

XXII INTERNATIONAL CONGRESS ON GLASS BAHIA - BRAZIL September 20-25, 2010

Poster Presentations Wednesday, Sept. 22

0201 | The nucleation of silver nanoparticles In Tm^{3 +} doped germanate glasses

Thiago A. A. Assumpção^{1*}, Davinson M. da Silva¹, Luciana R. P. Kassab², Anderson S. L. Gomes³, Cid B. de Araújo³, Nikluas U. Wetter⁴

 ¹Escola Politécnica da Universidade de São Paulo – EPUSP, São Paulo-SP
²Faculdade de Tecnologia de São Paulo – FATEC-SP, São Paulo-SP
³Departamento de Física – UFPE, Recife-PE
⁴Centro de Lasers e Aplicações – IPEN, São Paulo – SP, e-mail: *thiago blade@hotmail.com

Due to the possibility of modifying the optical properties of glasses, heavy-metal oxide glasses containing metallic nanoparticles (NPs) have been largely investigated in the last years. In this work, we present the influence of silver NPs nucleation in PbO-GeO, glasses. These glasses have already proved to be adequate host for the NPs nucleation [1-4]. The influence of the heat-treatment time on the nucleation of silver NPs in Tm^{3 +} doped PbO-GeO₂ glasses was investigated. The melting-quenching technique was used and two different ways for the heat-treating were adopted for the reduction of Ag + and nucleation of silver NPs; the differences on the nucleation were observed using the transmission electron microscopy (TEM) images. We also report the influence of the NPs in the infrared-to-visible frequency upconversion (UPC) luminescence of Tm³⁺ ions. The emission spectra were performed by exciting the samples with a cw 1050 nm ytterbium laser and observing the UPC in the blue-red region. The enhanced UPC emission is attributed to the local field effect in the proximity of NPs.

1. Gómez et al., Appl. Phys. Lett. 92, 141916 (2008).

2. da Silva et al., Appl. Phys. Lett. 90, 081913 (2007).

Jiménez et al., J. Appl. Phys. 104, 054313 (2008).
Kassab et al., Appl Phys. Lett. 94, 101912 (2009).

Keywords: heavy metal oxide glasses, silver nanoparticles, upconversion of Tm³⁺.

0203 | Microscopic relationship among properties of potassium germanate glasses

Seiichi Mamiya*, Kazuhiro Kaneda, Yu Matsuda, Masao Kodama, Seiji Kojima

> Graduate School of Pure and Applied Sciences, University of Tsukuba, e-mail: mamiya@ims.tsukuba.ac.jp

Germanate glasses are applied to glass fibers or optronics. However, they have not been studied intensively so far. Therefore we investigated potassium germanate glasses. We prepared potassium germanate glasses $xK_20\cdot(100\text{-}x)\text{GeO}_2$ (x indicates K_20 mol%) in the composition range of $0\leq x\leq52$ by the solution method.

Potassium germanate glasses show "germanate anomaly" i.e. adding potassium oxide to germania glass, the physical property of potassium germanate glasses shows a maximum or minimum in their composition dependences. We have studied potassium germanate glasses by Raman scattering, Brillouin scattering and differential scanning calorimetry (DSC). Raman spectra, sound velocity and glass transition temperature are investigated by Raman scattering, Brillouin scattering and DSC respectively.

First, we have studied the K_2O composition dependence of Raman spectra, we find that K_2O composition of the density maximum is approximately 10 mol% using the curve fitting method. Second, sound velocity and elastic moduli are investigated by Brillouin scattering measurement. The K_2O composition that their maximum occurs is approximately 15 mol%. Third, the K_2O composition dependence of glass transition temperatures is measured by DSC. The K_2O composition of the maximum of glass transition temperatures is approximately 19 mol%.

In the presentation, we will discuss the origins of these anomalies on the basis of the glass structures.

Keywords: germanate anomaly, potassium germanate glasses, solution method, glass transition temperature, curve fitting method.

0205 | Fabrication of LiMn_xFe_{1.x}PO₄ crystals via the glass–ceramic route and their lithium ion battery performance

Tsuyoshi Honma¹, Takayuki Komatsu¹

¹Department of Materials Science and Technology – Nagaoka University of Technology, Japan, e-mail: honma@mst.nagaokaut.ac.jp

The olivine-type LiMn_xFe_{1-x}PO₄ crystals are fabricated through the crystallization of Li₂O-MnO₂—Fe₂O₃-P₂O₅ glasses, and the lithium ion battery performance (electrochemical charge/discharge patterns) for the glass–ceramics with LiMn_xFe_{1-x}PO₄ crystals is examined. It is found that homogeneous glasses are obtained for the stoichiometric compositions corresponding to LiMn_xFe_{1-x}PO₄ with 0 < x < 0.8 in a conventional melt-quenching method in air. The heat treatment of the mixtures of glass powders and glucose (5 wt%) at crystallization temperatures in a reducing atmosphere of 7%H₂–93%Ar gives the for-