factors are used to extrapolate the morning rush hour volume of

transportation.

values for 2019 are very similar to the historic, but the 2020 values
are still lower, reflecting the impact of COVID-19 on human
activity. Finally, the O3 has incremented the concentrations with
even higher values during 2020, especially in October. Then,
the annual percentage change between 2020 and 2019 for the
pollutants CO, NO, NO2, O3, PM10, and PM2.5 was –12.55,

–39.06, –19.98, 4.37, 2.39, and –5.5%, respectively. These changes
are directly related to the lockdown. However, when comparing
2019 with the average between 1998 and 2018, we see that
there is a trend of lower concentrations with the exception
of O3. The reasons for the historic changes in air pollutants
have been associated with the environmental management in
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FIGURE 2 | Monthly average air pollutant concentrations in São Paulo for the periods 2020, 2019, and mean 1998–2018. The smooth line represents a LOESS

regression (refer to Methods).

relation to the implementation of clean technologies required by
newer emission standards (Carvalho et al., 2015; Fatima Andrade
et al., 2017). Furthermore, it has been shown that since 2006
approximately, the O3 had a positive trend for many stations
in MASP (Schuch et al., 2019). However, the O3 during 2020
presented a different behavior from the other years. We can see
how during March there was a pronounced peak, which seems
related to the change in emissions.

Emissions
The emissions inventory adjusted by fuel consumption forMarch
2020 is shown in Table 2, as the average hourly emissions by
period and the percentage difference.Table 2 is also ordered from
the highest difference, which occurs for the ethanol (ETOH),
followed by ammonia (NH3), carbon monoxide, and non-
methanic hydrocarbons, between –52 and –42%. On the other
hand, a lower decrease occurred for the nitrogen monoxide,
nitrogen dioxide, sulfur dioxide (SO2), and particulate matter
(PM10 and PM2.5) with aerodynamic diameters lower than 2.5
µm (PM2.5) with –17, –19, –20, and –24%. Note that the
emissions from particulate matter include exhaust and paved
roads, NMHC exhaust and evaporative and CO2 is entirely
without discount apart from biodiesel (7% on diesel), ethanol,
and 27% of ethanol in gasoline.

Despite analyzing the hourly emissions providing good
insight, here, we are more interested in the spatio-temporal
variations of the emissions. As mentioned before, the decrease
in buses might lead to a different spatial pattern after COVID-
19. One of the focuses here is to study air pollution and the
ratio NMHC

NOX
is of special interest because an increase can favor

the production of tropospheric ozone (Alvim et al., 2018). Then,
we spatially calculated this ratio with a 3 km grid used by the
model WRF-Chem, as shown in Figure 3. The process to allocate
emissions with mass conservation is made in the VEIN model3.
Figure 3 shows in general a lower NMHC

NOX
ratio and the average

value for the whole domain is –19.04%. However, there are some
positive areas showing an increment in the ratio, with peaks
of 2.7% toward the center of the city. This means that there
are areas in the domain that may experience an increase in
ozone for the emissions change. For reference, the spatial average
change for NMHC was –40.1%, while the change for NOX was
–25.8%, meaning that the main reduction was because of the
gasoline vehicles.

Air Pollution Modeling
The numerical representation of air pollution during the
lockdown in São Paulo was challenging because, despite the

3https://atmoschem.github.io/vein/reference/emis_grid.html

Frontiers in Sustainable Cities | www.frontiersin.org 5 July 2022 | Volume 4 | Article 883112

https://atmoschem.github.io/vein/reference/emis_grid.html
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Ibarra-Espinosa et al. Air Pollution Modeling During Lockdown

FIGURE 3 | Spatial percentage change of NMHC/NO2 between Pre-Lockdown and Lockdown in São Paulo. The location of the stations PARQUE D.PEDRO II (PII),

CERQUEIRA CESAR (CER), IBIRAPUERA (IBI), and CONGONHAS (CON) is also included.

TABLE 2 | Average hourly emissions (kg/h) by the period in MASP.

Chemical variables Pre-lockdown (kg/h) Lockdown (kg/h) Difference (%)

ETOH 7.31 3.48 –52.36

NH3 24.47 11.91 –51.33

CO 1864.58 1033.57 –44.57

NMHC 329.04 187.87 –42.90

N2O 15.75 9.19 –41.65

HC 322.30 188.48 –41.52

CO2 193706.30 124161.47 –35.90

CH4 76.12 51.06 –32.93

NO2 98.65 70.35 –28.68

PM10 923.60 697.08 –24.53

PM2.5 241.41 183.38 –24.04

SO2 3.46 2.77 –19.85

NOX 574.91 466.34 –18.88

NO 463.40 384.27 –17.08

fact that our estimation covers road transportation, which is
the most important source of pollution in this megacity, there
is consistently a negative bias. This means that one of the

top priorities for the atmospheric and chemistry community
in Brazil is to develop inventories of unaccounted sources.
Although there are global inventories to fill missing sources,
these are known to have inconsistencies for Latin America,
with lower emissions than local inventories (Madrazo et al.,
2018). Figure 4 shows the diurnal cycle comparison between
observation as CETESB and the simulations for the whole
period, without spin up for CO (ppm), NO (µgm−3), and
O3 (µgm−3) by a chemical mechanism. We can see how the
CO is the pollutant with the largest under prediction and
how there is no difference among chemical mechanisms, but
the better agreement occurs in the urban station of PARQUE
D.PEDRO II. In the case of NO, there is an agreement between
stations IBIRAPUERA, which is located inside an urban park,
and the urban station PARQUE D.PEDRO II. However, the
NO morning peak is still underestimated, probably related to
the planetary boundary layer and winds, although this type
of analysis is out of the scope of this study. Again, there is
quite agreement between different chemical mechanisms for NO.
Finally, the O3 is underestimated, which might be related to
the overprediction of wind speed (Ibarra-Espinosa et al., 2022b),
the underestimation of urban non-methanic hydrocarbons, and
the underestimation of urban NMHC. Actually, McDonald et al.
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(2018) show that the volatile chemical products, which are
precursors of ozone, are largely underestimated. However, the
diurnal cycle is well represented in the stations with the best
agreement in station Parque D.PEDRO II and IBIRAPUERA.
Regarding the chemical mechanisms, we do see differences
with better results for RADM2 followed by CBMZ. Please,
note that the station CONGONHAS is located near the
CONGONHAS airport (http://www.aeroportocongonhas.net/)
and includesmany stationary and aircraft emission sources which
are not considered in this study.

After taking a look at the general performance of the air
pollution modeling, now it is time to see if the models are
able to represent the air pollutant concentrations at different
Lockdown periods. Figure 5 shows the diurnal cycle for the
period, chemical mechanism, and pollutant in March 2020 for
the urban station PARQUE D.PEDRO II. The observations
are shown in the facet CETESB, where we can see that the
CO was different for the periods, with similar values during
Pre-Lockdown and Transition and 50% fewer concentrations
during Lockdown. The different mechanisms also presented
lower concentrations during Lockdown, but in this case, very
similar values with Transition. Then, the chemical mechanism
which presented the closest decrease withCOwas SAPRC99, with

33%. The observedNO had similar values in this station for all the
periods, with higher concentrations during the Transition phase.
The mechanisms RADM2 had a sharp peak with similar values
for all phases, SAPRC99 and CB05 were able tomodestly improve
the representation of the smooth peak. Furthermore, except
for RADM2, all mechanisms overestimated concentrations at
night time. The observed change during Lockdown was –20%
and the closest change was obtained with CB05, which was –
19.5%. The observed O3 has a marked diurnal profile with higher
concentrations during Pre-Lockdown, followed by Transition
and Lockdown. The observed change was decreased by –33%
and the closest mechanism was RADM2 with –46%. Regarding
the shape, CBMZ performed better followed by RADM2, while
SAPRC99 was the only one with Transition and Pre-Lockdown
values similar. It was not possible to generate ozone with CB05
and currently, we are studying the causes.

DISCUSSION AND CONCLUSION

In this study, we have presented a bottom-up vehicular emissions
inventory for the megacity of São Paulo, characterizing the street
emissions during all hours of March 2020. This was possible
because we obtained hourly traffic counts for the whole hours

FIGURE 4 | Dournal cycles during March 2020 for CO, NO, and ozone, São Paulo. The points represent the averages and the vertical lines, the standard deviation.
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FIGURE 5 | Simulated diurnal cycle during Lockdown periods in March 2020 São Paulo for the chemical mechanisms CB05, CBMZ, RADM2, SAPRC99, and

observations from CETESB. The points represent the averages and the vertical lines, the standard deviation.

of March 2020, plus volumes at each street. We also obtained
vehicular fuel consumption for the area of study to calibrate
the activity data. There are still challenges to improving the
emissions estimation, among them counting temporal factors for
each street. Despite the limitations, it was possible to develop
and perform a detailed spatial and temporal characterization of
vehicular emissionsat street level. Furthermore, the NMHC

NOX
map

allowed us to identify that there are areas near downtown where
the lockdown increased this ratio, favoring the conditions for
ozone production.

The reductions found in the vehicular emissions due to
lockdown align with other published studies. For instance,
Guevara et al. (2021) found thatNO2, which is very characteristic
of vehicular emissions, was reduced by –33% while we found
by –29%. An evaluation of vehicular emissions in Bogota,
Colombia, showed that during the lockdown, the emissions of
CO, PM10, NO2, SO2, and PM2.5 were reduced by 29%, 21%,
18%, 16%, and 11%, respectively} (Pardo-Amaya and Stephen,
2022), while our reductions for the same pollutants were –44,
–25, –29, –20, and –24%. Therefore, oyr dynamic inventory
was able to represent the complex emissions changes during
the lockdown.

In our study, the pollutants with the highest reductions
were, ETOH, NH3, and CO. According to the CETESB emission
factors, these pollutants are emitted mainly by light vehicles.
Then, as the light fleet, which are the PC, MC, and LCV,
experimented with the strongest reduction in circulation,
with –50, –50, and –33%, this explains why these pollutants
suffer more reductions. In contrast, the main emitters of
NOX and PM2.5 are the trucks, which experimented with
a reduction between –20 and –1%, hence, presenting a
smaller impact of these pollutants. The Supplementary Material

shows the emission factors (g/km) by age of use used in
this study.

Vehicular emissions estimation can also be improved by
incorporating emission factors that depend on the kinematics
of traffic volumes such as speed, traffic situation, or vehicular
specific power (VSP) (Franco et al., 2013). The speed approach
consists of the emission factors as speed functions. The traffic
situation approach identifies emission factors by a combination
of the type of vehicle, level of congestion, speed limit, category,
and type of street and more characteristics. Then, this approach
allows more flexibility than speed functions. The VSP approach
combines power and many characteristics of a vehicle to
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represent vehicular emissions on a second-by-second basis.
However, we consider that the most critical aspect to improve
the emissions is to incorporate all the missing sources, other
than vehicles. As explained by McDonald et al. (2018), the
trend in vehicular emissions is to decrease because of the
surge of new technologies, which led to the rise of emergent
new sources such as the volatile chemical products. There are
some efforts in Brazil to add different sources, such as the
System for Estimating Greenhouse Gas Emissions (SEEG) (De
Azevedo et al., 2018), which provides a simple yet powerful
way to report emissions from different sources in Brazil with
a top-down approach. Using an explicit and spatial approach,
Kawashima et al. (2020) presented an industry inventory for
Brazil. There are some efforts to characterize the emissions
from pizza restaurants in Brazil, which are an important
source of particulate matter since they are numerous (Lima
et al., 2020). However, there are still many sources to be
included in a unique system, such as Convention on Long-
Range Transboundary Air Pollution, in which the parties
are required to report their emissions annually (Rosencranz,
1981).

The observations of air pollutants show during the year
2020, lower concentrations were found in comparison with
2019. The annual percentage change between 2020 and 2019
for the pollutants CO, NO, NO2, O3, PM10, and PM2.5 was
–12.55, –39.06, –19.98, 4.37, 2.39, and –5.5%, respectively. It
has been documented that the increment of O3 is related to
the reduction in NOX (Wang et al., 2021). The air quality
simulations, in general, were lower than observations with few
exceptions as in the station PARQUE D.PEDRO II. Nevertheless,
in general, the simulations represented the diurnal cycle. Best
agreement was found for NO and the stations IBIRAPUERA
and PARQUE D.PEDRO II. The chemical mechanisms that
simulated better the O3 were CBMZ and RADM2. Indeed,
RADM2 reaches higher concentrations than CBMZ, however,
CBMZ simulates the diurnal cycle more than RADM2. The
concentrations simulated by SAPRC99 were lower and with
a more different diurnal cycle. The chemical mechanism
with the best performance was CBMZ. Other studies that
compare mechanisms may have different results because of the
air pollution model and the quality of the input data. For
instance, Chen et al. (2021) used the Community Multiscale
Air Quality Modeling System (CMAQ) model (Appel et al.,
2017) to compare RADM2 and RACM mechanisms with and
without updated photolysis rate, finding that RACM achieved
better results to predict ozone. Also, Luecken et al. (2008)
found that SAPRC99 and CB05 performed better than CB4
mechanisms over the US to predict air pollutants. PM2.5 is a
pollutant with a deleterious effect on human health (Dominici
et al., 2006). Furthermore, PM2.5 can have different origins
and be generated in the atmosphere as a secondary pollutant
Hyde et al. (2018), Hyde and Mahalov (2020). Then, future
studies must consider this pollutant accounting for the complex
environmental interactions. The Metropolitan Area of São Paulo
consists of a tropical megacity strongly influenced by south

American monoson and mesoscale circulations (Freitas et al.,
2007). Then, despite that our results align with published
literature, more research is needed to confirm if these results are
representative of other cities with similar conditions, especially
in the context of COVID-19.

Simulating health policy decisions such as Lockdown on air
quality has been a challenge because we depend on the quality
of input data, models representative, and good observation data.
All model experiments identify the different phases being Pre-
Lockdown, Transition, and Lockdown, as observed. All the
observations and simulations presented lower concentrations
during Lockdown. The only case was NO simulations were
higher than the other phases, at night time for CBMZ. The CO
observations show higher concentrations during Pre-Lockdown
and Transition, and lower during Lockdown, while during
simulations only Transition reached the highest values. The
NO concentrations obtained with RADM2 were too similar and
it is not possible to differentiate phases. In the case of O3,
despite those simulations being lower than observations, RADM2
actually was closer followed by CBMZ. The result of this study
suggests that, in order to reduce air pollutant concentrations,
different strategies must be adapted according to each pollutant.
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