Preparação, via redução por borohidreto de sódio, e caracterização de eletrocatalisadores PtLa/C para eletro-oxidação direta de etanol em células a combustível alcalinas

Vanessa Coja Fernandes, Christina Aparecida Leão Guedes de Oliveira Forbicini Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP

INTRODUÇÃO

As células a combustível são dispositivos que convertem a energia química de um combustível (hidrogênio, metanol, etanol, etileno glicol etc.) e um oxidante (O_2) em energia elétrica e calor. Dentre os principais tipos de células a combustível, as células AFC (células a combustível alcalinas) apresentam características versáteis, que tornam seu uso viável tanto para geração estacionária de energia elétrica, aplicações portáteis e aplicações móveis [1,3,4]

As células a combustível alcalinas utilizam uma solução de hidróxido de potássio como eletrolíto e a sua operação ocorre em uma faixa de temperatura de 40-120 °C, apresentando melhor desempenho no cátodo se comparado as células no meio acido, já que a redução do oxigênio é mais favorável cineticamente.

As terras raras [5] têm se mostrado bons cocatalisadores para aplicação em células a combustível, confirmados em estudos anteriores [6]

OBJETIVO

Preparar eletrocatalisadores binários PtLa pelo método de redução por borohidreto suportado em carbono de alta área superficial, com diferentes composições atômicas, para aplicação na oxidação eletroquímica de etanol em célula a combustível alcalina.

METODOLOGIA

Os eletrocatalisadores foram obtidos pelo método de redução via borohidreto, sintetizados em diferentes proporções: Pt/C, La/C, PtLa/C 90:10, PtLa/C 70:30 e PtLa/C 50:50.

As caracterizações eletroquímicas foram realizadas em um potenciostato/galvanostato PGSTAT 30 da AUTOLAB utilizando uma célula eletroquímica com três eletrodos: (a) de trabalho, contendo o eletrocatalisador em camada fina porosa, (b) auxiliar de placa de platina e (c) de referência de Ag/AgCl e solução KOH 1 mol.L⁻¹.

RESULTADOS

Na figura 1 o eletrocatalisador PtLa/C 90:10 apresentou melhor desempenho em relação às outras proporções atômicas para a reação de oxidação do etanol, pois ocorre em potenciais mais baixos que os demais.

Na figura 2 tem-se a cronoamperometria utilizando os eletrocatalisadores preparados realizada em meio etanol 1 mol.L⁻¹, verificando-se o melhor desempenho no eletrocatalisador PtLa/C 90:10.

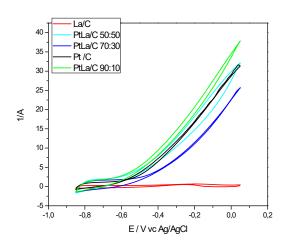


Figura 1 Voltamogramas cíclicos dos eletrocatalisadores PtLa/C (90:10) PtLa/C (70:30) PtLa/C (50:50) La/C e Pt em solução de etanol e KOH 1 mol L-1

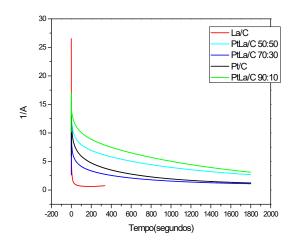


Figura 2 Cronoamperometria em meio etanol e KOH 1 mol.L⁻¹ em potencial de-0,35 V dos eletrocatalisadores em diferentes proporções.

CONCLUSÕES

O catalisador La/C não mostrou qualquer atividade em relação aos experimentos de voltametria cíclica e cronoamperometria. No entanto quando o La é adicionado à Pt verifica-se uma melhora no desempenho

dos eletrocatalisadores em relação ao eletrocatalisador Pt/C, principalmente nas proporções PtLa/C 50:50 e PtLa/C 90:10 sendo que este último apresentou os melhores resultados em ambos os estudos. Desta forma conclui-se que o La se apresenta promissor com cocatalisador.

REFERÊNCIAS BIBLIOGRÁFICAS

[1]SANTORO, T. Preparação e caracterização de eletrocatalisadores Ptterras raras/C para células a combustível do tipo PEMFC. 2009. 125 p. Tese (Doutorado), Instituto de Pesquisas Energéticas e Nucleares, São Paulo. 2009.

[2]D. LINDEN, *Handbook of Batteries and Fuel Cells*. McGraw-Hill Book Company, New York, 1984.

[3]H. WENDT, B. ROHLAND. Electricity generation by fuel cells. *Kerntechnik* 56, n. 3, p. 161-166, 1991.

[4]Wendt, H.; Götz, M. e Linardi, M. Tecnologia de Células a Combustível. *Química Nova*, v.23, n 4, p. 538-546, 2000.

[5]Abrão, A. *Química e Tecnologia das terras raras*. Série Tecnologia Mineral, 66, 212 p., Rio de Janeiro, CETEM/CNPq, 1994.

[6]Gomes, T. B. Estudo da reação de redução do oxigênio utilizando eletrocatalisadores à base de platina e terras raras (La, Ce, Er) para aplicação em células a combustível tipo PEM. 2013, 77 p. Dissertação (Mestrado), Instituto de Pesquisas Energéticas e Nucleares, São Paulo, 2013.

APOIO FINANCEIRO AO PROJETO

PIBIC -CNPQ