Synthesis of $La_{9,33}Si_6O_{26}$ oxyapatite powders by new modified sol-gel route: application as electrolyte for SOFC

ABSTRACT

The oxide ion conductor is an important functional ceramic, which can be used as the electrolyte of SOFC (solid oxide fuel cell). YSZ (yttria stabilized zirconia) is a typical high temperature (900-1000°C) SOFC electrolyte. Investigations of reducing the SOFC operating temperature are interesting to decrease the costs of the cell fabrication. Lanthanide silicates with apatite-structure $[Ln_{10}(XO_4)_6O_2\pm y]$ (X=Si or Ge) have considerable interest in recent years as electrolyte of intermediate temperature SOFCs. The ionic conductivity of lanthanum silicate is higher than YSZ conductivity, at temperatures from 600 to 800 °C; therefore it is a promising material for SOFC application. In this work modified sol-gel route was settled to synthesize lanthanum silicate, $La_{9,33}Si_6O_{26}$, oxyapatite type powders. Silica aerogel was initially obtained from Na₂SiO₃ solution by acid catalyzed reaction. La(NO₃)₃.6H₂O solution was embedded on above silica. Lanthanum silicate powders of oxyapatite crystalline phase were achieved by thermal treatment of lanthanum embedded silica at 900 °C. The obtained products were characterized by analysis techniques such as X-ray diffraction, scanning electronic microscopy and BET method.

Keywords: La_{9,33}Si₆O₂₆, silicate, lanthanum, sol-gel, SOFC