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Abstract

Purpose — The purpose of this paper is to evaluate the protection against corrosion of carbon steel SAE 1020 promoted by a niobium- and titanium-
based coating produced from a resin obtained by the Pechini method.

Design/methodology/approach — A resin was prepared with ammonium niobium oxalate as niobium precursor and K;TiFg as titanium precursor.
Carbon Steel SAE 1020 plates were dip coated in the resin and calcinated for 1h at 600 °C. Scanning electron microscopy, energy dispersive
spectroscopy and X-ray diffraction were used to characterize the coating morphologically and structurally. Open circuit potential, electrochemical
impedance spectroscopy, anodic potentiodynamic polarization and scanning vibrating electrode technique were used to evaluate the corrosion
protection of the coating.

Findings — The electrochemical analyses evidence slight protection against corrosion of the coating by itself; however, the needle-like crystal
structure obtained may potentially provide a good anchorage site, suggesting the coating could be used as a pretreatment that may present similar
application to phosphating processes, generating lower environmental impacts.

Originality/value — Due to increasingly restrictive environmental laws, new environmentally friendlier surface treatments must be researched. This
paper approaches this matter using a combination of niobium- and titanium-based coating, produced by a cleaner process, the Pechini method.
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1. Introduction

Carbon steel is widely used in the industry due to its excellent
mechanical properties and low cost. In contrast, it resists poorly
to corrosion, which results in the necessity of surface treatment
even in mildly corrosive environments (Kim ez al., 2017). Every
year, corrosion in pipelines and equipment account for
economic losses in the order of hundreds of billions of dollars
and even human casualties in production plants; this combined
with the increasing awareness for environmental issues rises the
importance of the study in new, cleaner and effective ways of
protection against corrosion (Hou ez al., 2016; Matos et al.,
2018). Phosphating is one of the surface treatments most
commonly used by the industry to protect metallic materials
against corrosion, but the process generates toxic waste that is
difficult to treat. The toxicity is related to the addition of nickel
in the phosphating bath and the use of hexavalent chromium as
sealer (Banczek ez al., 2010).
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Metals such as niobium and titanium are naturally resistant
to corrosion, as they form a dense layer of oxides on the surface
that serves as a barrier. This, allied to their mechanical
properties, makes these metals, materials of interest in the
biomedical area for implants. This is due to their great
biocompatibility and the hindering of the attack from corrosive
body fluids, arising as a potential less toxic alternative to
traditional surface treatments (McMahon ez al., 2012; Pradhan
et al., 2016; Detlinger et al, 2019). Taking that into
consideration and knowing that surface coatings are used to
improve corrosion resistance. Being able to artificially deposit
niobium and titanium oxides on the surface of carbon steel may
potentially protect it against corrosion (Nazeer and Madkour,
2018).

The oxides can be deposited on the surface of metallic
material by different techniques such as chemical vapor
deposition, physical vapor deposition and the sol-gel method
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(Pan ez al., 2016). The Pechini method, or polymeric precursor
method, derives from the sol-gel method and consists in the
preparation of a resin by reacting a chelating agent and the
metallic precursor. A polyalcohol is added to the metallic
chelate, causing a polysterification reaction, immobilizing the
metallic cation in the structure. The resin is then calcinated
to remove the organic matter and form the desired oxide.
This method presents the advantages of using relatively low
temperature, the possibility of large-scale production, low
toxicity and relatively low costs (Dias et al., 2018; Trino er al.,
2018; Detlinger ez al., 2019; Tractz et al., 2021).

Niobium oxide and titanium oxide were studied separately in
the literature. A niobium oxide coating produced by the
Pechini method for the protection of carbon steel against
corrosion was studied by Detlinger ez al. (2020). The results
showed higher corrosion resistance of the coated plates when
comparing to the bare substrate, obtaining better results with
lower ethylene glycol (EG)/citric acid ratio, as the amount of
niobium on the surface decreases with the increase of the ratio.
The use of titanium dioxide thin films deposited by sputtering
for the protection against corrosion of stainless steel was
evaluated by Hartwig et al. (2017). The coatings obtained
exhibit great corrosion protection and the increase of the
coating thickness decrease its protection. This is due to the
increase on the roughness and donor density of the coating that
affects the electrochemical behavior of the coated substrate.

Considering the above-mentioned, the aim of the study is to
produce and characterize, morphologically, structurally and
electrochemically, a niobium and titanium coating for protection
of carbon steel (SAE 1020) against corrosion.

2. Materials and methods

2.1 Resin preparation

The resin was prepared by the methodology described by
Detlinger and co-workers (Detlinger ez al., 2019), using citric
acid (CA, 99.89%, Neon) as chelating agent, EG (99.95%,
PanReac AppliChem) as polyalcohol, ammonium niobium
oxalate (NH4[Nb(C,04),(H,0)].H,O, CBMM) as niobium
precursor and potassium hexafluorotitanate (K,TiFg, Sigma-
Aldrich) as titanium precursor. The used molar ratios were
EG/AC/Nb/Ti: 8/1/0.1/0.06. Citric acid was added to EG at
60°C under constant agitation until complete dissolution
followed by the addition of the metal precursor until complete
dissolution at 60°C, then the reaction was carried for 1 h under
constant agitation at 60°C.

2.2 Coating preparation

Carbon steel (SAE, 1020) plates with the size of 2 x 2 cm were
sanded with silicon carbide sand paper with progressive grades of
#200, #320, #400, #600 and #1200 to remove all impurities
from the surface of the material. The sanded plate was immersed
in the resin for 15 min, then hanged to drain the excess of resin for
5 min followed by the calcination of the plates at 600°C for 1 h in
a preheated muffle furnace. After calcination, the plates were
cleaned with a soft bristle paint-brush, rinsed with deionized
water and dried to remove the organic material left.

2.3 Morphologic and structural characterization
Scanning electron microscopy (SEM) images were obtained using
a Tescan® Vega3 equipment to visualize the morphology of the
metallic surface as well as the coatings; the equipment was
coupled with an energy dispersive spectroscopy (EDS) that was
used to determine the elemental composition of the coating.

X-ray diffraction (XRD) was used to identify the crystallinity
of the coating, as well as the phases formed after the calcination
process. The equipment used was a Rigaku Multiflex
diffractometer using a CuKa (A = 1.5418 A) radiation, power
of 40mV and current of 20mA, scanning in the range of
10°-80° with a step of 0.06° and a speed of 1° min~'.

2.4 Electrochemical analyses

For the electrochemical characterization, a three-electrode
electrochemical cell was used, where the working electrode was
the coated or uncoated plate of carbon steel (contact area of
0.78 cm?), the counter electrode was a helical wire of metallic
platinum, the reference was an Ag/AgCl electrode and the
electrolyte solution used was NaCl1 0.5 mol L1,

A Gamry PC4-300/EIS300 potentiostat was used for the
electrochemical analysis at the temperature of 20+ 2°C.
Electrochemical impedance spectroscopy (EIS) measurements
were performed potentiostatically at open circuit potential
(OCP) with perturbation amplitude of = 10 mV, the frequency
range of 10 kHz to 10 mHz and the acquisition of 10 points per
decade. The EIS equivalent circuit fittings were obtained using
the Gamry Instruments EchemAnalyst™ software. Anodic
potentiodynamic polarization measures were carried from the
OCP, with a stabilization time of 8,000, to an overvoltage of
+500 mV using a scanning rate of +10mV's .

The scanning vibrating electrode technique (SVET) analysis
was performed in an Applicable Electronics™ equipment
controlled by an ASET 4.0 software, using an insulated Pt-Ir
probe with platinum black deposited on the tip as a vibrating
electrode. The vibrating electrode was placed 100 um above
the surface and the amplitude of vibration was 19 um,
vibration frequencies of the probe were 174 Hz (X) and 73 Hz
(Z). All experiments were performed in a Faraday cage at
20 = 2°C. Scanning was carried out over the exposed area
(0.25 cm?). Experiments were performed using 5mmol L™*
NacCl solution for a period of 24 h and the maps were obtained
every 2 h. During the interval between the SVET measurements,
optical microscope images were obtained i situ on the surface of
the coated material.

3. Results and discussion

3.1 Morphologic and structural characterization

SEM micrographs for the bare substrate and the coated
material were obtained to observe the surface of the samples.
The images are depicted in Figures 1 and 2, respectively. The
bare material was smooth with little defects, probably due to
the sanding process. Conversely, the coating that was deposited
on the surface of the metallic material using the Pechini method
was rough and non-homogenous. Under higher magnification,
a needle-like crystal structure was identified, as shown in
Figure 3. Similar crystals were observed in the literature for a
Nb,Os5 coating in carbon steel prepared by the Pechini method
(Rodrigues et al., 2014) and for niobium oxide deposits
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Figure 1 Scanning electron micrograph for the uncoated steel under
1,000 times magnification
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Figure 2 Scanning electron micrograph for the coated steel under
1,000 times magnification
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generated after immersion in NaOH and H,SO, solutions
(Chukwuike ez al., 2021). The presence of the crystals on the
material surface broadens the potential applications of the
coating. Phosphating baths form crystals on the surface, with
different morphologies depending on the formed phosphate,
which serve as an anchorage site for further treatments
(Banczek et al., 2010). Banczek er al. (2009) found needle-like
structures when studying phosphating baths with zinc.
Therefore, a similar application, as pretreatment, is possible for
the obtained coating.

The weight percentage of the elements on the surface,
obtained by EDS, is presented in Table 1. Fe, O, Nb, Ti and K
were found on the surface, the presence of K could indicate
residual elements of the titanium precursor (K,TiF) or the

Figure 3 Scanning electron micrograph showing the needle structure
on the coated steel under 10,000 times magnification

VZ

SEM HV: 20.0 kV VEGA3 TESCAN|

View field: 20.8 pm |

Table 1 Semi-quantitative EDS elemental analysis of coated steel
Element Fe (0] Nb Ti K
Weight % 65.47 30.95 1.18 0.45 1.96

formation of phases other than niobium and titanium oxides, as
its concentration was higher in comparison to Nb and Ti.
Although, due to the semi-quantitative nature of the EDS
elemental analyses there may be a variation of the percentages.
The EDS maps are shown in Figure 4, a homogenous
distribution of the elements was observed, making it difficult
for galvanic corrosion caused by a difference in the elements
concentrations to happen.

XRD was used to identify the phases of the resin calcinated
powder, as shown in Figure 5. As can be seen in this Figure, the
diffractogram presents characteristics of low crystallinity
materials, with low intensity peaks. Furthermore, the large

Figure 4 EDS element distribution maps for the coated steel
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Figure 5 X-ray diffractogram for the resin powder
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number of diffraction peaks suggests the formation of a mixture
of phases among which TiO, (anatase and rutile), Nb,Os,
KNbO3;, K,0, NbO, and KTiNbOs5 stand out. These phases
often present peaks at the same position in the diffractogram, as
indicated in Figure 5. For this reason, the exact identification of
the phases present in the material is difficult. The possible
presence of TiO,, NbO,, Nb,O5 and insoluble salts such
as KNbO3; could indicate a coating with good corrosion
protection properties, as they are corrosion resistant agents
(Tao er al., 2014; Tegner er al., 2015; Detlinger ez al., 2019;
Detlinger ez al., 2020; Santos Janior ez al., 2022).

3.2 Electrochemical characterization

Open circuit potential curves for the substrate and the coated
steel were obtained to evaluate their respective electrochemical
behavior, as can be seen in Figure 6. The values of potential
decreased with time, suggesting the dissolution of the oxide
layer formed, followed by the activation of the surface which
stabilized the system (Robin, 2004; Sowa er al., 2016). The
coated steel stabilized at a higher potential than the substrate,
indicating a higher nobility of the coated surface, suggesting a
corrosion protection on the coated material (Pillis ez al., 2016;
Li er al., 2017; Helleis et al., 2021). A lower variation in the
coated carbon steel potential was observed, suggesting a higher

Figure 6 OCP curves for the substrate and coated steel
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stability of the formed oxides, indicating a higher resistance to
corrosion for the material. This behavior was verified by the
potential stability from the first moments of immersion. Santos
Junior ez al. (2022), related the potential stabilization promoted
by niobates obtained in the surface of metallic niobium
samples, evidencing the stability of the obtained coating.

The anodic polarization curves depicted in Figure 7
supported the results of the OCP, as the coated steel curve was
shifted to lower current densities and higher potential values,
when compared to the substrate indicating the suppression of
the anodic dissolution of carbon steel and suggesting that the
coated steel was protected against corrosion near the corrosion
potential (Farag ez al., 2015; Cui et al., 20165 Zhao et al., 2017;
Detlinger ez al., 2019; Zhang er al., 2019). In the potential
region in the studied electrolyte, a passive behavior was not
observed for both the coated and uncoated samples. For the
uncoated carbon steel, this behavior was related to the
electrochemical activity promoted by the anodic polarization.
This activity is characteristic of the substrate, presenting low
corrosion resistance. For the coated samples, the active
behavior can be explained by the ionic conduction capacity by
the movement of interlayer cations of the oxide, as related in
the literature (Im ez al., 2014).

EIS measurements for the substrate and coated carbon steel
were conducted to better understand the kinetics of the
corrosive process in the system. The curves obtained are
presented in Figures 8, 9 and 10. The Nyquist plot, in Figure 8,
showed a complete capacitive arc for the substrate and an
incomplete arc for the coated steel, similar to the capacitive arcs
found in the literature for a niobium pentoxide coating
obtained using magnetron sputtering on AISI 316 Stainless
Steel (Pillis ez al., 2016). The larger radius of the capacitive arc
for the coated surface, when extrapolated to regions of lower
frequencies, was associated to higher values of impedance,
suggesting a delay in the charge transfer reactions and higher
corrosion resistance (Pillis ez al., 2016; Detlinger ez al., 2019).
Bode phase angle plots, shown in Figure 9, depicted one time
constant for both the substrate and the coated carbon steel,

Figure 7 Potentiodynamic anodic polarization curves for the substrate
and coated steel
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Figure 8 EIS Nyquist plots for the substrate and coated steel
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Figure 9 EIS phase angle Bode plots for the substrate and coated steel
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Figure 10 EIS impedance modulus Bode plots for the substrate and
coated steel
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contrarily to the expected two-time constants for the coated
sample. Similar results in the literature were found for niobium
carbide coatings on carbon steel SAE 1045 (Orjuela er al.,
2014) and for a niobium oxide coating on carbon steel SAE

1020 (Detlinger et al., 2019). The single time constant of the
coated steel sample in the Bode plot presented a higher phase
angle and was shifted towards regions of lower frequencies,
indicating an enhancement in the corrosion protection of the
system (Orjuela ez al., 2014; Detlinger et al., 2019). The Bode
impedance modulus plots seen in Figure 10 showed that in
regions of higher frequencies there was no impedance response,
and a higher value of impedance modulus for the coated
material in regions of lower frequencies, suggesting a surface
that was resistant to the electrolyte solution attack and,
consequently, a better corrosion resistance than the uncoated
material (Detlinger ez al., 2019)

Dielectric behavior of the coating could be related to the EIS
results, due to the presence of niobium in different oxidation
states (Nb*" and Nb° ™), as suggested by the peaks related to
NbO,, Nb,O5 and KNbO; in Figure 5. In regions of higher
frequencies, representing the interaction between electrolyte
and coating, the capacitances behaved as a short circuit,
permitting the passage of current to the substrate, there being
no impedance response. In lower frequencies regions,
representing the interaction between the surface of the coating
(and its defects) and the electrolyte, the capacitances behaved
as an open circuit. The defects resistance and the charge
transfer resistance act on the system resulting in an impedance
response (Orjuela er al., 2014; Chukwuike et al, 2021).
The lack of impedance response in higher frequencies made the
capacitive arc in the Nyquist plot incomplete, hid the higher
frequency time constant expected on the Bode phase angle
plots and also hid the increase of impedance modulus in higher
frequencies on the Bode impedance modulus plot for the
coated steel.

The EIS data was fitted using an equivalent circuit, depicted
in Figure 11. With the fitted curves, values for the electrolyte
resistance (Ry,)), the charge transfer resistance (R.) and the
constant phase element (CPE) were obtained. The results
are shown in Table 2. A CPE was chosen for the equivalent
circuit due to the nonideality the system, and a value for z was
also obtained, referring to the ideality of the capacitor. The
value for 7 varies between 0 and 1, when n = 1, it represents a
pure capacitive behavior, while, when 7 = 0, it represents a pure
resistive behavior (Cui er al., 2017a; Liu er al., 2021). The
magnitude of the value of 7 for the coated sample is similar to a
zinc phosphate conversion coating on carbon steel SAE 1020
studied by Huang ez al. (2019) and to a europium oxide-based
conversion coating studied by Mofidabadi er al. (2021). The
reduction in the value of 7 for the coated sample suggests a
coating with a rough, heterogenous surface, in contrast to the
smoother, more homogenous surface of the bare material,
evidenced by a higher value of n. These results can be verified

Figure 11 Equivalent circuit used for fitting the experimental EIS data
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Table 2 EIS parameters for the bare substrate and coated steel

Sample Reol (Q cm?) R (Q cm?) CPE (Ss"cm?) n
Substrate 50.26 + 0.24 967.3 +9.84 207E3+1.75" 0.90
Coated steel 56.21 = 0.25 1.86 > = 7.17 E3 867E > +7.02E° 0.71

by the micrographs seen in Figures 1 and 2 (Mofidabadi ez al.,
2021). The values obtained for the Ry, were similar in
magnitude for the coated and uncoated material, showing that
the electrolytes used in both analyses did not vary significantly,
presenting similar conductivity (Cui ez al., 2017b). R, results
showed a great difference in value between the samples. The
coated plate charge transfer resistance was significantly higher
than the resistance for the substrate, indicating a higher
corrosion resistance for the coated plate. These results
confirmed the qualitative visual analysis of the Nyquist and
Bode plots in Figures 8 to 10, and also corroborate to the
results obtained by the OCP curves in Figure 6 and
potentiodynamic polarization curves in Figure 7.

The local corrosion of the material was evaluated using
SVET, as shown in Figure 12. The maps obtained presents
anodic regions in red and cathodic regions in blue. After 2 h
of immersion [Figure 12 (A)], an active region, was
observed, indicating the formation of a pit before it was
visible in the micrography. This result could be related to a
possible defect or crack on the coating, which could be a
problem when using the material as a surface treatment by
itself. After 24 h of immersion [Figure 12 (B)] it was possible
to visualize the deposition of corrosion products on the
surface of the material. An overall increase in the current
density was observed, indicating a coating that was not
passive. The highlighted areas showed the formation of pits
on the surface, suggesting a non-homogenous coating with
defects, as some regions were attacked and others remained
protected. This result suggested that the coating might not
be best used as a surface treatment by itself, but due to its
morphology, as seen in Figures 2 and 3, it could be used in
conjunction with other surface treatments (Ferreira er al.,
2022).

Figure 12 SVET maps and optical micrographs of the coated carbon
steel: (A) after 2 hours of immersion; (B) after 24 hours of immersion

4. Conclusion

The deposition of a niobium- and titanium-based coating on
carbon steel SAE 1020 provided slight protection against
corrosion for the material. OCP, anodic polarization and EIS
analyses indicated higher corrosion protection for the coated
carbon steel than the bare substrate, whereas SVET showed a
non-homogenous coating with defects where regions were
attacked forming pits and other regions remained protected
after 24 h of immersion in the electrolyte. This result suggested
that the coating is better used as a pre-treatment than a final
treatment by itself, needing to be used in association with other
corrosion protection methods. The needle-like structure
observed in the SEM micrographs could grant good anchorage
to the surface, allowing it to be possibly used as a paint adhesion
promotor similarly to the industrial use of the phosphate layers.
The Pechini method stands out as an environmentally friendlier
alternative, as the main source of impacts are originated by the
energy expenditure to prepare the resin and the fumes from the
calcination step, with close to none waste from the process,
conversely to the phosphating bath commonly used by industries.
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