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Abstract Electron beam irradiation (EBI) has been consid-
ered an advanced technology for the treatment of water and
wastewater, whereas very few previous investigations report-
ed its use for removing pharmaceutical pollutants. In this
study, the degradation of fluoxetine (FLX), an antidepressant
marketed as Prozac®, was investigated by using EBI at FLX
initial concentration of 19.4±0.2 mg L−1. More than 90 %
FLX degradation was achieved at 0.5 kGy, with FLX below
the detection limit (0.012 mg L−1) at doses higher than
2.5 kGy. The elucidation of organic byproducts performed
using direct injection mass spectrometry, along with the re-
sults of ion chromatography, indicated hydroxylation of FLX
molecules with release of fluoride and nitrate anions.

Nevertheless, about 80 % of the total organic carbon concen-
tration remained even for 7.5 kGy or higher doses. The de-
creases in acute toxicity achieved 86.8 and 9.6 % forDaphnia
similis and Vibrio fischeri after EBI exposure at 5 kGy, respec-
tively. These results suggest that EBI could be an alternative to
eliminate FLX and to decrease residual toxicity from waste-
water generated in pharmaceutical formulation facilities, al-
though further investigation is needed for correlating the
FLX degradation mechanism with the toxicity results.
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Introduction

The presence of pharmaceutical compounds in aquatic envi-
ronments even at relatively low concentrations (ng L−1 to μg
L−1) represents an emerging environmental issue. Many stud-
ies have shown that most of these contaminants are not
completely degraded in sewage and wastewater treatment
plants (WWTPs) and then may reach surface water (Segura
et al. 2013). Discharges of untreated residues from livestock
and land application of biosolids from WWTPs are also con-
sidered contamination sources (Wu et al. 2010). Moreover,
concentrations up to mg L−1 have been reported for effluents
from pharmaceutical formulation facilities and drug manufac-
tures (Larsson et al. 2007; Lester et al. 2013).

The variety of pharmaceutical pollutants includes fluoxe-
tine (FLX), a selective serotonin reuptake inhibitor (SSRI)
known as Prozac®, used for treating depression and
obsessive-compulsive disorders. This drug has been detected
in surface waters in the USA and Canada at 0.012 and 0.013–
0.046 μg L−1, respectively (Kolpin et al. 2002; Metcalfe et al.
2003); in sewage treatment plant effluents at 0.038–
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0.099 μg L−1 in Canada (Metcalfe et al. 2003; Hua et al.
2006), 0.0017 μg L−1 in South Korea (Kim et al. 2007), and
0.0006–0.0187 μg L−1 in sewage in Norway (Vasskog et al.
2008); in wastewater at 0.021 μg L−1 (USA) (Glassmeyer
et al. 2005) and wastewater treatment plants effluents at
0.020–0.091 μg L−1 (Canada) (Metcalfe et al. 2010); in bio-
solids and sediments (USA) at 37.4 and 1.84 μg kg−1, respec-
tively (Furlong et al. 2004), and in solids obtained after clar-
ification (49.5 μg kg−1) and sand/GAC filtration
(58.6 μg kg−1) processes in a drinking water treatment plant
in the USA (Stackelberg et al. 2007). FLX has also been found
in drinking water (<0.014 μg L−1) (USA) (Stackelberg et al.
2007). Based on a database derived from French and
international journals, Deblonde et al. (2011) reported average
influent and effluent FLX concentrations in WWTPs of 5.85
and 0.11 μg L−1, respectively; however, the corresponding
removal (98.1 %) is most likely due to adsorption onto bio-
solids (Méndez-Arriaga et al. 2011; Lajeunesse et al. 2012). In
fact, FLX is not expected to biodegrade rapidly as shown by
different authors (Kwon and Armbrust 2006; Redshaw et al.
2008; Méndez-Arriaga et al. 2011).

FLX has a half-life of about 7 days in pure water exposed to
natural sunlight (Lam et al. 2005) and has been reported as toxic
at low concentrations to several aquatic organisms and also as a
potential endocrine disruptor (Brooks et al. 2003). The drug has
been found in muscle tissues, liver, and brain of fishes collected
downstream of effluent discharges (Brooks et al. 2005) and can
induce spawning in some crustaceans and bivalves species
(Fong 1998). Long-term persistence and bioaccumulation of
FLX were reported for Oryzias latipes fishes (Nakamura et al.
2008) and bull sharks (Carcharhinus leucas) (Gelsleichter and
Szabo 2013). Gaworecki and Klaine (2008) evidenced that the
ability of the hybrid fish species striped bass (Morone
saxatilis×Morone chrysops) to capture prey decreased after a
6-day exposure to FLX (23.2-100.9μg L−1). Another important
issue is the ability of FLX to readily react with hypochlorite in
pure water and in wastewater, forming the active chloramineN-
chlorofluoxetine, which shows increased hydrophobicity and
tendency to adsorb on sediments, soils, and biological mem-
branes (Bedner and MacCrehan 2006). These and other evi-
dences contributed to the recent inclusion of FLX in a list of
10 pharmaceuticals potentially dangerous for the environment
(Santos et al. 2013).

Limitations of primary and secondary processes in
WWTPs to eliminate pharmaceuticals have boosted the
development of alternative treatment strategies. Li et al.
(2012) studied the degradation of different pharmaceuticals
and personal care products (PPCPs) by the Fenton process
and found that FLX (at an initial concentration of 1 μg L−1)
was completely degraded within 30 minutes with H2O2/Fe
(II) = 0.5 (mol/mol). Méndez-Arriaga et al. (2011) studied
FLX degradation by UV-irradiated and non-irradiated oxida-
tion processes (TiO2, O3, O3+H2O2, TiO2+O3, and TiO2+

O3+H2O2). The authors found that the TiO2/UV process re-
sulted in complete depletion of FLX (initially at 34 mg L−1)
and 50 % mineralization within 60 min; the latter could be
increased to more than 70 % by adding H2O2. Ozonation
alone resulted in FLX removal within 10 min, while 97 %
mineralization was achieved within 60 min by the O3 +
H2O2/UV process. By contrast, Uslu et al. (2012) obtained
only 58 % FLX removal from Lake Huron water using the
O3/H2O2 treatment. Finally, Serna-Galvis et al. (2015) inves-
tigated FLX degradation by sonochemical degradation
coupled to biological treatment. The authors showed that
FLX could not be removed by microorganisms, even after
5 days under favorable conditions of pH (7.0) and temperature
(37 °C). The sonochemical treatment (600 kHz, 60W) readily
eliminated FLX, with only 15 % mineralization after 360 min
of sonication. After this previous treatment, 70 % of the initial
TOC was removed in the biological system.

These processes have found, however, limited full-scale
application owing to the need of addition of different
chemicals, strict pH ranges, and sludge generation (in the case
of Fenton and photo-Fenton reactions) and mainly to the dif-
ficulty in treating water and wastewater at high flow rates
(Parsons 2004).

Among alternative advanced treatment techniques, electron
beam irradiation (EBI) is based on water radiolysis, a process
able to generate hydroxyl radicals (HO·), hydrogen atoms (H·
), electronically excited species, ionized molecules, and aque-
ous electrons (e−aq). These species promote oxidation, reduc-
tion, dissociation, or degradation of organic pollutants
(Cooper et al. 2004). The efficacy of electron beam accelera-
tors for degrading pollutants of various chemical natures, e.g.,
4-chlorophenol (Yang et al. 2007), atrazine (Xu et al. 2015),
and textile dyes (Han et al. 2012), as well as for removing
residual toxicity from water containing surfactants
(Romanelli et al. 2004) and from effluents of municipal and
industrial wastewater treatment plants (Borrely et al. 2004)
has been evidenced. Han et al. (2012) shortly describe an
industrial plant with an electron beam accelerator of 1 MeV
and 400 kW, for treating 10,000 m3 of textile dyeing waste-
water per day (Daegu Dyeing Industrial Complex, South
Korea). According to the authors, the EBI treatment at around
1 kGy improves the biodegradability of the treated effluent,
therefore decreasing the retention time in the combined bio-
logical treatment process; the treatment cost of the EBI system
was about USD 0.3 per cubic meter of wastewater.

In the case of pharmaceuticals, Homlok et al. (2011) dem-
onstrated the elimination of diclofenac from water, at initial
concentrations of 0.1–1.0 mmol L−1 using 60Co gamma-
irradiation at a dose of 1 kGy; partial mineralization of trans-
formation byproducts and expressive decrease in toxicity were
achieved at 5–10 times higher doses. Based on the electric
energy in kWh required to degrade a contaminant by one order
of magnitude in a unit volume (EE/O), Kim et al. (2012) found
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EBI to be energetically effective for the removal of sulfameth-
oxazole and chlortetracycline in comparison with ozone and
UV (254 nm)-based processes, with 88.6 and 100 % antibiotic
removals, respectively, at 1 kGy. The toxicity indicator used
by the authors (50 % cell growth inhibition concentration for
the green algae Pseudokirchneriella subcapitata) for both an-
tibiotics increased with increasing dose in the range 0–5 kGy.
Despite these positive results, the use of electron beam irradi-
ation technologies for treating water and wastewater contain-
ing pharmaceutical compounds has not yet been extensively
studied.

In this study, we investigated the use of an electron beam
accelerator for degrading FLX (Prozac®) in aqueous solution.
To our knowledge, this is the first study to report experimental
results on the use of EBI for this purpose, exploring the radi-
ation dose needed to remove the target pollutant and to de-
crease acute toxicity. Moreover, the elucidation of transforma-
tion byproducts is discussed and the pathway of FLX degra-
dation by EBI is proposed.

Experimental

Chemicals

Fluoxetine hydrochloride [C17H18F3NO·HCl, methyl[(3S)-3-
phenyl-3-[4-(trifluoromethyl)phenoxy]propyl]amine] (CAS
54910-89-3) (Divis Pharmaceuticals Pvt. Ltd., 98.8 %) was used
as a standard in chromatographic analysis and in all the experi-
ments. Acetonitrile and acetic acid (HPLC grade) were pur-
chased from Sigma-Aldrich. All the solutions used in EBI exper-
iments were prepared using ultra-pure water (Millipore Milli-Q).

Irradiation procedure

In all experiments, electron beam irradiation (EBI) was per-
formed using a Dynamitron® Electron Beam Accelerator at
37.5 kW and 1.4 MeV. Radiation doses ranged from 0.5 to
7.5 kGy; some irradiations were also performed at 20 kGy.
Doses were measured using a Perspex Harwell Red, Batch
KZ-4034 dosimeter, with less than 5 % variation. Aqueous
solutions (246 mL) containing FLX ([FLX]0 = 19.4
±0.2 mg L−1) were placed in rectangular glass recipients and
irradiated in batch, with a maximum exposed liquid depth of
about 4 mm; these recipients were submitted to the electron
beam at 6.72 m min−1. An additional EBI experiment was
performed using a FLX aqueous solution at the same initial
concentration, which was diluted in raw domestic sewage
(50 % v/v). All the experiments were performed at room tem-
perature and initial pH 6, at which the FLX molecule is in its
protonated form (FLX −H+) (pKa = 10.1, Bedner and
MacCrehan 2006). Diluted NaOH or HCl solutions were used
to adjust pH to the initial value; pH was not corrected over

reaction time. Standard deviations were calculated from two
replicates of each experiment.

Analytical methods

Ultra-fast liquid chromatography

FLX concentrations were determined by ultra-fast liquid chro-
matography (UFLC) using a Shimadzu equipment (LC
20AD), with a fluorescence detector (RF-10Axl) and a C18

column (Kinetex Phenomenex, 150 mm×4.6 mm, 5 μm).
The oven temperature was 40 °C. The eluents were (A) acetic
acid 1 % and (B) acetonitrile at 70:30 ratio and 1.00 mLmin−1

flow rate; isocratic analysis was used. For fluorescence anal-
ysis, the wavelengths for excitation and emission of FLXwere
230 and 290 nm, respectively. In these conditions, the reten-
tion time of FLX was 5 min. Calibration was carried out using
external standards prepared with known concentrations of
FLX. Two calibration curves were used depending on the
concentration range: curve 1 (R2 =0.999; DL=0.53 mg L−1;
QL = 1 . 6 1 mg L − 1 ) a n d c u r v e 2 (R 2 = 0 . 9 9 8 ;
DL=0.012 mg L−1; QL=0.035 mg L−1), where DL and QL
refer to detection and quantification limits, respectively. The
corresponding sample injection volumes were 7.0 and 50 μL,
respectively.

Total organic carbon

Total organic carbon (TOC) of selected samples was measured
using the Shimadzu TOC-5000A equipment.

Ion chromatography

Concentrations of inorganic ions (F−, NO3
−, NH4

+) were
determined at room temperature by ion chromatography
(IC) using a Metrohm equipment (model 851) with an
electrical conductivity detector. Analytical conditions for
anion determination were as follows: Metrosep A-Supp 5-
Metrohm anion column (250 × 4 mm), eluent solution
(4.0 mmol L−1 Na2CO3/1.0 mmol L−1 NaHCO3), flow
of 0.7 mL min−1, suppressor column (Metrohm), and re-
generative solution (50 mmol L−1 H2SO4). For cations,
the analytical conditions were: Metrosep C2-150-
Metrohm cation column (150 × 4 mm), eluent solution
(4 mmol L−1 tartaric acid/0.75 mmol L−1 dipicolinic acid),
flow of 1.0 mL min−1, and an electronic suppression sys-
tem (Metrohm). Analytical quantification was performed
using an external calibration curve obtained with standard
solutions. The detection limits were below 1.0 μmol L−1

for F−, NO3
−, and NH4

+ ions.
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Toxicity assays

Acute toxicity assays were performed with the crustacean
Daphnia similis and luminescent bacteriaVibrio fischeri. In both
cases, the assays were carried in triplicate according to the
ABNT Brazilian standards (ABNT 2009, 2012). Immobility
of D. similis after 48 was the end point measured for this assay
(ABNT 2009). Daphnids were cultivated in laboratory, and the
organisms were exposed to several dilutions of irradiated and
non-irradiated FLX solutions for 48 h. V. fischeri biolumines-
cence was measured using a Microbics 500® photometer, and
four sample dilutions were measured after a 15-min exposure
time. FLX concentrations of non-irradiated solutions used in
assays performed with D. similis and V. fischeri were 10 and
5 mg L−1, respectively; in both cases, the pH of irradiated solu-
tions was previously corrected to 7.0. The EC50 values were
calculated using standard statistical procedures; standard devia-
tions were calculated from three replicates of the measurements
carried out for each toxicity assay.

Identification of degradation products

Organic byproducts generated from FLX degradation by EBI
at 1 kGy were identified by direct injection mass spectrometry
(UHR-QqTOF, Ultra-High Resolution Qq-Time-of-Flight,
impact II, Bruker Daltonics). The time-of-flight mass spectra
were obtained in positive electrospray (+ESI) mode in the
range m/z 50–1300 at the following optimized operating con-
ditions: nebulizer 3.0 bar, dry gas 8.0 L min−1, dry heater
220 °C, and capillary 4500 V.

Results and discussion

Fluoxetine degradation by EBI

Control experiments in the dark, at room temperature, showed
negligible fluoxetine (FLX) hydrolysis at pH 6 (data not
shown), in line with previous studies (Lam et al. 2005;
Méndez-Arriaga et al. 2011). The evolution of FLX concen-
tration, TOC, pH, and solution conductivity with dose are
shown in Fig. 1. More than 90 % FLX degradation was
achieved at only 0.5 kGy, whilst FLX concentrations below
the detection limit (DL=0.012 mg L−1, analytical curve 2)
were obtained at 2.5 kGy or higher. The reaction of FLX
molecules with HO·, H·, or e−aq is a bimolecular process, with
the overall rate depending on the contaminant and radical
concentrations. The product of the radical species concentra-
tion and the respective second-order rate constant corresponds
to a pseudo first-order rate constant (k0), which can be
expressed with respect to absorbed radiation dose rather than
time (Cooper et al. 2004).

For doses lower than 1 kGy, a value of k0 = 5.74 kGy−1

can be obtained using the first three data points in a graph
of ln([FLX]/[FLX]0) vs. dose, with R2 = 0.910. From this
k0 value, the doses required to achieve 50, 90, and 99 %
FLX removals from water can be estimated as 0.12, 0.40,
and 0.80 kGy, respectively, which is important informa-
tion in the application of EBI-driven treatment processes
(Cooper et al. 2004).

These results can be compared with those obtained by
Westerhoff et al. (2005) and Snyder et al. (2006), who also
reported FLX removals higher than 90 % during ozonation
and advanced oxidation. The substantially lower removal
(58 %) obtained by Uslu et al. (2012) during O3/H2O2 treat-
ment of contaminated lake water (pH ∼8) can be attributed to
the different conditions at which the authors performed their
experimental runs (e.g., different dosages and/or reaction
times). Furthermore, according to Uslu et al. (2012), adsorp-
tion of positively charged FLX molecules onto negatively
charged colloidal particles might limit the effectiveness of
oxidation processes in real water and wastewater matrices.

Figure 1b shows a decrease in the solution pH from 6
to about 4.2 at 7.5 kGy, which is associated with the
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Fig. 1 (a) Fluoxetine and TOC concentrations vs. dose using electron
beam irradiation (EBI): (diamond) [FLX]; (square) TOC. (b) Solution pH
and conductivity vs. dose: (triangle) pH; (circle) conductivity. Initial FLX
concentration: [FLX]0 = 19.4 ± 0.2 mg L−1; initial TOC concentration:
TOC0 = 12.8 ± 0.1 mg C L−1; initial pH: 6

11930 Environ Sci Pollut Res (2016) 23:11927–11936



formation of acidic transformation products; the pH after
irradiating the solution at 20 kGy was about 3.8. These
trends are also associated with the increase in the oxygen-
to-carbon ratio in the degradation products, as well as the
conversion of carbon bound fluorine and nitrogen to inor-
ganic ions (Homlok et al. 2011). Opening of the hydrox-
ylated aromatic ring formed upon the addition of the HO·
radical and formation of low molecular weight organic
compounds, including organic acidic species, are common
steps during degradation of contaminants containing aro-
matic groups (Guo et al. 2012; Batista et al. 2014).

The decrease in pH with increasing dose has been pre-
viously reported for treating dye-contaminated wastewater
exposed to electron beam (Vahdat et al . 2010).
Furthermore, as detailed later, Lam and co-workers
(2005) reported that under Xe lamp radiation FLX photo-
lyzed to O-dealkylated and potentially to carboxylic acid
photoproducts. As discussed by Garrido et al. (2009)) and
Méndez-Arriaga et al. (2011), oxidation at the secondary
amine and substituted aromatic ring forms unstable cation
radicals, leading to FLX dimers; hydroxylation of the phe-
nyl rings constitute the main pathway to aliphatic acids
and inorganic species.

Figure 1b also shows that solution conductivity increased
from 8.8 to 26.2 μS cm−1 with increasing dose
(29.2 μS cm−1 at 20 kGy), in close relationship with the
increased concentration of dissolved ions. In fact, Fig. 2a
shows a significant increase in the concentration of fluoride
anions in the solution with doses up to 2.5 kGy, at which
[F−] achieved 59.7 μmol L−1, and then increased slowly to
about 66 μmol L−1 at 7.5 kGy. This value indicates that
about 30 % of the expected stoichiometric amount of fluo-
rine initially present in FLX molecules was released to the
solution as fluoride anions, even after the complete degrada-
tion of the target antidepressant ([FLX] below the detection
limit of the chromatographic method, i.e., 0.012 mg L−1). In
other words, the results suggest the existence of recalcitrant
fluorinated organic intermediates in the solution despite the
dose. These findings are in agreement with Méndez-Arriaga
et al. (2011), who identified the formation of defluorinated
quinonoid-type species associated with the detachment of
1/3 of the fluorine atoms from FLX molecules through dif-
ferent oxidation processes (TiO2-mediated photocatalysis,
ozonation, and O3/H2O2). In the case of ozonation and
O3/H2O2 processes, the authors observed that the formation
of F− ions increased at first and subsequently decreased,
which was associated to re-fluorination of intermediate spe-
cies at longer treatment times. Different reaction mecha-
nisms were proposed for direct and indirect photolysis
(Lam et al. 2005; Méndez-Arriaga et al. 2011). In our study,
irradiations performed at higher doses up to 20 kGy indicat-
ed that F− concentration did not show any decrease with
increasing dose (results not shown).

Proposed degradation pathway of FLX degradation
by EBI

The identification of organic byproducts from FLX degrada-
tion was performed by direct injection experiments using
UHR-QqTOF mass spectrometry. The mass assigned to the
[M+H]+ ions of the analytes, in each acquired mass spectrum,
was treated as an independent measurement. The elucidation
of some peaks in the mass spectrum is shown in Fig. 3; the
other peaks remain undefined. A possible degradation path-
way of FLX degradation by EBI is proposed (Fig. 4).

The electrophilic addition of hydroxyl radicals to aro-
matics ring systems constitutes an important route of HO·
radical attack on organic pollutants (Batista et al. 2014).
FLX molecules ([M+H]+ at m/z 310.1587, C17H18F3NO)
undergo electrophilic addition of hydroxyl radicals to the ar-
omatic rings, which constitute the initial step that leads to
compound P1 wi t h [M + H]+ a t m/ z 326 . 1547
(C17H18F3NO2) (Lam et al. 2005). The C–O bond cleavage
of compound P1 leads to product P2 [2-(methylamino) ethyl
benzyl alcohol] ([M+H]+ at m/z 166.1315, C10H15NO) and
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Fig. 2 (a) Fluoride concentration (diamond) and (b) nitrate (circle) and
ammonium (triangle) concentrations for electron beam-irradiated
samples at different doses. Initial FLX concentration: [FLX]0 = 19.4
± 0.2 mg L−1; initial pH: 6
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to the difluoroquinonoid species P3 [4-(difluoromethylene)-2,
5-cyclohexadiene-1-one] ([M + H]+ at m/z 143.0090,
C7H4F2O). Further hydroxylation of compound P2 leads to
compounds P8 ([M+H]+ at m/z 182.1273, C10H15NO2) and

P9 ([M+H]+ at m/z 198.1233, C10H15NO3). The highest in-
tensity peaks corresponding to compounds P1, P2, and P8
pe rmi t t ed to ob ta in the i r MS-MS spec t r a ( see
Supplementary Information, Fig. S1).

Fig. 3 Time-of-flight mass spectrum obtained after FLX degradation by EBI at 1.0 kGy

[M+H]+ at m/z 310.1587

C17H18F3NO

Fluoxetine (FLX)

[M+H]+ at m/z 326.1547

C17H18F3NO2

Compound P1

[M+H]+ at m/z 342.1507

C17H18F3NO3

Compound P4

[M+H]+ at m/z 358.1467

C17H18F3NO4

Compound P5[M+H]+ at m/z 182.1273

C10H15NO2

Compound P8

[M+H]+ at m/z 166.1315

C10H15NO

Compound P2

[M+H]+ at m/z 143.0090

C7H4F2O

Compound P3

Fig. 4 Proposed degradation pathway of FLX degradation by EBI

11932 Environ Sci Pollut Res (2016) 23:11927–11936



Degradation products P2 and P3 had previously been iden-
tified during both direct and indirect photolysis of FLX by
Lam et al. (2005)), who explained their formation by the O-
dealkylation of FLX molecules. Following the pathway ratio-
nalized by the authors, the HO· radical (in our case generated
from water radiolysis under EBI) adds to the ring with the
−CF3 group to give a hydroxycylohexadienyl radical, which
is converted into a phenoxyl radical and product P2. The
phenoxyl radical is subsequently protonated and the resulting
phenolic species hydrolyzes instantaneously to release a fluo-
ride anion, giving product P3 (Lam et al. 2005).

Méndez-Arriaga et al. (2011) identified product P2 during
the degradation of FLX by the UV/TiO2 process in aqueous
alkalinemedium. As observed by the authors, the formation of
poly-hydroxylated species is expected during FLX degrada-
tion. In fact, in our study, further hydroxylation of compound
P1 led to compounds P4, P5, P6, and P7 identified by UHR-
QqTOF mass spectrometry, with [M+H]+ at m/z 342.1507
(C17H18F3NO3), 358.1467 (C17H18F3NO4), 376.1583
(C17H20F3NO5), and 392.1543 (C17H20F3NO6), respectively.

Lam et al. (2005) argue that the amount of fluoride
anions found in solut ion is expected to be 1:1
fluoride:FLX. In fact, the identification of compound
P3 with [M+H]+ at m/z 143.0090 and the dose-history
of fluoride concentration in Fig. 2a supports this mecha-
nism. Contrasting with the experimental observations of
Lam et al. (2005) during FLX photodegradation, our re-
sults suggest that the hydrolysis of the trifluoromethyl
group to a carboxylic acid, with release of three fluoride
ions is not expected to occur to an important extent un-
der EBI, regardless of dose used. Furthermore, the well-
known dehalogenation reaction of compounds driven by
aqueous electrons (e−aq), initiated by dissociative elec-
tron attachment (Cooper et al. 2004) to the −CF3 group
could also contribute to the loss of a fluoride ion.
However, reducing e−aq are easily scavenged by H3O

+

ions in acidic solutions and by oxygen as well, becoming
less available for reaction with FLX molecules in com-
parison with HO· radicals.

Figure 2b reveals that nitrate anions concentration was
below the detection limit up to 0.5 kGy and then from
2.5 kGy increased with increasing dose, achieving
4.3 μmol L−1 at 7.5 kGy. The concentration of ammonium
ions was also below the detection limit up to 1 kGy and
then increased gradually to about 1 μmol L−1 for 7.5 kGy;
at this dose, NO3

− and NH4
+ concentrations summed up,

representing about 8.5 % of the nitrogen atoms initially
existing in FLX molecules. These results suggest that the
amine functional group on FLX molecules was poorly
mineralized and nitrogen-containing organic substances
remained in solution. These results are in agreement with
the UHR-QqTOF mass spectrometry measurements and
with the FLX degradation pathway we propose.

TOC measurements shown in Fig. 1a reveal incomplete
FLX mineralization, with only 16.4 % TOC removal at
7.5 kGy, which is related to the formation of recalcitrant or-
ganic byproducts; mineralization was very limited even at
higher doses, e.g., 22.2 % at 20 kGy. Incomplete TOC remov-
al during electron beam irradiation was also previously report-
ed for dye molecules in aqueous solution (Abdou et al. 2011;
Paul et al. 2011). Homlok et al. (2011) obtained about 30 and
50 % TOC removals at 5 and 20 kGy, respectively, during
diclofenac degradation using irradiation technology. By con-
trast, Méndez-Arriaga et al. (2011) obtained ca. 60–80% FLX
mineralization after 60 min of UV irradiation at different TiO2

concentrations at pH 11; at pH 5, however, TOC removal was
similar to the result we obtained (ca. 20 %). In the present
investigation, the UFLC analysis showed the disappearance
of FLX (retention time=5 min), which is converted into or-
ganic byproducts with lower retention times (1, 1.3, 1.75, 3.7,
and 4.3 min) (see Supplementary Information, Fig. S2). For
doses higher than 2.5 kGy, however, the concentration of
byproducts was below the detection limit of the chromato-
graphic method, probably owing to the formation of very
low or non-fluorescent compounds.

Toxicity measurements

Before irradiation, the acute toxicities of FLX-containing so-
lutions, given by the average effect concentrations that
immobilized 50 % of exposed living organisms (EC50%),
were 13.2 ± 0.9 % for D. similis and 24.6 ± 1.7 % for
V. fischeri, which correspond to EC50=1.32±0.10 mg L−1

and 1.23±0.08 mg L−1, respectively; FLX was slightly more
toxic toV. fischeri. Kwon and Armbrust (2006) reported EC50
values for FLX in the range 0.23–0.51 mg L−1 to neonate
Ceriodaphnia dubia, the second highest toxicity among dif-
ferent selective serotonin reuptake inhibitors (SSRI); Brooks
et al. (2003) mentioned EC50 values of 0.82 and 0.234mgL−1

for Daphnia magna and C. dubia, respectively, for
reconstituted hard water-containing FLX. Stanley et al.
(2007) measured immobilization and reproduction LOEC
(lowest observed effect concentrations) values for the 21-day
chronic D. magna exposure to R-FLX (0.429 mg L−1), rac-
FLX (0.430 mg L−1), and S-FLX (0.444 mg L−1). Boström
and Berglund (2015) found EC50 values for FLX toD.magna
(48 h immobilization tests) of 27 mg L−1 (9.2–87), 4.6 (2.6–
8.2), and 0.75 (0.44–1.3) at pH 6.0, 7.5, and 9.0, respectively
(90 % confidence intervals in parentheses). Data on the toxic-
ity of FLX to V. fischeri for aqueous samples have not been
previously published for comparison.

Figure 5 shows the apparent acute toxicity (in toxic units,
TU=100/EC50%) of samples irradiated at 5 and 20 kGy in
comparison with non-irradiated samples. These results sug-
gest that the organic byproducts formed following the hy-
droxylation of FLX molecules, which are associated with the
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remaining TOC, do not increase the acute toxicity to
D. similis and V. fischeri. The toxicity removal after EBI
exposure at 5 kGy was higher for D. similis than for
V. fischeri, with 86.8 and 9.6 % decreases in toxicity units
(TU), respectively. The parent antidepressant seems to be the
main responsible to induce toxic effects on D. similis, with a
large decrease in TU following the removal of FLX below
the detection limit at 5 kGy, despite the corresponding TOC
removal of only 12.5 %. In contrast, the small decreases in
TU values following irradiation at 5 kGy (9.6 %) and
20 kGy (26.8 %) suggest that the transformation by-
products are toxic to V. fischeri.

Nine degradation byproducts from EBI-driven FLX degra-
dation were elucidated using mass spectrometry, as discussed
in Section 3.2. Further investigation is required to correlate
these compounds with the toxicity bio-assays results.

Finally, EBI at a dose of 5 kGy was applied to an aqueous
solution of FLX diluted 50 % v/v in raw domestic sewage (to
give the same FLX concentration of undiluted solutions),
resulting in 80.0 and 22.2 % decreases in acute toxicity for
D. similis and V. fischeri, respectively. This suggests that the
performance of EBI for toxicity removal seems not to depend
on the characteristics of the water matrix under treatment.

Conclusions

The results obtained in this study demonstrate the feasibility of
electron beam irradiation (EBI) to remove the antidepressant
fluoxetine (FLX) (Prozac®) from water, with more than 90 %
FLX removed at 0.5 kGy and virtually complete removal at
doses higher than 2.5 kGy (with [FLX] below the detection
limit of the chromatographic method, i.e., 0.012 mg L−1).
Complete mineralization was not observed even at 20 kGy,
with only 22.2 % TOC removal. The decreases in acute tox-
icity achieved 86.8 and 9.6 % for D. similis and V. fischeri
after EBI exposure at 5 kGy, respectively. This is a good
indicator of the ability of EBI regarding the removal of resid-
ual toxicity from wastewaters containing FLX. It is worth
noting that the parent antidepressant seems to be the main
responsible to induce toxic effects onD. similis, while toxicity
of the transformation byproducts is expected for V. fischeri.

Nine transformation products were elucidated during
EBI-driven FLX degradation using direct injection mass
spectrometry. Our proposed degradation pathway in-
cludes the electrophilic addition of hydroxyl radicals
generated from water radiolysis under EBI to the aro-
matic groups, further hydroxylation of ring systems, and
also release of fluoride anions. About one third of the
carbon bound fluorine atoms originally present in FLX
molecules were released to the solution as F− ions for
doses higher than 1 kGy. In contrast, the total amount
of NO3

− and NH4
+ ions formed indicate the mineraliza-

tion of only 8.5 % of the carbon-bound nitrogen atoms,
at a dose of 7.5 kGy.

The experimental results provided information on accurate
masses and might be included in future studies devoted to the
elucidation of byproducts generated from FLX degradation.
Nevertheless, further detailed mass spectrometry studies are
needed to correlate the proposed FLX degradation mechanism
with toxicity measurements. In conclusion, our results suggest
that EBI could be an alternative to eliminate FLX and to de-
crease residual toxicity from wastewater generated in pharma-
ceutical formulation facilities, although energy consumption
and cost per treated cubic meter should be considered.
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