Radioactive and stable elements' concentration in medicinal plants from Brazil

F. V. Sussa · P. S. C. Silva · S. R. Damatto · D. I. T. Fávaro · B. P. Mazzilli

Received: 19 April 2009/Published online: 27 June 2009 © Akadémiai Kiadó, Budapest, Hungary 2009

Abstract Since the early days of mankind, plants have been used as food and for medicinal purposes. Still, little information exists in literature about the activity concentration of ²³⁸U and ²³²Th decay products, as well as stable element concentrations in Brazilian plants. Activity concentrations of ²²⁶Ra, ²²⁸Ra and ²¹⁰Pb, and chemical concentrations of As, Ba, Br, Cs, Co, Cr, Cu, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Yb, Zn and Zr were determined in ten samples commonly used in Brazilian medicinal plants.

Keywords Medicinal plants · Radioactive elements · Stable elements

Introduction

Since the early days of mankind, plants have been used as food and medicinal source [1]. Observing animals feeding themselves, men started to taste plants and realized that they were sometimes relieved of headaches, stomachaches and muscular aches after external use of medicinal plants [2]. Generally, the studies related with therapeutic plants aim at characterizing the active component of the plant for scientific evidence of its therapeutic properties [3–5]. Therefore, little information exists in the literature about the activity concentration of natural radionuclides that belong to natural radioactive series of ²³⁸U and ²³²Th, as

F. V. Sussa · P. S. C. Silva (⊠) · S. R. Damatto · D. I. T. Fávaro · B. P. Mazzilli

Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Avenida Professor Lineu Prestes, 2242, Cidade Universitária, São Paulo, SP CEP 05508-000, Brazil e-mail: pscsilva@ipen.br well as about the stable elements concentration in plants used for this purpose in Brazil. The knowledge of the elemental concentration of these elements can be useful to verify possible interferences in therapeutic activity; depending on their concentration they can also represent some threat for human being [6].

Instrumental neutron activation analysis is one of the most used methods for elemental characterization and was applied in this work to determine As, Ba, Br, Cs, Co, Cr, Cu, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Yb, Zn and Zr concentrations [7, 8]. The major amount of Ra and Pb enters the human body via ingestion. Approximately 20% of Ra and 10-15% of the Pb ingested reaches the blood stream, is distributed for the whole body and follows the same metabolism of Ca. The objective of this work it to determine the activity concentration of ²²⁶Ra, ²²⁸Ra and ²¹⁰Pb and the elemental concentration in samples used as common medicinal plants; as well as to determine the elemental concentration in alcoholic extracts. The plants analyzed were: Allium sativum L., Aloe vera, Portulaca oleracea L., Peumus boldus, Matricaria chamomilla L, Rhamnus purshiana D.C., Camellia sinensis L., Ginko biloba L., Panax ginseng C. A. Meyer and Bixa orellana L.

Experimental

Sample preparation

Medicinal plants used in this work were obtained from drugstores and informal street commerce and are listed in Table 1, along with the part of the plant with therapeutical function. Species identification was made by comparison with specialized literature [9, 10]. Since a lot of impurities are present in most of the samples, like plant parts other

Table 1 Herb samples analyzed, their botanical names, corresponding part that presents therapeutical functions, and their medicinal uses

Samp	ble	Botanical name	Analyzed part of the sample	Medicinal uses		
A1	Garlic	Allium sativum	Bulb	Atherosclerosis, high cholesterol, circulation problems and respiratory tract infections		
A2	Aloe Vera	Aloe vera	Leaf	Topically to heal wounds and skin conditions, orally as a laxative		
A3	Pigweed	Portulaca oleracea	Whole plant	Treatment for parasites, blood-cleanser, refresh digestive system		
A4	Boldo	Peumus boldus	Leaf	Balance liver function; upper digestive tract disorders, intestinal worms and liver flukes		
A5	Chamomile	Matricaria chamomilla	Flower	Anti-inflammatory, antispasmodic, antidiarrheal anxiolytic		
B1	Cascara Sagrada	Rhamnus purshiana	Bark of the stem	Purgative and laxative		
B2	Tea plant	Camellia sinensis	Leaf and flower	Antitoxic, diuretic, expectorant, stimulant and stomachic		
B3	Maidenhair	Ginko biloba	Leaf	Cerebrovascular insufficiency, memory deficit, depressive emotional condition, arterial disease		
B4	Ginseng	Panax ginseng	Leaf	Central nervous system stimulation, analgesic and anti-inflammatory		
B5	Lipstick tree	Bixa orellana	Root	Skin diseases		
C1	Ginseng ^a	Panax ginseng	Root	Enhancement of mental and physical capacities		

^a Industrialized sample

than those of pharmaceutical interest and a variety of other materials, the samples were cleaned with the help of a magnifying glass [11]. After impurities had been eliminated, samples were dried at constant temperature of 60 °C during seven days and grounded using ceramic mortar and pestle. For extraction procedure, samples were softened by soaking them in 70% ethanol during 7 days at room temperature.

Instrumental neutron activation analysis

The elemental determination was performed by instrumental neutron activation analysis (INAA) in samples and in extracts. Two types of samples were analyzed: bulk and extract of the samples. Approximately 5 g of the dry samples were accurately weighted and treated as described above to obtain the extract, which was dropped in filter papers. The bulk samples were also ground and accurately weighted. Both were sealed in plastic bags and in aluminum foils for neutron irradiation. Irradiated samples were counted in a hyper pure germanium detector during 5,000 s. Certified reference materials, MAG-1 (USGS) and San Joaquin Soil (NIST SRM 2709), were also irradiated together with the samples, for elemental concentration calculation.

Radiochemical separation

The radionuclide analysis was performed by radiochemical separation and total alpha and beta counting. Two grams of

samples were used for extraction procedure and for bulk sample analysis. Samples were dissolved in hot nitric acid and oxygen peroxide till total elimination of organic matter. Carrier of Ba^{2+} and Pb^{2+} were added before the dissolution. The solution was treated with citric acid for Fe and Pb complexation in pH of 4.5–5.0. Sulfuric acid was added for sulfate precipitation of Ra^{2+} , co-precipitation as $Ba(Ra)SO_4$, and PbSO_4. The precipitate was dissolved with NTA and 6 M NaOH was added to achieve a basic medium. The addition of $(NH_4)_2SO_4$ (25 mg mL⁻¹) and glacial acetic acid precipitates $Ba(Ra)SO_4$ leaving Pb^{2+} in solution. The precipitate was separated in two steps of centrifugation and washing, dissolved with EDTA and precipitated in a Millipore filter and separated for counting.

The solution containing Pb^{2+} was treated with 1 M Na₂S to precipitate PbS. The precipitate was centrifuged, dissolved in nitric acid and filtered for sulfur separation. The addition of 30% Na₂CrO₄ precipitated PbCrO₄ that was filtered in Millipore filter and separated for counting. Counts were made in a gas flow proportional detector of low background, Berthold, model Lb 770, during 200 min. The procedure was from MOREIRA [12] and OLIVEIRA [13].

Results and discussion

Results for total alpha and beta measurements are shown in the Table 2 for the bulk and extract samples. In the bulk sample, lead concentration ranged from 32 to 76 mBq g^{-1} .

Table 2 Activity concentrations of 226 Ra, 228 Ra and 210 Pb, in Bq kg⁻¹, in the plant samples and in the extract (*)

Sample	²²⁶ Ra	²²⁶ Ra*	²²⁸ Ra	²²⁸ Ra*	²¹⁰ Pb	²¹⁰ Pb*
A1	<2.2	<2.2	33 ± 3	39 ± 4	51 ± 5	52 ± 5
A2	18.4 ± 0.2	<2.2	65 ± 4	42 ± 4	61 ± 6	44 ± 4
A3	4.5 ± 0.5	<2.2	44 ± 4	46 ± 5	76 ± 8	52 ± 5
A4	<2.2	<2.2	36 ± 4	37 ± 4	68 ± 7	56 ± 6
A5	<2.2	<2.2	41 ± 4	43 ± 4	52 ± 5	47 ± 5
B1	<2.2	2.3 ± 0.2	38 ± 4	33 ± 3	70 ± 7	50 ± 5
B2	13.2 ± 0.1	10 ± 1	40 ± 4	41 ± 4	73 ± 7	63 ± 6
B3	4.1 ± 0.4	<2.2	53 ± 5	55 ± 6	32 ± 3	74 ± 7
B4	5.1 ± 0.5	$5{,}2\pm0.5$	37 ± 4	43 ± 4	58 ± 6	48 ± 5
B5	5.1 ± 0.5	3.4 ± 0.3	40 ± 4	36 ± 4	68 ± 7	57 ± 6
C1	<2.2	3.6 ± 0.4	36 ± 4	29 ± 3	35 ± 4	47 ± 5

Lead occurs naturally in plants as a result of uptake, mainly in places with high concentration due to atmospheric fallout. Sample C1 showed the lowest concentration and was the only sample obtained in industrialized powder form. Activity concentrations of ²²⁶Ra were lower than ²²⁸Ra in all samples. As the former belong to ²³⁸U and the last to ²³²Th decay series, these results were in accordance with those obtained for ²³⁸U, which was measured in just one sample (0.2 ± 0.1 in sample B3); the concentration of other samples was smaller than the detection limit. It can be observed that the extracts contain almost all the radium and lead contents present in the plant.

Radium in nature exists in soil, rock, surface water, groundwater, plants and animals, at low concentrations, generally lower than 37 Bq kg⁻¹. According to ANL [14] the average concentration of 226 Ra lies in the range of 0.4– 1 Bq kg⁻¹ in food; the observed values for ²²⁶Ra are higher than this range for A2, A3, B2, B4 and B5. Activity concentrations of ²²⁸Ra were one order of magnitude higher than those of ²²⁶Ra in all samples. Average concentrations for ²³²Th in plants [14] were of the order of $0.04 \ \mu g \ g^{-1}$, one order of magnitude lower than those found in the studied samples, except for Lipstick tree (B5). Uranium activity concentrations were below the detection limits (0.9 Bq kg⁻¹) [15] in all samples, except for Maidenhair (B3). Committed effective equivalent doses were evaluated considering the ingestion of 5 kg per year of the plant ranged from 0.3 to 0.6 mSv year⁻¹, due to the ingestion of the analyzed samples. The higher value was obtained for Pigweed.

The difference in the concentration of elements is due to peculiarities in the absorption by different botanic structures of the plants as leaf, root, bark, flowers and the soil composition in which they were cultivated [16]. Besides that, the use of fertilizer, agricultural protections and irrigation water, climatic conditions and industrial pollution can contribute to variations in the concentrations normally observed. The concentration of elements determined by INAA in the bulk plant and in the extract is shown in Tables 3 and 4, respectively. Measurement of the standard material IAEA-336 (lichen) allowed for quality control of the results, which are seen in Table 2.

Macronutrients as K ranged from 0.8% to 3.3% for the bulk plant and from 0.06% to 0.6% for the extract; and for Na, from 0.003 to 0.03 μ g g⁻¹ for the bulk plant and from 0.003 to 0.01 μ g g⁻¹ for the extract. Potassium and iron are the most abundant elements in the analyzed plant. The use of Camellia sinensis and Panax ginseng that are rich in potassium could provide this element in deficiency cases. Micronutrients like Fe, Cr, Zn and Co are essential for the organism. Iron possesses a unique function in the metabolic process associated with hemoglobin and oxygen transport. Iron deficiency is the main nutritional deficiency in humans and is associated with insufficient diet, excessive menstruation and multiple births [3]. The need of iron for an adult is 20 mg day⁻¹ and for a children, 10 mg day $^{-1}$. The variation of iron in the analyzed samples was from 0.003% to 0.3% for the bulk plant and from 3 to 9 μ g g⁻¹ for the extract. The use of *Ginkgo biloba* and Panax ginseng can be indicated for compensating iron deficiency.

Another essential element, Cr, acts a co-factor in the insulin synthesis and in the cholesterol and blood triglycerides control. The daily-recommended ingestion of chromium is 50–250 μ g day⁻¹ [17]. Amounts of Cr ranged from 0.5 to 5.5 μ g g⁻¹ in the bulk sample and from 0.001 to 0.1 μ g g⁻¹ in the extract. The analyzed drugs are not suitable to supply chromium deficiencies. Zinc concentration ranged from 7.2 to 68 μ g g⁻¹ in bulk plants and from 0.48 to 7.2 μ g g⁻¹ in extracts. This element is necessary for the cellular growth and multiplication, once it participates in the DNA and RNA synthesis and bone metabolism [16]. Low concentrations of zinc are related to infertility. High Zn concentration was observed in tea plant (68 μ g g⁻¹), which is indicated in cases of zinc deficiency.

Cobalt is essential for the B12 vitamin and the thyroid metabolism; the daily ingestion must be around 3 μ g [16]. The Co concentration varied from 0.085 to 1.16 μ g g⁻¹ in bulk plants and from 0.01 a 0.26 μ g g⁻¹ in the extract. Only in the tea plant (B2), it was observed a measurable amount of Se (0.3 μ g g⁻¹) that is an essential element involved in antitumoral, immune and inflammatory metabolism and is used in degenerative disease treatment and neurologic disturbs [17]. It is well known that several elements are essential for human beings, although at high levels they can be toxic. More research is required on metal concentrations in medicinal plants used for therapeutic purposes, in order to take more advantage of their benefits and to prevent intoxications.

Table 3Elemental concentration in μg	⁻¹ , or otherwise	indicated (%), of elements	determined by neutron activation analysis
---	------------------------------	----------------------------	---

	Ba	Br	Ce	Со	Cr	Cs	K (%)
A1		3.2 ± 0.1					1 ± 0.2
A2	126 ± 32	46.2 ± 0.9	1 ± 0.3		1.8 ± 0.4		
A3	123 ± 32	72 ± 1	5.5 ± 0.4	0.3 ± 0.03	2.5 ± 0.4	0.25 ± 0.05	1 ± 0.7
A4	43 ± 14	25.8 ± 0.4	1.8 ± 0.2	0.11 ± 0.01			1.1 ± 0.2
A5	36 ± 5	24 ± 0.2	1.2 ± 0.2	0.18 ± 0.02	0.5 ± 0.2		0.7 ± 0.1
B1			3 ± 0.2	0.09 ± 0.01	4.7 ± 0.3	0.25 ± 0.02	0.8 ± 0.1
B2	105 ± 19		5.8 ± 0.4	0.47 ± 0.02	2.4 ± 0.4	0.29 ± 0.04	3.3 ± 0.6
B3	129 ± 25		5.3 ± 0.4	0.83 ± 0.04	5.5 ± 0.5	0.41 ± 0.05	1.4 ± 0.3
B4	159 ± 17	23 ± 0.2	11.5 ± 0.7	1.16 ± 0.05	4.2 ± 0.4	0.25 ± 0.05	1.6 ± 0.4
B5	119 ± 9	3.3 ± 0.1	1.2 ± 0.1	0.1 ± 0.01	1.1 ± 0.1		0.9 ± 0.1
C1	56 ± 5	23.3 ± 0.2	2.5 ± 0.2	0.81 ± 0.03	1.2 ± 0.2		1.9 ± 0.2
Md		14 ± 1	1.02 ± 0.3	0.25 ± 0.03	1.77 ± 0.4	0.09 ± 0.02	
VM	6.4	12.9	1.28	0.29	1.06		0.184
	Fe (%)	Eu	Sc	Sm	Na	Lu	
A1	0.0030 ± 0.0003		0.0018 ± 0.000	01	0.030 ±	= 0.001	
A2	0.030 ± 0.002	0.024 ± 0.007	0.080 ± 0.004	0.036 ± 0.026	007 0.006 ±	= 0.001	
A3	0.071 ± 0.003	0.072 ± 0.008	0.242 ± 0.009	0.07 ± 0.02	2 0.026 ±	= 0.002	
A4	0.034 ± 0.002	0.11 ± 0.01	0.11 ± 0.01	0.08 ± 0.0		= 0.001 0.019 ±	= 0.004
A5	0.034 ± 0.002	0.066 ± 0.006	0.113 ± 0.004	0.21 ± 0.0	1 0.028 ±	= 0.001 0.009 ±	= 0.003
B1	0.034 ± 0.001	0.027 ± 0.003	0.069 ± 0.003	0.015 ± 0.015	002 0.003 ±	= 0.001	
B2	0.056 ± 0.002	0.088 ± 0.006	0.105 ± 0.004	0.35 ± 0.02	2 0.016 ±	= 0.001 0.004 ±	= 0.002
В3	0.220 ± 0.004	0.094 ± 0.007	0.72 ± 0.02	0.35 ± 0.02	$2 0.09 \pm$	0.003 0.027 ±	= 0.004
B4	0.29 ± 0.01	0.19 ± 0.01	0.55 ± 0.02	0.92 ± 0.0	5 0.016 ±	= 0.002 0.020 ±	= 0.004
B5	0.012 ± 0.001	0.018 ± 0.003	0.026 ± 0.001	0.048 ± 0.000	003 0.003 ±	= 0.001	
C1	0.082 ± 0.003	0.079 ± 0.005	0.189 ± 0.006	0.25 ± 0.0	1 0.003 ±	= 0.001 0.006 ±	= 0.002
Md	0.042 ± 0.002	0.025 ± 0.01	0.17 ± 0.02	0.11 ± 0.0	2 0.032 ±	= 0.003 0.006 ±	= 0.002
VM	0.043	0.023	0.17	0.11	0.032	0.007	
	Rb	Sb	Hf	La	Th	Yb	Zn
A1	2.0 ± 0.2			0.02 ± 0.01			2.8 ± 0.2
A2		0.11 ± 0.03		0.34 ± 0.05			18 ± 1
A3	49 ± 4		0.20 ± 0.03	4.6 ± 0.2	0.26 ± 0.04		48 ± 3
A4	11 ± 1			1.2 ± 0.1			11 ± 1
A5	9.8 ± 0.7	0.02 ± 0.01		1.29 ± 0.05	0.12 ± 0.02	0.23 ± 0.04	11 ± 1
B1	49 ± 4	0.03 ± 0.01	0.06 ± 0.01	0.19 ± 0.02	0.16 ± 0.02		7.2 ± 0.5
B2	22 ± 1	0.11 ± 0.01	0.11 ± 0.03	5.0 ± 0.3	0.4 ± 0.04	0.21 ± 0.04	68 ± 3
B3	85 ± 4	0.25 ± 0.02	0.35 ± 0.03	2.5 ± 0.2	0.92 ± 0.08		14 ± 1
B4	31 ± 2	0.07 ± 0.02	0.77 ± 0.05	8.5 ± 0.5	0.92 ± 0.06	0.17 ± 0.04	31 ± 2
B5	4.8 ± 0.3			0.56 ± 0.03	0.05 ± 0.01		10 ± 1
C1	46 ± 2	0.02 ± 0.01	0.38 ± 0.02	2.9 ± 0.1	0.15 ± 0.02	0.07 ± 0.02	18 ± 1
Md	1.75 ± 0.2	0.09 ± 0.05	0.04 ± 0.01	0.62 ± 0.09	0.14 ± 0.04	0.08 ± 0.02	25 ± 5
VM	1.76	0.07		0.66	0.14	0.037	30.4

Blank indicates values not measured

Md, Mean value obtained in the measurement of standard reference material IAEA-336, n=4

VM, Certificated values for the standard reference material IAEA-336

Table 4 Elemental concentration in ng g^{-1} , or otherwise indicated (% or $\mu g g^{-1}$) (*), in the extract samples

	Br	Co	Cr	Cs	Fe*	K (%)	La
EA1	160 ± 10	18 ± 1			9.3 ± 0.6	0.6 ± 0.1	6 ± 1
EA2	320 ± 5	9 ± 1			5.3 ± 0.4	0.06 ± 0.01	5.2 ± 0.7
EA3	730 ± 20	28 ± 2	230 ± 20	24 ± 3	3.3 ± 0.5	0.30 ± 0.04	7.2 ± 0.5
EA4	510 ± 10	23 ± 1			3.5 ± 0.5	0.19 ± 0.03	2.9 ± 0.6
EA5	330 ± 10	49 ± 4	570 ± 30	17 ± 2	4.8 ± 0.4	0.6 ± 0.1	3.7 ± 0.5
EB1	61 ± 3	10 ± 1	410 ± 20	60 ± 4	4.4 ± 0.4	0.27 ± 0.06	3.7 ± 0.4
EB2	53 ± 4	44 ± 2	360 ± 20	30 ± 2	3.1 ± 0.3	0.6 ± 0.1	3.0 ± 0.4
EB3	230 ± 10	33 ± 3		3 ± 2	5.4 ± 0.4	0.22 ± 0.05	2.5 ± 0.4
EB4	400 ± 10	48 ± 2	300 ± 20	24 ± 2	6.3 ± 0.5	0.29 ± 0.06	4.3 ± 0.5
EB5	1.61 ± 10		37 ± 2	8 ± 2	4.0 ± 0.1	0.6 ± 0.1	11 ± 1
EC1	1.61 ± 10	260 ± 10	80 ± 20	6 ± 2	3.9 ± 0.6	0.6 ± 0.1	11 ± 1
	Na	Rb*	Sb	Sc	Sm	Zn*	
EA1	10.40 ± 0.02	1.5 ± 0.1	2.8 ± 0.4			7.2 ±	0.4
EA2	4.16 ± 0.01	0.63 ± 0.05	1.9 ± 0.3	0.33 ± 0.06)	$0.7 \pm$	0.1
EA3	3.34 ± 0.01	6.0 ± 0.4	1.8 ± 0.3	0.57 ± 0.09	0.34 ±	0.06 1.5 ±	: 0.1
EA4	7.10 ± 0.02	1.5 ± 0.1	1.7 ± 0.2		$0.7 \pm$	0.1 1.4 ±	0.1
EA5	7.60 ± 0.02	18.9 ± 0.7	5.9 ± 0.9	0.32 ± 0.07	1	2.2 ±	: 0.1
EB1	6.40 ± 0.01	6.9 ± 0.3	3.8 ± 0.5	0.50 ± 0.05	0.24 ±	0.08 0.74 ±	0.03
EB2	4.40 ± 0.01	9.9 ± 0.4	2.8 ± 0.5	0.43 ± 0.07	0.5 ±	0.1 1.8 ±	: 0.1
EB3	8.70 ± 0.02	1.15 ± 0.06	3.9 ± 0.8	0.27 ± 0.06	0.6 ±	0.2 0.56 ±	0.04
EB4	6.10 ± 0.02	4.9 ± 0.3	4 ± 1	0.67 ± 0.09)	$0.48 \pm$	0.03
EB5	6.30 ± 0.02	2.0 ± 0.1		0.4 ± 0.1		1.32 ±	0.06
EC1	6.30 ± 0.02	15.9 ± 0.7	0.40 ± 0.01		6.3 ±	0.2 1.57 ±	0.07

Blank indicates values not measured

Conclusions

The concentrations of major, minor and trace elements were determined in ten usual medicinal plants and in alcoholic extracts by INAA and total alpha and beta counting. The elemental concentrations varied in a wide range, both for bulk plant and extract. It can be highlighted the use of *Ginkgo biloba* and *Panax ginseng* as a source of iron; high Zn concentration in tea plant could be used for zinc deficiency. Only in tea plant, it was observed measurable amount of Se, an essential element. Also, the results showed that the day-by-day use of these plants could greatly contribute for the elemental needs of the body. Nevertheless, it must be noted that although a great part of the world population uses medicinal plants, their use should be accompanied by the assurance of their quality, efficacy and safety.

Acknowledgments This work was supported by "Fundação de Amparo à Pesquisa do Estado de São Paulo"—FAPESP, under fellowship contract 2006/06450-4, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, under grant 300835/ 95-7.

References

- Vaz, S.M.: M.Sc Thesis, IPEN—Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil (1995) (in Portuguese)
- 2. Caldas, E.D., Machado, L.L.: Food Chem. Toxicol. 42, 599 (2004)
- Naidu, G.R.K., Denschlag, H.O., Mauerhofer, E., Porte, N., Balaji, T.: Appl. Radiat. Isot. 50, 947 (1999)
- 4. Calixto, J.B.: Brazilian J. Med. Biol. 33, 179 (2000)
- Ferreira, M.O.M., Sato, I.M., Salvador, V.L.R. In: Proc. Congresso Metrologia-2003 – Metrologia para a Vida, Pernambuco, Brazil, 01–05 Sept 2003 (in Portuguese)
- WHO, World Health Organization: Monographs on Selected Medicinal Plants, vol. 1. WHO, Geneva (1999)
- Rajurkar, N.S., Pardeshi, B.M.: Appl. Radiat. Isot. 48, 1059 (1997)
- 8. Chen, C.Y., Pan, L.K.: Food Chem. 72, 255 (2001)
- Ferri, M.G.: Botânica Morfologia Externa das Plantas (Organografia), 8th edn, p. 149. Melhoramentos, São Paulo, Brasil (1971) (in Portuguese)
- Eichhorn, S.E., Evert, R.F., Raven, P.H.: Biologia Vegetal, 6th edn, p. 906. Guanabara Koogan, Rio de Janeiro (2001) (in Portuguese)
- 11. United States Pharmacopeial USP. 27: The United States Pharmacopeial Convention. USP (2004)
- 12. Moreira, S.R.D.: M.Sc Thesis, IPEN Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brasil (1993) (in Portuguese)

- 13. Oliveira, J.: M.Sc Thesis, IPEN Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brasil (1993) (in Portuguese)
- ANL—Argonne National Laboratory: Human Health Fact Sheet. ANL (2005)
- 15. Silva, P.S.C.: PhD Thesis, Instituto de Pesquisas Energética e Nucleares, São Paulo (2004), p. 266 (in Portuguese)
- Thunus, L., Lejeune, R.: In: Seiler, H.G., Sigel, A., Sigel, H. (eds.) Handbook on Metals in Clinical and Analytical Chemistry, p. 333. Marcel Dekker, New York (1994)
- 17. Azevedo, F.A., Chasin, A.A.M.: Metais: gerenciamento da toxicidade, p. 554. Atheneu, São Paulo (2003) (in Portuguese)