UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA

O COMPORTAMENTO ELETROQUÍMICO DO ZINCO-ZINCATO EM MEIO DE NaOH. A INFLUÊNCIA DO BENZOTRIAZOL E DOS ÍONS CLORETO. BENZOATO E SILICATO SOBRE O SISTEMA Zn/OH

ELISABETE JORGE PESSINE

TESE APRESENTADA AO INSTITUTO DE QUÍMICA DA USP PARA A OBTENÇÃO DO TÍTULO DE DOUTOR EM CIÊNCIAS.

SÃO PAULO 1984

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE QUÍMICA

O COMPORTAMENTO ELETROQUÍMICO DO ZINCO-ZINCATO EM MEIO DE TATALOS DE LOS LOS ION CLORETO, NAOH. A INFLUÊNCIA DO BENZOTRIAZOL E DOS ION CLORETO, BENZOATO E SILICATO SOBRE O SISTEMA Zn/OH

ELISABETE JORGE PESSINE

Tese apresentada ao In<u>s</u> tituto de Química da USP para obtenção do título de Doutor em Ciências

Prof. Dr. HELIO CARDOSO CHAGAS ORIENTADOR

> SÃO PAULO 1984

Agradeço,

Ao Prof. Dr. Helio Cardoso Chagas, meu orientador, que me propôs o tema deste estudo, e me facultou os meios para executá-lo.

À Profa. Dra. Sílvia Agostinho, que me auxiliou de inúmeras maneiras, tanto com sugestões, como com críticas.

Aos Doutores Spero P. Morato e Claudio Rodrigues da CNEN-SP, pela oportunidade a mim concedida, para que este estudo pudesse ser feito.

Ao jornalista Antonio Jorge, pelo difícil trabalho de decodificação e correção dos manuscritos.

Ao Paulo Canil, pelo esmero na execução dos gráficos e figuras.

Ao José Vito Netto, pelos trabalhos de datilografia. Agradeço ainda aos companheiros:

Álvaro Figueiras, Helena M. Shihomatsu, Izilda M. Ranieri, Lúcia Prado, Maria Inês Cantagalo, pelo constante apoio nos inúmeros desabafos e também pelas várias sugestões.

Ao Roberto T. Pessine, pelo incentivo e paciência que finalmente culminam com o fim de um dos nossos karmas.

RESUMO

O estudo cinético do sistema zinco em meio alcalino foi realizado empregando-se o método do eletrodo de disco rotativo em superfícies de zinco e de filme de mercúrio. A concentração do NaOH foi fixada em 1M e a temperatura em 25°C.

Constatou-se que quando se trabalha com superfícies de mercúrio, a reação de redução do ion zincato ocorre em duas etapas de um elétron cada uma, e ambas com velocidades compar<u>á</u> veis e com constantes de Tafel $\vec{b}_{K1} = (132\pm20) \,\text{mV} \, \text{dec}^{-1} \ e \ \vec{b}_{K2} =$ $(74\pm9) \,\text{mV} \, \text{dec}^{-1}$; para superfícies sólidas, o mecanismo anódico é idêntico ao catódico, e o processo ocorre em duas etapas de um elétron cada uma. A etapa determinante do processo é a pr<u>i</u> meira reação de transferência de carga no sentido catódico. A densidade de corrente de troca obtida está entre 1,00 e 6,00mA cm⁻² e as constantes de Tafel anódica e catódica são respect<u>i</u> vamente $\vec{b}_{K} = (95\pm3) \,\text{mV} \, \text{dec}^{-1}$ e $\vec{b}_{a} = (61\pm5) \,\text{mV} \, \text{dec}^{-1}$.

O processo de passivação do zinco ocorre como resul tado de dois processos, um de adsorção das espécies de zinco II formadas e o outro de precipitação do íon zincato sobre os sítios ativos do eletrodo.

Verificou-se que das espécies químicas estudadas, ions zincato, cloreto, benzoato, silicato e benzotriazol, a que mais influe no processo de dissolução do zinco, alterando a velocidade da reação, é o silicato. A presença de qualquer uma destas espécies químicas no NaOH 1M, não altera o mecanismo do processo de dissolução ativa do zinco.

O mecanismo da reação de redução do fon zincato sobre o eletrodo de zinco não se modifica na presença dos fons cloreto e benzoato.

O valor do coeficiente de difusão do fon zincato obtido com o eletrodo de filme de mercúrio é $\overline{D} = (4,90\pm0,20)$ x 10^{-6} cm²s⁻¹.

ABSTRACT

The reaction mechanism of zinc/NaOH-zincate system was investigated with the rotating disk electrode technique, using both the surfaces of mercury film and zinc in 1M NaOH concentration and 25°C temperature.

It was found that at the mercury surface the zinca te ion deposition reaction occurs by two steps with one elec tron each one with comparable rates, with $\bar{b}_{K1} = (132\pm20) \,\text{mV}/\text{decade}$ and $\bar{b}_{K2} = (74\pm9) \,\text{mV}/\text{decade}$ cathodic Tafel slopes. At the zinc surface the mechanism of the anodic and cathodic reactions is the same and is by two steps with one electron each. The rate-determining step is the first reaction in the cathodic direction. The exchange current density was found to be between 1.00 and $6.00 \,\text{mA/cm}^2$, with $\bar{b}_{K} = (95\pm3) \,\text{mV}/\text{decade}$ cathodic and $\bar{b}_{a} = (61\pm5) \,\text{mV}/\text{decade}$ anodic Tafel slopes.

The mechanism of passivation of zinc occurs as a result of the two reactions, the adsorption of the dissolved species of zinc II and the precipitation of the zincate ions over the electrode active sites.

It has been verified that of all the chemical species studied namely the zincate, chloride, benzoate, silicate ions and the benzotriazole that affect the zinc anodic reaction the silicate ion is the one that change the reaction rate. However, for all the species studied we have the same anodic reaction mechanism (active dissolution). The deposition reaction mechanism of the zincate ion on zinc electrode is the same with NaOH plus benzoate or chloride.

The diffusion coefficient found for the diffusion of the zincate ion in LM NaOH with the mercury film RDE is $\overline{D} = (4,90\pm0,20) \times 10^{-6} \text{ cm}^2 \text{s}^{-1}$.

SUMÁRIO

.

CAPÍ	rulo 1 ·	- CONSIDERAÇÕES GERAIS	1
1.1	INTROD	UÇÃO	1
1.2	OBJETI	VOS DO TRABALHO	7
1.3	APRESE	NTAÇÃO DO TRABALHO	8
CAPÍ	TULO 2	- CONSIDERAÇÕES TEÓRICAS	10
2.1	INTROD	UÇÃO	10
2.2	O MÉTODO DO ELETRODO DE DISCO ROTATIVO		10
2.3	.3 OS PROCESSOS DE ELETRODEPOSIÇÃO E DE ELETRODISSO		
	ÇÃO EM	UM ELETRODO SÓLIDO	24
2.4	A FORM	AÇÃO DE FILMES ANÓDICOS	35
CAPÍ	TULO 3	- PARTE EXPERIMENTAL	46
3.1	INTROD	UÇÃO	46
3.2	APAREL	HAGEM	46
	3.2.1	Potenciostato	46
	3.2.2	Controlador da Velocidade de Rotação	47
	3.2.3	Gerador de Sinal	47
	3.2.4	Registrador	47
	3.2.5	Voltimetro	47
	3.2.6	Termostato	49
	3.2.7	Controle da Excentricidade do Eletrodo de	
	·	Disco Rotativo	49

	3.2.8	Frequenc	Ímetro	49
	3.2.9	Viscosíme	etro	50
3.3	CÉLULA	ELETROLI	FICA	50
3.4	SISTEM	A DE PURI	FICAÇÃO DO NITROGÊNIO	52
3.5	ELETRO		• • • • • • • • • • • • • • • • • • • •	53
	3.5.1	Eletrodo	de Disco Rotativo de Zinco	54
	3.5.1.	a Lixame	nto Fino	54
	3.5.1.	b Polime:	nto Final	54
	3.5.2	Eletrodo	de Disco Rotativo de Filme de Me <u>r</u>	
		cúrio	• • • • • • • • • • • • • • • • • • • •	55
	3.5.3	Eletrodo	de Referência	56
	3.5.4	Eletrodo	Auxiliar	56
3.6	REAGEN	TES	• • • • • • • • • • • • • • • • • • • •	56
3.7	VOLTAM	OGRAMAS.	PROCEDIMENTO EXPERIMENTAL	57
CAPÍ	TULO 4	– A REDUÇ	ÃO DO ÍON ZINCATO SOBRE O EDR de	
		FILME D	E MERCÚRIO	58
4.1	INTROD	UÇÃO		58
4.2	CONDIÇ	ÕES EXPER	IMENTAIS, RESULTADOS E DISCUSSÕES.	59
	4.2.1	Condiçõe	s Experimentais	59
	4.2.2	Resultad	os e Discussões	59
		4.2.2.1	Coeficiente de difusão do Zn(OH) $\frac{2}{4}$	63
		4.2.2.2	Raio solvodinâmico	69
		4.2.2.3	A cinética de eletroredução do ion	
			zincato	73

		and the second	THE REPORT OF A CONTRACTOR OF A DATE OF
	and the second second second second second	and the standard strategic	
Ĩ	PAGE 1. 17	HOUSEAD ENGRACES COMMENT	
		I. P. E. W.	a strategy and the second
3		1. The second state of the	

4.3	CONCLU	SÕES	92
CAPI	TULO 5	- ESTUDO DOS PROCESSOS ANÓDICO E CATÓDICO	
		DO SISTEMA ZINCO EM MEIO DE NAOH 1M	95
5.1	INTROD	UÇÃO	95
5.2	CONDIÇ	ÕES EXPERIMENTAIS	100
5.3	RESULT	ADOS E DISCUSSÃO	100
	5.3.1	Processos Catódicos	100
	5.3.2	Processos Anódicos	115
		5.3.2.1 Eletrólito inicialmente isento	
		de Zn(OH) $\frac{2}{4}$	115
		5.3.2.2 Eletrólito contendo $Zn(OH)_4^{2-} pre$	
		sente inicialmente	135
5.4	CONCLU	SÕES	148
CAPÍ	TULO 6	- A INFLUÊNCIA DO CLORETO, BENZOATO, BEN-	
		ZOTRIAZOL E SILICATO NO SISTEMA ZINCO	
		EM MEIO DE NaOH 1M	154
6.1	INTROD	UÇÃO	154
6.2	A INFL	UÊNCIA DO ÍON CLORETO	156
	6.2.1	Processo Catódico	156
	6.2.2	Processo Anódico	161
6.3	A INFL	UÊNCIA DO BENZOATO DE SÓDIO (BzNa)	173
	6.3.1	Processo Catódico	173
	6.3.2	Processo Anódico	178

6.3.2.1	Dissolução do EDR de zinco em meio	
	de benzoato de sódio (BzNa)	178
6.3.2.2	Dissolução do EDR de zinco em meio	
	de BzNa e de Zn(OH) $\frac{2}{4}$ 10mM	184
6.4 A INFLUÊNCIA DO	BENZOTRIAZOL (BTA)	19 2
6.5 A INFLUÊNCIA DO	SILICATO DE SÓDIO (Na ₂ SiO ₃)	199
6.6 CONCLUSÕES	•••••••••••	212
CAPÍTULO 7 - CONCLUSO	DES FINAIS	216
GLOSSÁRIO		219
REFERÊNCIAS		223

CAPÍTULO 1

CONSIDERAÇÕES GERAIS

1.1 INTRODUÇÃO

O zinco é um dos metais mais amplamente empregados industrialmente, quer na proteção de outros metais como uma película, quer como ânodo de baterias primárias ou secund<u>á</u> rias, quer como agente redutor de algumas reações químicas.

O zinco por ser um dos metais mais eletronegativos, quando utilizado nos processos de prevenção à corrosão adquire uma característica eletroquímica denominada sacrificial ou seja, o zinco se transforma em um ânodo de sacrifício. O zinco também é utilizado na proteção contra a corrosão de metais ativos através de um revestimento superficial como no caso do ferro galvanizado.

A durabilidade desta camada protetora de zinco está intimamente ligada tanto à sua espessura e qualidade como, também, quanto à agressividade do meio corrosivo. Se os produtos da corrosão do zinco não forem removidos da superfície do metal, eles poderão atuar positivamente, inibindo o seu processo corrosivo, uma vez que estes produtos darão or<u>i</u> gem à formação de um novo filme protetivo. Entretanto, a pr<u>o</u> teção deste novo filme deixarã de ocorrer, quando o mesmo se encontrar em contato com uma solução eletrolítica agitada, que provocará assim, a sua contínua remoção.

O zinco tem sido utilizado também como ânodo nas baterias primárias mais importantes em uso comercial (Zn/ MnO₂) e ainda em várias baterias secundárias de alta densid<u>a</u> de de energia, tanto em eletrólitos ácidos, como alcalinos (Zn/KOH/O2). Apesar de o zinco possuir uma elevada sobretensão de hidrogênio, o controle da corrosão destes ânodos é feito adicionando-se ao meio substâncias orgânicas como a ge latina¹ ou óxido de chumbo² ou amalgamando³ a superficie anódica. Estas modificações contribuem para que a densidade de corrente de troca do hidrogênio diminua ainda mais. Neste caso a eficiência anódica do zinco torna-se mais eleva da, uma vez que o controle do processo está sendo feito sobre a reação de redução do hidrogênio.

Outro aspecto importante que deve ser considerado quando o zinco é empregado nas baterias secundárias é que du rante o processo de recarga, ocorrem modificações morfológicas que irão restringir a sua utilização de forma prolongada. Estas modificações morfológicas, que podem ocorrer em so luções que contenham óxido de zinco⁴ estão relacionadas tanto com a formação de dendrites^{5,6} quanto ao espessamento⁷⁻⁹ da camada de óxido sobre o ânodo, devido à dissolução parcial do mesmo.

Assim estes aspectos têm restringido a eficiente utilização do zinco, conduzindo a pesquisa, no sentido de m<u>i</u> nimizar alguns destes fatores.

O sistema zinco em meio alcalino tem sido objeto de inúmeros estudos abordando aspectos de interesse tecnoló-

gico como, também, de âmbito fundamental. Estes estudos têm sido conduzidos sob uma ampla variedade de condições exper<u>i</u> mentais, tanto no que se refere ao método eletroquímico empregado, natureza da superfície metálica da reação como ta<u>m</u> bém a uma grande variedade na composição do eletrólito empregado. A maior parte dos estudos abordando o zinco tem s<u>i</u> do o de elucidar como se processam as diferentes reações eletródicas e assim obter informações quantitativas da cinética do processo.

Através do conhecimento das diferentes etapas que constituem o mecanismo do processo eletroquímico é possível, pelo menos teoricamente, atuarmos no sentido de modificarmos qualquer uma das etapas indesejáveis que constituem o processo global e assim aumentarmos a eficiência daquele processo.

Inúmeros são os trabalhos dedicados ao estudo das reações entre os ions zincato e a amálgama de zinco¹⁰⁻²². Em seu clássico trabalho Gerischer¹⁰ propõe que a reação de redução do ion zincato se processa a partir do $2n(OH)_2$ em uma única etapa de dois elétrons, sendo os mecanismos anódico e catódico idênticos. Farr e Hampson¹⁸ confirmam este resultado mas tanto Payne e Bard¹⁹ como Despic²⁰ propõem que o mecanismo anódico é diferente do catódico e que a transferência de elétrons ocorre em duas etapas de um elétron cada uma, intercaladas por reações químicas (química-eletroquímica-QEQE).

Para Payne e Bard a etapa determinante da veloci-

dade do processo global é a primeira transferência de el<u>é</u> trons no sentido catódico, sendo $Zn(OH)_2$ a espécie reagente desta reação, em concordância com Gerischer, Farr e Hampson.

Para Despic a etapa lenta do processo é a segunda reação química e a espécie reagente nesta etapa é um compl<u>e</u> xo de zinco monovalente do tipo Zn(I)X.

Para o grupo russo de Stromberg e col.¹⁶ os mecanismos anódico e catódico são diferentes. No processo anód<u>i</u> co a espécie reagente na etapa lenta é o fon ZnOH⁺ enquanto que no processo catódico há concordância com o resultado proposto por Gerischer.

Nos trabalhos realizados com eletrodos sólidos²³⁻³³ são encontradas tantas divergências de resultados como os obtidos ao se empregar eletrodos de amálgama de zi<u>n</u> co. Um aspecto, entretanto, é concordante na maioria dos tr<u>a</u> balhos: as reações eletródicas ocorrem em duas etapas de um elétron cada uma. No que se refere à natureza da etapa lim<u>i</u> tante do processo esta ainda se mantém como uma questão co<u>n</u> flitante.

O mecanismo proposto por Armstrong e Bulman³⁰ para o processo eletródico, consta de duas etapas de transferência de elétron, indicadas no sentido anódico das quais a segunda etapa envolvendo a espécie reagente de zinco monovalente é a mais lenta.

O mesmo resultado foi obtido por Bockrise col.³¹, os quais sugerem que a espécie reagente da etapa lenta no

sentido catódico é a espécie $Zn(OH)_3^-$ e com o mecanismo global constituído por um conjunto de reações do tipo QEQE. Para estes dois grupos de pesquisadores o mecanismo anódico é idêntico ao catódico.

Hampson e col.²⁹ também propuseram um mecanismo do tipo QEQE, sendo, entretanto, a etapa lenta do processo a s<u>e</u> gunda reação de transferência de elétron no sentido catódico.

Um outro aspecto do complexo sistema zinco em meio alcalino que também tem conduzido a um grande número de trabalhos $^{34-42}$ é a passivação do eletrodo e a influência de sub<u>s</u> tâncias que modifiquem $^{43-51}$ tanto este processo como o próprio processo de dissolução ativa.

Existem três grandes grupos de pesquisadores apoi<u>a</u> dos em inúmeros trabalhos experimentais, que propõem diferentes modelos para explicar o mecanismo da formação dos filmes anódicos sobre o eletrodo de zinco em meio alcalino, durante o processo de dissolução.

O primeiro grupo, apoiado nos trabalhos de Muller⁵¹, propõe a formação de um intermediário solúvel no eletrólito e geralmente aceito como ZnOH⁺. Na sequência global do processo anódico, a espécie solúvel atinge uma concentração crítica na camada do eletrólito adjacente à superfície do eletrodo e precipita-se como um sal insolúvel bloqueando o eletrodo.

O mecanismo proposto por este grupo é do seguinte tipo:

$$Zn (OH)_{4}^{2-} \longrightarrow Zn (OH)_{2} + 2OH^{-} \qquad 1.1.a$$

$$\uparrow_{OH^{-}}$$

$$Zn + OH^{-} \longrightarrow Zn OH^{+} + 2e$$

$$\downarrow$$

$$ZnO + H^{+} \qquad 1.1.b$$

As vias de reação l.l.a e l.l.b que produzem as espécies insolúveis ZnO e Zn(OH)₂ parecem estar ligadas à composição da solução eletrolítica.

Os outros dois grupos sugerem que os filmes são fo<u>r</u> mados a partir de etapas de adsorção ou devido a uma nucleação bidimensional seguida de um crescimento em monocamadas.

O modelo de adsorção é sustentado por Kabanov⁵²⁻⁵⁴ e por Hull⁵⁵⁻⁵⁷. Neste modelo a monocamada que se forma sobre o eletrodo,tanto pode ser em filme de óxido de zinco (l. 2.a) como um de hidróxido de zinco (l.2.b) na seguinte sequência:

$$Zn (OH) {2 - \longrightarrow Zn (OH)}_{2} + 2OH^{-} \qquad 1.2.a$$

$$(ZnO)_{ads} + H_{2}O + e$$

$$soluvel$$

$$foH^{-}$$

$$Zn + OH^{-} \longrightarrow Zn (OH^{-})_{ads} + e$$

$$\downarrow$$

$$ZnO + H^{+} + e \qquad 1.2.b$$

O modelo de nucleação bidimensional gerando o cres

cimento do filme é apoiado por Kaeche⁵⁸ e pelo grupo de Arm<u>s</u> trong^{21,30}. Entretanto, os processos de adsorção e de nucle<u>a</u> ção bidimensional seguindo um crescimento em monocamadas são difíceis⁵⁹ de serem distinguidos na superfície de um metal sólido policristalino.

1.2 OBJETIVOS DO TRABALHO

A controvérsia existente em torno da cinética eletroquímica do sistema zinco-zincato em meio alcalino, gerada principalmente pela ampla⁶ variedade de condições experimentais empregadas nos vários trabalhos já citados anteriormente, conduziu-nos a que, eliminássemos algumas daquelas cond<u>i</u> ções. Fixando-se uma concentração do álcali (pH>12) assegur<u>a</u> -se a existência de apenas uma forma predominante entre os vários complexos de zinco existentes em meio alcalino.

Com o parâmetro concentração fixo, variou-se a natureza da superfície metálica de que o eletrodo era constituído, e através do emprego do método experimental do eletrodo de disco rotativo estabeleceu-se o controle sobre as condições hidrodinâmicas de transporte das espécies participantes do processo, eliminando-se os inconvenientes²¹ produzidos por esta etapa.

Estabelecidas estas condições de contorno experimental o presente trabalho teve como objetivos principais:

a) elucidar as várias etapas que compõem os processos de redução do ion zincato tanto sobre eletrodos rota-

tivos de filme de mercúrio como de zinco policristalino;

 b) estudar o processo de oxidação do eletrodo de zinco;

c) verificar a influência de algumas espécies quí micas como o cloreto, benzoato, silicato e benzotriazol nos processos anódico e catódico do eletrodo sólido.

Os resultados obtidos serão comparados sob as mes mas condições experimentais e, tendo em vista que uma das etapas limitantes do processo eletródico é o transporte da espécie solúvel ion-zincato tanto para a superfície do eletrodo como desta para o interior da solução, o emprego do eletrodo de disco rotativo permite que aquele transporte se faça de forma controlada.

Nestas condições, torna-se possível uma compar<u>a</u> ção, sob condições experimentais bem definidas de transporte, dos processos eletródicos sobre superfícies distintas de reação.

1.3 APRESENTAÇÃO DO TRABALHO

Tendo em vista os objetivos enunciados neste cap<u>í</u> tulo, o presente trabalho obedeceu a seguinte programação:

no Capítulo 2 são apresentados os aspectos físico -químicos mais relevantes da teoria do método do eletrodo de disco rotativo. Faz-se também uma breve introdução aos processos de eletrodissolução/eletrodeposição que ocorrem em superfícies metálicas sólidas e também à formação de películas anódicas sobre os eletrodos;

no Capítulo 3 são descritos os equipamentos e os reagentes empregados durante a realização do trabalho exper<u>i</u> mental;

no Capítulo 4 são mencionados e discutidos os r<u>e</u> sultados obtidos no estudo da redução do fon zincato sobre o eletrodo de disco rotativo de filme de mercúrio;

no Capítulo 5 fez-se uma análise dos resultados ob tidos no estudo dos processos anódico e catódico efetuados com um eletrodo de disco rotativo de zinco;

no Capítulo 6 são apresentados os resultados relativos ao estudo da influência de algumas espécies químicas nos processos anódico e catódico do sistema zinco meio alcalino e finalmente, no Capítulo 7, reúnem-se as principais conclusões que este trabalho permitiu que se obtivessem.

CAPÍTULO 2

CONSIDERAÇÕES TEÓRICAS

2.1 INTRODUÇÃO

Neste capítulo abordamos os aspectos mais relevantes da teoria desenvolvida para o método do eletrodo de disco rotativo e de interesse neste trabalho.

Apresentamos as equações matemáticas sem, no enta<u>n</u> to, detalharmos suas deduções, uma vez que estas são encontradas nas referências citadas no decorrer do texto.

Com o objetivo de mostrar a influência que a heterogeneidade normalmente presente em superfícies sólidas exer ce sobre as reações que nelas ocorrem, fizemos uma breve introdução aos processos de eletrodeposição/cristalização e de eletrodissolução.

E, finalmente, pelo tipo de sistema em estudo, o metal zinco em meio alcalino, descrevemos alguns modelos pr<u>o</u> postos para explicar a formação de filmes anódicos.

2.2 O METODO DO ELETRODO DE DISCO ROTATIVO

O método do eletrodo de disco rotativo pertence à classe dos métodos eletroquímicos estacionários. Nestes métodos, em situações em que o transporte de matéria contribui

de forma significativa à curva de polarização observada, ut<u>i</u> lizamos o modelo da camada de difusão de Nernst para conhecermos as concentrações dos reagentes e produtos na superfície do eletrodo. O modelo de Nernst entretanto, é aproxim<u>a</u> do no que se refere a espessura da camada de difusão (ô) que permanece solidária com a superfície sólida onde ocorre a reação. Dentro desta camada o único processo de transporte de matéria que se admite é o da difusão. O transporte por m<u>i</u> gração elétrica pode ser desprezado, empregando-se um excesso do eletrólito suporte.

Nas soluções em movimento o transporte de matéria se processa simultaneamente através da difusão e da convecção, a sobreposição destes dois mecanismos é denominada de difusão convectiva.

Assim, é possível escrevermos para a densidade de fluxo a seguinte expressão:

$$\vec{J} = C \vec{v} - D \nabla C \qquad 2.2.1$$

denominada de la. lei de Fick modificada para um fluído em movimento. Admite-se tanto que não ocorrem reações químicas no eletrólito como também o mesmo ser isotérmico.

A partir da equação 2.2.1 e da equação 2.2.2 que descreve a variação temporal da concentração

$$\frac{\partial C}{\partial t} = - \nabla \vec{J} \qquad 2.2.2$$

obtém-se a seguinte equação para a 2a. lei de Fick para sol<u>u</u> ções em movimento:

$$\frac{\partial C}{\partial t} = - \nabla (C \vec{v}) + D \nabla^2 C \qquad 2.2.3$$

A equação 2.2.3 em conjunto com algumas condições de contorno adequadas ao sistema em estudo terá solução se for conhecido o vetor velocidade (\vec{v}) do fluído, adequado a um sistema de coordenadas.

As expressões dos componentes do vetor velocidade são obtidas a partir dos princípios da fluidodinâmica, quando se impõem algumas condições para o escoamento do fluído. Assim, o perfil de velocidade será obtido empregando-se a equação 2.2.4 da continuidade em conjunto com a equação 2.2.5 de Navier-Stokes.

$$\nabla \vec{v} = \operatorname{div} \vec{v} = 0$$
 2.2.4

$$\rho \frac{d \vec{v}}{dt} = - \text{ grad } p + \eta \nabla^2 \vec{v} + \vec{f} \qquad 2.2.5$$

Quando a solução é agitada e se estabelece um regime estacionário no qual a concentração independe do tempo $\partial C/\partial t = 0$ e d $\vec{v}/dt = 0$.

Se na equação 2.2.5, aplicada ao caso estacionário, estabelecermos grupos de variáveis adimensionais, obteremos o parâmetro número de Reynolds (Re) descrito pela equa ção 2.2.6 que caracteriza o tipo de fluxo do fluído, isto é, o fluxo será laminar para velocidades abaixo de um determina do nível descrito por um número de Reynolds crítico (Re_{crit}), isto é, Re < Re_{crit} ou será turbulento para Re > Re_{crit}.

$$Re = \frac{v_{ct} \ell}{v}$$
 2.2.6

onde

 $v = \frac{\eta}{\rho} (cm^2 s^{-1})$ é a viscosidade cinemática

 v_{ct} (cm²s⁻¹) representa a velocidade característica do movimento do fluído e ℓ (cm) uma dimensão.

De um modo geral, as dificuldades matemáticas para a solução das equações da fluidodinâmica assim como a de trans porte de matéria são grandes, razão pela qual em apenas alguns casos foi possível obter-se uma solução completa e rigorosa. A equação de Navier-Stokes e a equação difusivo-convectiva quando aplicada a sistemas que empregam eletrodos só <u>a</u> presentam solução matemática de forma criteriosa para poucos tipos de eletrodos. Um deles é o eletrodo de disco rotativo (EDR). Entretanto, Laitinen e Kolthoff⁶¹ popularizaram o uso na química analítica a forma do eletrodo relativo de fio de platina, muito embora não fosse possível obter-se uma solução rigorosa da equação difusivo-convectiva.

Por outro lado, em 1942, V.G. Levich⁶² descreveu o EDR estabelecendo um tratamento matemático teórico rigoroso para a solução da equação difusiva convectiva em regime estacionário. Em 1949, Siver e Kabanov⁶³ verificaram experimenta<u>l</u> mente a teoria proposta por Levich para um regime laminar.

Essencialmente, o EDR consta de uma superfície metá

lica de forma circular perpendicular ao eixo de rotação que passa pelo centro desta superfície, figura 2.2.1. Quando o disco gira com uma dada velocidade angular ω , no interior da solução produz-se, a partir de grandes distâncias, um fluxo de fluído em direção à superfície do eletrodo. À medida que o fluído se aproxima da superfície ele adquire um movimento circular, atingindo uma velocidade angular máxima sobre a s<u>u</u> perfície do disco igual a própria velocidade angular do disco.

Esse movimento circular dá origem a uma força centrífuga que provoca um movimento radial do fluído, que por sua vez adquire um valor máximo a uma certa distância da superfície do disco, e que tem valor nulo sobre a mesma.

A solução eletrolítica adjacente à superfície do disco adquire uma velocidade tangencial e se espirala em direção às bordas do disco. Como resultado deste movimento a solução se desloca de pontos distantes da superfície do disco em direção a ela, transportando assim o material eletroativo de uma forma que é passível de ser descrita matematicamente.

A descrição matemática do problema hidrodinâmico é feita em coordenadas cilíndricas (r,z,ϕ) de modo que r = ono centro do disco e z = o sobre a sua superfície. Este tipo de coordenadas é particularmente conveniente devido à simetria cilíndrica existente, pois não ocorrem variações de velocidade, concentrações, etc., com relação a variável ϕ . P<u>a</u> ra descrever o transporte de espécies para a superfície do eletrodo de disco é preciso primeiro descrever o modelo de

escoamento hidrodinâmico imposto ao fluído.

A resolução deste problema hidrodinâmico foi feita por Cockran⁶⁴ e von Karman⁶⁵, os quais obtiveram as equações de distribuição de velocidade (v_r , $v_z e v_{\phi}$) segundo as coordenadas r, z e ϕ . O detalhamento das equações obtidas é amplamente descrito na literatura⁶⁶⁻⁷⁰ e aqui procuraremos mo<u>s</u> trar simplificadamente a origem das equações empregadas no decorrer deste trabalho.

A equação diferencial (2.2.3), em coordenadas cilíndricas para o transporte de massa em condições de estado estacionário resolvida por Levich é a seguinte:

$$D \quad \frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \quad \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial z^2} = v_r \quad \frac{\partial C}{\partial r} + v_z \quad \frac{\partial C}{\partial z} \qquad 2.2.7$$

Na obtenção da equação 2.2.7 desprezou-se o transporte dos fons por migração e admitiu-se que o coeficiente de difusão D, se mantém constante. Para a solução daquela equação são considerados as seguintes condições de contor no^{66,70}:

> $C = C^{\infty} , r \rightarrow \infty$ (a) $C = C^{0} , r \rightarrow 0$ (b) 2.2.8 $\frac{\partial C}{\partial r} \rightarrow 0 , r = 0$ (c)

em conjunto com as seguintes equações da velocidade do fluí-

do, estabelecidas por Cockran para a região imediatamente a<u>d</u> jacente à superfície do eletrodo:

$$v_r = 0,51 z r \omega^{3/2} v^{-1/2}$$
 (a)
 $v_z = -0,51 z^2 \omega^{3/2} v^{-1/2}$ (b)

A figura 2.2.2 mostra esquematicamente o escoamento do fluído na vizinhança do disco descrito pelas equações obtidas por Cockran.

FIGURA 2.2.2. Linhas de fluxo do eletrodo de disco rotativo.

A equação obtida por Levich para descrever a densi dade de fluxo material para a situação em que a difusão apresenta um valor limite, ou seja, quando a concentração da espécie eletroativa é nula sobre a superfície do eletrodo é a seguinte:

$$j = D \frac{\partial C}{\partial y}_{y=0} = \frac{DC^{\infty}}{1,61 (D/v)^{\frac{1}{3}} (v/\omega)^{\frac{1}{2}}}$$
 2.2.10

Levich chamou atenção para duas características im portantes do EDR. Uma delas é o fato de que a espessura da camada limite de difusão pode ser expressa pela equação 2.2. 11.

$$\delta = 1,61 \frac{D}{v} \frac{1}{\omega} \frac{v}{\omega} \approx 0,5 \frac{D}{v} \cdot \delta_0$$
 2.2.11

Onde δ_0 representa a espessura da camada limite hidrodinâmica sobre a superfície do disco.

A outra característica diz respeito ao fato de que a densidade de fluxo, equação 2.2.10,,e a espessura da c<u>a</u> mada limite de difusão, equação 2.2.11, possuem ambas o mesmo valor em todos os pontos da superfície do disco. Esta característica - superfície uniformemente acessível - é uma propriedade específica do EDR, que permite o estudo de inúm<u>e</u> ros sistemas eletroquímicos desde que a superfície do disco não apresente profundas rugosidades e nem esteja sujeita a condições experimentais abruptas como polarizações muito el<u>e</u>

vadas ou muito baixas⁷¹ que contribuem para que nem todos os pontos sobre a superfície do EDR estejam sob um mesmo potencial.

A corrente limite de difusão é obtida a partir da equação 2.2.10 e apresenta a seguinte forma:

$$I_{D}^{L} = 0,62 \text{ nFA } D^{\frac{2}{3}} v^{-\frac{1}{6}} \omega^{\frac{1}{2}} C^{\infty} = BA\omega^{\frac{1}{2}} 2.2.12$$

A equação 2.2.12 é denominada de equação de Levich e B de constante de Levich. A equação de Levich descreve a condição de reação no EDR em que o controle do processo eletroquímico é exercido pela etapa de transporte de massa (et<u>a</u> pa limitante da velocidade) e descreve também a variação linear da densidade de corrente limite de difusão, tanto com a concentração (C^{°°}) da espécie eletroativa, como, também, com a velocidade angular de rotação do eletrodo ($\omega = 2\pi f$).

As condições hidrodinâmicas bem definidas que se tem para a interface eletrodo-solução eletrolítica permitem que o EDR seja adequado^{70,72,73} para a determinação de coef<u>i</u> ciente de difusão, que pode ser expresso a partir da equação 2.2.12 como,

$$D = \frac{v^{\frac{1}{6}}}{0,62 \text{ nFA C}^{\infty}} \cdot B^{\frac{3}{2}} 2.2.13$$

onde a constante B' é determinada a partir do coeficiente an gular da reta obtida para $I_D^L = f(\omega^{1/2})$.

Até o presente momento nos restringimos a apresentar as equações que descrevem no EDR um controle exercido através do transporte de massa ou seja, a velocidade de re<u>a</u> ção de eletrodo de transferência de carga é de tal forma rápida que sua contribuição pode ser desprezada. Entretanto , esta reação de superfície em certos casos participa controlando a velocidade da reação global sendo necessário avaliar a sua contribuição. Segue-se então, um breve resumo das pri<u>n</u> cipais equações relacionadas com este tipo de reação.

Seja q o número de partículas que reagem na s<u>u</u> perfície do eletrodo por unidade de tempo segundo a seguinte lei de reação:

$$q = K(C^{S})^{P}$$
 2.2.14

onde K é a constante de velocidade da reação heterogênea e p a ordem da reação em relação a uma das espécies presentes no processo. Sob condições de estado estacionário têm-se:

$$\vec{J} = D \frac{\partial C}{\partial y}_{y=0} = K (C^{S})^{p}$$
 2.2.15

que em conjunto com a equação 2.2.3 permitem obter para uma reação de primeira ordem (p=1) a seguinte expressão de dens<u>i</u> dade de corrente:

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_D^L}$$
 2.2.16

A $i_k = nFk C^{\infty}$ representa a densidade de corrente para o processo controlado pela cinética da reação de superfície - transferência de carga.

Quando os processos difusivo e cinético apresentarem velocidades comparáveis, a reação global exibirá uma cinética mista que se manifesta através de uma dependência mais complexa entre a corrente e a raiz quadrada da velocidade de rotação. Desse modo, para um processo totalmente difusivo, a dependência é linear, enquanto que para o processo cinético a corrente independe da velocidade de rotação do eletrodo.

A figura 2.2.3 apresenta a variação da corrente com a velocidade de rotação para um processo eletroquímico sob controle misto.

FIGURA 2.2.3. Variação da corrente com a velocidade de rotação para um processo misto (1) difusivo; (2)cinético; (3) misto.

Evidencia-se da equação 2.2.16 que a grandeza $i / \omega^{1/2} C^{\infty}$ só será constante quando a i_k , densidade de corrente puramente cinética for muito grande. Caso este com portamento não aconteça, o gráfico de i versus $\omega^{1/2}$, figu ra 2.2.3, se afastará da linearidade tendendo para o valor limite $i = i_k$ quando a $\omega^{1/2} \to \infty$.

Através da equação 2.2.16 verifica-se que o gráf<u>i</u> co de $\frac{1}{i}$ versus $\frac{1}{\omega^{1/2}}$ será linear - reação de primeira ordem e que a partir do mesmo é possível obter-se a densid<u>a</u> de de corrente devido unicamente ao processo cinético quando se extrapola para $\frac{1}{\omega^{1/2}} \rightarrow o$ (ou $\frac{1}{\omega^{1/2}} \rightarrow \infty$) a partir da intersecção com a ordenada da corrente.

A constante de velocidade da reação e o coeficie<u>n</u> te de transferência podem ser obtidos a partir de diferentes valores de potencial.

Na figura 2.2.4 são mostradas esquematicamente a<u>l</u> gumas curvas obtidas. Para o potencial E_1 a etapa de tran<u>s</u> ferência de carga é rápida e a reta que se obtém passa pela origem do sistema de coordenadas. Para E_2 e E_3 a etapa difusiva é rápida. Para qualquer potencial o coeficiente a<u>n</u> gular das retas obtidas é constante uma vez que só dependem das características do meio eletrolítico.

FIGURA 2.2.4. Gráfico i⁻¹ versus $\omega^{-1/2}$ para diferentes valo res de potencial. El sob controle difusivo, E2 e E3 sob controle cinético.

Se na região de corrente limite o processo apresentar um controle misto, isto é, uma etapa de difusão acom panhada por uma etapa puramente química, é possível, fazendo-se uso da seguinte equação,

$$\frac{1}{i_{\rm L}} = \frac{1}{i_{\rm D}^{\rm L}} + \frac{1}{i_{\rm Q}}$$
 2.2.17

separar as densidades de corrente devidas a cada um dos processos. Isto é, para uma cinética de primeira ordem o gráfi co que se obtém para $1/i_L \times 1/f^{1/2}$ é linear e ao se extrapolar a reta obtida para $1/f^{1/2} = o$ determina-se a corrente que independe da frequência de rotação do eletrodo¹¹⁷ (i_{c}).

2.3 OS PROCESSOS DE ELETRODEPOSIÇÃO E DE ELETRODISSOLUÇÃO

Como modelo de uma superfície metálica perfeita, pode-se admitir que os átomos estejam distribuídos sobre a superfície em um arranjo regular, com cada átomo em igual disposição, figura 2.3.1a.

Neste tipo de arranjo cristalino, todos os átomos estarão em um mesmo estado de energia e a probabilidade de que qualquer um destes átomos saia desta distribuição regular superficial é igualmente provável. O mesmo pode ser dito quando o processo é o de incorporação de novos átomos a este retículo.

FIGURA 2.3.1. Representação esquemática de um arranjo cristal<u>i</u> no a) perfeito b) com discordâncias bl) em hél<u>i</u> ce e b2) em cunha.

A visão real de um sistema cristalino nos revela, entretanto, um outro comportamento. Quando o sistema cristalino estiver sob uma temperatura qualquer diferente do zero absoluto, os átomos no retículo cristalino estarão sujeitos a uma vibração térmica, fazendo com que a cada instante o e<u>s</u> tado energético dos átomos seja diferente entre si.

Além disso, quando se observa a superfície policristalina de um metal, vê-se que a mesma não é homogênea, mesmo que se tenha tido extremo cuidado em sua preparação. A superfície não é plana dentro da escala atômica; ela aprese<u>n</u> ta descontinuidades tais como as originárias das discordâncias do cristal (figura 2.3.1b) (nível atômico) e mesmo as oriundas dos contornos dos grãos (figura 2.3.2).

Grão é a denominação dada aos cristais de uma única fase que apresentam orientações distintas. Entretanto, no interior de cada grão, todos os átomos estão arranjados segundo um único modelo e uma única orientação, caracterizada pela célula unitária.

FIGURA 2.3.2. Visão esquemática do contorno dos grãos no metal a) lateral b) superficial.

Tal superfície criará por si diferentes microrregiões com comportamento de reação (eletroquímico/cristalização térmica) distinto, que sofrerá forte influência das mi crorrugosidades, da orientação do cristal e da densidade das discordâncias (imperfeição na estrutura do cristal).

Os metais empregados na confecção dos eletrodos são geralmente policristalinos, com os grãos expondo planos com diferentes orientações para o contato com a solução eletrol<u>í</u> tica. A densidade dos átomos varia em cada grão, sendo natural o aparecimento de fronteiras entre os vários grãos, que podem muitas vezes serem constituídas por subgrãos, gerando assim, planos com características próprias.

Esta multiplicidade de aspectos morfológicos da superfície exposta de um eletrodo criará uma anisotropia de reação, que é facilmente visualizada através de um tratamento químico adequado a esta superfície. Após a reação, a superfície apresentará regiões onde o ataque foi mais pronunciado do que em outras e, observa-se que as regiões que <u>a</u> presentam uma maior densidade de átomos são as que menor ataque sofreram.

A explicação para este comportamento surge a par tir do estudo dos movimentos no interior do retículo crista lino das linhas de imperfeições denominadas discordâncias, encontradas na maior parte dos cristais⁷⁴ geradas tanto durante a etapa de cristalização, como também em decorrência de uma tensão de cisalhamento exercida sobre o plano do cris tal.

O plano do retículo cristalino que apresenta uma discordância possui uma concentração de energia maior do que nos planos sem imperfeições, devido a convergência de zonas de compressão e de tração entre os átomos. Esta energia será maior se houver um encontro das linhas de discordâncias, que geram assim um sítio mais ativo que o anterior denomin<u>a</u> do dobra (Kink).

A energia de deformação que resulta da existência da discordância tem magnitude igual ao trabalho criado para formá-la. Esta energia, por unidade de comprimento da dis cordância é expressa por duas grandezas⁷⁵,

$$E_{total} = E_{núcleo} + E_{deformação elástica}$$

onde E_{nucleo} é a energia do núcleo da discordância, sendo um valor normalmente aproximado da ordem de 0,5 a 1,5eV e a E deformação elástica é a energia que depende das dimensões do cristal e do tipo de discordância.

Os sítios ativos serão então, devido ao seu caráter energético, o local preferencial para a ocorrência das re<u>a</u> ções ou de incorporação de novos átomos ao retículo cristalino (eletrodeposição) ou de remoção dos átomos (eletrodissolução/corrosão) (reações de transferência de carga), são e<u>n</u> fim pontos de alto número de coordenação do retículo cristal<u>i</u> no.

Na figura 2.3.3 são mostradas esquematicamente as possibilidades de remoção de átomos do retículo cristalino. Nesta superfície metálica estão indicadas cunhas (E) e cantos (C) na fronteira do plano incompleto do retículo. Os átomos situados nestas posições apresentam uma maior tendência de se dirigirem para a solução quando comparados com os átomos que se localizam numa posição - M - dentro do plano completo do retículo. Este comportamento surge, pois as ligações que de vem ser rompidas para que o átomo se desagregue do retículo são de menor número. Neste caso, a estabilidade átomos dos cresce na seguinte escala: $C \rightarrow E \rightarrow M \rightarrow I$ (átomo posicionado internamente no plano).

FIGURA 2.3.3. Representação das etapas alternativas de desagre gação do retículo cristalino.

Na figura 2.3.4 descreve-se as etapas consecutivas e alternativas de um crescimento cristalino⁷⁶, mostrando que nem sempre acontece uma transferência do átomo diretamente so bre o sítio de crescimento (ativo).

Basicamente, um átomo recém-depositado caminha por sobre os planos superficiais até atingir uma cunha de um outro plano. Nesta disposição ele novamente caminha até encontrar uma posição de alta coordenação, um sítio em dobra, incorporando-se em definitivo. Este processo se repete tantas vezes quantos forem os átomos depositados e uma vez constru<u>í</u> da uma camada, terá início o crescimento de outra e assim s<u>u</u> cessivamente.

FIGURA 2.3.4. Representação das etapas alternativas do crescimento do cristal I = átomo.

- (a) transferência direta do átomo I para os sí tios na superfície, na cunha e na dobra do cristal.
- (b) e (c) difusão na superfície e na cunha e em (c) o átomo na posição da dobra.
- (d) (e) (f) construção do cristal ao redor do átomo posi cionado na cunha.

Desta forma o mecanismo das reações de eletrocris talização e de eletrodissolução é fortemente afetado pela <u>a</u> tividade dos sítios de reação na superfície metálica^{77,78}. A incorporação dos conceitos de discordâncias no estudo de<u>s</u> tes processos, permitiu que alguns dos parâmetros que gove<u>r</u> nam as interações eletródicas metal/ion metálico tais como, a) sobretensão de transferência de carga e de cristalização; b) adsorção e desorção de gases ou de outras substâncias ativas; c) a formação de compostos intermediários e suas prováveis reações; d) reações de complexação dos ions metálicos com os componentes do eletrólito; e) o fenômeno de passivação e as possíveis reações dos produtos da reação de dissolução, fossem eliminados ou mesmo mantidos constantes. Por exemplo, ao se trabalhar com metais de alta pureza (acima de três noves), tenta-se eliminar a influência da desordem atôm<u>i</u> ca oriunda ou da incorporação de impurezas (átomos) ao retíc<u>u</u> lo cristalino ou mesmo da absorção do hidrogênio.

Como consequência, os modelos que se propõem para o processo de eletrodissolução, com a etapa de transferência de carga sendo catalizada pelos centros ativos na superfície do metal, devem ser considerados em cada região distinta do processo global, isto é, região ativa, pré-passiva e passiva , uma vez que em cada uma delas, a estrutura da superfície se modifica.

Allgaier e Heuster⁷⁹ mostram para o estudo de eletrodos de ferro que expõem uma única face cristalina, a forte influência na dissolução anódica tanto da estrutura da superfície como também da densidade dos sítios de dobras.

Harrisson e col.⁸⁰ propõem que os defeitos estruturais na superfície do metal devem ser considerados para expl<u>i</u> car a variação no tempo da cinética do cobre e ouro.

A natureza do ion metálico parcialmente solvatado que se movimenta no interior do eletrólito, atravessa a dupla camada elétrica e se incorpora no reticulo cristalino⁸¹ como um átomo neutro, influencia o processo de eletrocristalização

devido aos vários caminhos que este fon pode percorrer no substrato 78 .

A figura 2.3.5 descreve as várias possibilidades de desidratação de um ion metálico solvatado com seis moléculas de água na sua camada de hidratação primária, durante o processo de incorporação no retículo cristalino. FIGURA 2.3.5. Modelo representativo das várias possibilidades de agregação no retículo cristalino de um ion metáli co solvatado.

CONVENÇÃO

Íon Metálico

- Molécula de Água

(a)

(c)

(d)

(f)

2.4 A FORMAÇÃO DE FILMES ANÓDICOS

Os filmes anódicos representam uma classe especial de películas produzidas quando um metal é colocado em contato com uma solução eletrolítica adequada, e se aplica entre este metal e um eletrodo inerte, um potencial mais positivo do que um determinado potencial crítico propiciando a sua fo<u>r</u> mação^{82,83}. O potencial desta reação apresenta, em geral, v<u>a</u> lor bem próximo ao valor estimado a partir de dados termodinâmicos para o conjunto de substâncias envolvidas na reação.

Estes filmes muitas vezes so podem ser produzidos a partir do processo de oxidação anódica, e é raro a obtenção de apenas um único tipo de filme estável sob uma condição ex perimental específica. Este comportamento resulta principalmente da sobretensão aplicada ao sistema. O intervalo de so bretensão aplicado para que se tenha início o processo de crescimento de alguns filmes é de 10 até 1000mV, sendo que esta sobretensão terá maior valor quando ocorrer a transformação de um filme em outro do que para a formação direta de um só filme. Este elevado valor de sobretensão empregado no crescimento do filme anódico é justificável pois são várias as etapas energéticas do processo: (1) energia para gerar e mover os degraus, a nível atômico, sobre a superfície do ele trodo que sofre corrosão e o filme que está crescendo. Caso o filme seja amorfo, pode-se associar uma sobretensão ao pro cesso de superfície que não envolve movimento do degrau; (2) energia para o transporte de matéria para dentro e através do filme em crescimento ou, também, através da solução eletrolítica; (3) energia para transferir as partículas carrega das entre a solução e o eletrodo. Estas energias, entretanto, sofrem fortes influências das impurezas presentes na solução e serão de magnitude distinta se o crescimento ocorrer em faces diferentes do cristal (substrato) logo, o crescime<u>n</u> to não será aliatório existindo entretanto, regiões prefere<u>n</u> ciais.

O crescimento do filme anódico, seguido de uma nucleação, poderá ser controlado ou pela dissolução do metal ou pelo crescimento da nova fase, ou mesmo pelo impedimento da corrente de fluir através do metal.

Quando o processo de dissolução do metal controla a velocidade de reação, a corrente decresce exponencialmente com o tempo quando se aplica um potencial constante. Quando o controle do crescimento inicial do filme é feito por meio de um circuíto externo, a corrente permanece constante desde que o filme sobre o metal seja contínuo para, em seguida, cair bruscamente. Quando a etapa de crescimento do filme é quem controla o processo, a curva corrente versus tempo para um potencial constante apresenta uma região de máximo. O espessamento dos filmes anódicos ocorre ou pelo transporte el<u>e</u> trolítico dos íons através do filme, ou por precipitação atr<u>a</u> vés da solução^{84,85}, sendo que o transporte nos filmes anód<u>i</u> cos necessita de um campo elétrico de alta intensidade, com a corrente variando exponencialmente com este campo aplicado.

Filmes anódicos podem ser classificados quanto à sua preparação e uso em duas classes distintas no que se re-

fere às suas estrutura, morfologia e propriedades.

Na primeira classe encontramos os filmes descontínuos ou não homogêneos, pois estes filmes não recobrem completamente a superfície do eletrodo e apresentam tanto peque nos como grandes orifícios (poros), sendo formados inicialmente, nos sistemas que permitem a passagem do cátion de que o filme é formado para a solução. Como exemplos têm-se os fil mes de haletos formados sobre cobre, prata, mercúrio, os fil mes de óxido ou hidróxido formados sobre cádmio, zinco e mag nésio e os filmes de sulfato formados sobre chumbo, ferro e níquel.

A característica marcante deste tipo de filme é a de apresentar uma resistência por unidade de área do eletrodo constante e baixa, da ordem de 10 ohms/cm², ao fluxo da corrente durante o processo de crescimento do filme.

Sua estrutura é cristalina, podendo crescer como cristalites de faces cristalográficas bem definidas^{81,85}, ou de forma irregular. Outras vezes, esse filme apresenta uma forma floculenta ou mesmo gelatinosa constituída de poucos cristais.

O espessamento desse filme pode ocorrer pela difusão dos ions da superfície do eletrodo através do mesmo ou <u>a</u> través da difusão dos ions provenientes da solução eletrolitica.

Na segunda classe, encontramos a maior parte dos filmes anódicos, os chamados filmes contínuos que recobrem totalmente as superfícies metálicas. A maior parte destes fil mes são formados nos sistemas em que não ocorre a transferên cia do cátion para a solução eletrolítica na forma iônica, ou porque não existe um ion estável ou porque a velocidade de formação deste ion é muito baixa. Alguns exemplos deste tipo de filme, denominados de filmes passivos, são os filmes anódicos compactos formados sobre alguns metais como o zirc<u>ô</u> nio, alumínio e nióbio, ou os filmes formados pela adsorção do oxigênio (ou óxido) sobre os eletrodos de metais nobres.

A característica do filme continuo é a de apresentar uma resistência que se eleva com o aumento da sua espessura, podendo alcançar valores bem elevados (da ordem de milhar ou mesmo milhão de ohms) e necessitando a aplicação de centenas de volts para que a reação de dissolução venha nov<u>a</u> mente a ocorrer. Além disso, o crescimento do filme contínuo apresenta uniformidade em espessura por sobre toda a superf<u>í</u> cie do eletrodo, sendo geralmente de estrutura amorfa ou vitrea.

Deve ser mencionado que filmes compostos também po dem ser formados sobre os eletrodos. Neste caso, eles são constituídos por um filme contínuo em contato de um lado, com o metal do eletrodo, e do outro com um outro filme não contí nuo e a solução eletrolítica. Estes filmes compostos são for mados a partir da transformação de parte do filme contínuo em um filme não contínuo, quer por sua ruptura, quer por um processo que envolva a sua dissolução parcial⁸².

Este tipo de processo de transformação é comum, p<u>o</u> dendo até ser periódico, devido às possíveis variações de co<u>r</u> rente e tensão na célula eletrolítica.

Quando se quer ter uma primeira noção sobre a formação das várias fases do sistema eletrodo-eletrólito, podese utilizar os diagramas construídos por Pourbaix a partir de dados termodinâmicos em função do potencial aplicado ao eletrodo e o pH da solução. Este é um primeiro contato com as novas fases, pois os diagramas foram construídos para um sistema bem próximo ao equilíbrio, e quando não for este o caso presente, se terá um comportamento muito distinto do previsto nos diagramas. Por exemplo, a maior parte dos me tais é muito instável em soluções ácidas e, no entanto, pode -se ter sob estas condições a formação de filmes tanto de óxidos como de hidróxidos protegendo-o. Este comportamento po de ser explicado, considerando-se que quando o metal se encontra sob uma elevada sobretensão, a velocidade de formação desta nova fase pode-se tornar maior do que a sua velocidade de dissolução, de tal forma que não se consiga atingir o estado de equilíbrio descrito nos diagramas.

Assim, a partir deste primeiro contato com as no vas fases, através dos diagramas de Pourbaix, deve-se estudar com profundidade a cinética, desde a dissolução ativa do metal, até as várias etapas de crescimento do filme anódico, para se ter o conhecimento preciso sobre todo o processo de formação destas películas.

Segundo Vermilyea, a cinética de formação de filmes anódicos pode ser dividida em três etapas: (A) dissol<u>u</u> ção anódica do metal; (B) nucleação e crescimento do filme e (C) espessamento do filme.

A. Dissolução anódica do metal

As superfícies de um cristal, por possuirem diferentes regiões caracterizadas por distintas energias de liga ção de suas unidades estruturais, fazem com que a energia em pregada na remoção de uma destas unidades seja função de sua localização nestas regiões (sítios) sobre a superfície cristalina.

Estes sítios incluem o degrau atômico, a dobra no degrau atômico, defeitos de ponto como os devido, tanto a <u>á</u> tomos adsorvidos com os originários de sítios vacantes; pontos de afloramento de discordâncias e, também, todo um amplo conjunto de sítios dispostos sobre a superfície do cristal que possua uma orientação aleatória. Como já foi visto anteriormente, os principais sítios ativos - aqueles de maior energia - são os localizados nas dobras e nas discordâncias.

A figura 2.4.1 apresenta algumas destas regiões pr<u>e</u> ferenciais para o processo de dissolução⁸⁶. As unidades mais fracamente ligadas e que primeiro irão para a solução são as situadas nos cantos do cristal (1) onde cada uma destas unidades está cercada por somente três vizinhas, além do que, outro fator que contribui para a facilidade do processo é a aproximação de um número maior de moléculas de água, já que são três as faces da unidade em contato com o eletrólito.

FIGURA 2.4.1. Modelo para a dissolução de um metal mostrando as várias posições energéticamente não equivale<u>n</u> tes do retículo cristalino.

A seguir seriam removidas as unidades situadas nas cunhas (2) onde devem ser rompidas quatro ligações e, finalmente, as unidades que estiverem em qualquer ponto sobre a superfície do cristal (3) onde devem ser rompidas cinco lig<u>a</u> ções.

Nota-se que quando a dissolução ocorre em soluções aquosas produz-se superfícies faceadas, isto é, a nova supe<u>r</u> fície formada apresenta faces bem formadas e de baixo índice cristalográfico.

O processo de dissolução decrescerá ou cessará se sobre a superfície do metal se formar um filme que interfira na desagregação dos átomos do retículo cristalino para a solução. Sendo a remoção dos átomos a etapa determinante do processo de dissolução, ela sem dúvidas influirá na reação de deposição, quer dos produtos da reação de dissolução, quer de outros reagentes presentes no eletrólito e, consequentemente, na formação do filme anódico. Ter-se-á filmes de e<u>s</u> pessuras diferentes em diferentes faces do cristal.

Dewald⁸⁷ estudando o crescimento de filmes anódicos sobre cristais de InSb, mostrou que o crescimento é distinto nas faces (111) e (111) pois, os ions presentes nestas faces, terão energias de ligação bem diferentes.

B. Nucleação e crescimento do filme anódico

O processo de nucleação se desenrola quando um núcleo da nova fase sólida atinge um determinado raio crítico, quando se considera uma pequena região circular sobre a superfície do eletrodo com espessura de uma só molécula e ise<u>n</u> ta de tensões. O raio crítico é função das grandezas que caracterizam o sistema: das energias livres das interfaces el<u>e</u> trodo-solução, eletrodo-filme e filme-solução, das dimensões da região, isto é, o raio e a altura, da variação da energia livre de formação do filme e da sobretensão aplicada.

A frequência do processo de nucleação sobre a su-

perfície, ou seja, a velocidade de formação dos núcleos da nova fase é função da corrente anódica responsável pelo pro cesso eletródico^{82,88}.

Em geral, o processo de nucleação requer altas so bretensões para que se inicie a formação do composto anódico sobre o eletrodo. Alguns exemplos encontrados na literatura⁸¹ descrevem valores maiores do que 100mV para casos em que a superfície do eletrodo não é considerada um ótimo catalizador da reação de formação do filme. Entretanto, valores mais elevados de sobretensão foram observados quando e<u>s</u> te primeiro filme dã origem à formação sobre ele de um novo filme.

O crescimento do filme anódico em seguida da etapa de nucleação é basicamente um processo de desenvolvimento de um cristal. O cristal cresce a partir do movime<u>n</u> to dos degraus sobre a sua superfície com os átomos, sendo agregados nos degraus dos sítios em dobra.

A nova superfície formada apresenta indices de Müller baixos para as faces dos seus planos cristalográficos e sobre estas faces os novos degraus de crescimento se sucedem.

Nesta etapa de formação do filme anódico as impurezas que estiverem presentes no sistema afetam⁸¹ pronunci<u>a</u> damente o processo, fazendo com que o crescimento das cristalites seja extremamente irregular, deixando inclusive de apresentar facetas cristalográficas. E, assim, como no processo de nucleação a sobretensão necessária também é eleva-

C. Espessamento do filme anódico

O filme anódico torna-se mais espesso a partir đo transporte de ions, tanto do metal como do eletrólito, sendo assim governado pelas leis e equações básicas do transporte de matéria. O fluxo de íons por unidade de área no filme depende da concentração dos ions que se movimentam, do coeficiente de difusão destes ions, do potencial eletroquímico e, principalmente, da intensidade do campo elétrico no filme. Para campos elétricos de baixa intensidade, a corrente é pro porcional ao mesmo e num potencial constante, a espessura do filme é proporcional à raiz quadrada do tempo $(t^{\frac{1}{2}})$.Para cam pos elevados, a corrente é uma função exponencial da intensi dade do mesmo e para um potencial constante, a espessura é proporcional ao logarítimo do tempo (logt).

Como consequência das leis do transporte iônico, a espessura máxima que um filme anódico poderá alcançar é função da magnitude do potencial que poderá ser aplicado através do filme. O potencial limite que pode ser aplicado é governado pelo início de uma outra reação eletroquímica, e a reação mais comum na maior parte dos sistemas é a oxidação da água com desprendimento do oxigênio. Se o filme anódico for semicondutor, o potencial permitido é de somente 2 volts, mas, para filmes isolantes este valor ultrapassa 1000 volts na escala do eletrodo normal de hidrogênio.

da.

Complementando esta breve descrição, é necessário ressaltar a grande importância dos processos de redução e dissolução dos filmes anódicos em qualquer situação em est<u>u</u> do⁸⁹, pois o rompimento da película apassivante proporcion<u>a</u> rá novamente a reação de dissolução da superfície metálica.

CAPÍTULO 3

PARTE EXPERIMENTAL

3.1 INTRODUÇÃO

Neste capítulo são descritos a aparelhagem, eletr<u>o</u> dos, reagentes, célula de eletrólise e os procedimentos exp<u>e</u> rimentais adotados durante a realização deste trabalho.

3.2 APARELHAGEM

3.2.1 Potenciostato^{68,100,101}

Neste trabalho foram empregados dois potenciostatos com diferentes características no que se refere ao inte<u>r</u> valo de potencial de controle e à capacidade da corrente de saída.

Nas experiências de redução utilizou-se um potenciostato construído por Chagas⁹⁹ com limite aproximado de co<u>r</u> rente de saída de 50 mA e nos experimentos de oxidação, onde a densidade de corrente do processo era da ordem de 200 $mAcm^{-2}$ empregou-se um potenciostato modular PEC 1B fabricado pela Aadvark Instrument com limite de corrente de saída ± 1 Ampére. 3.2.2 Controlador da Velocidade de Rotação

Este equipamento, construído neste laboratório¹⁰⁹, permite que a frequência de rotação - f(Hz) - do eletrodo <u>a</u> presente uma variação descontínua de tal forma que se possa manter valores inteiros de f^{1/2} dentro do intervalo de 2 a 10 Hz^{1/2}.

3.2.3 Gerador de Sinal¹⁰⁸

O sinal de saída do gerador enviado ao potenciost<u>a</u> to é triangular, apresentando uma variação continua entre os potenciais extremos da onda (Es e Ei) dentro do intervalo de ± 2 Volt. A velocidade de varredura do potencial (vv = dE/dt) é contínua dentro do intervalo de O a 10 Volt/seg. e a inve<u>r</u> são do sentido da varredura é possível em qualquer valor do potencial compreendido entre Es e Ei.

3.2.4 Registrador

Os voltamogramas foram construídos com o auxílio de um registrador XY_1Y_2 da Hewlett-Packard, modelo 7046.

3.2.5 Voltimetro

Para o acompanhamento das curvas I x E e para as possíveis medidas e ajustes do potencial utilizou-se um voltímetro digital da Hewlett-Packard, modelo 3465A.

Figura 3.1 - Esquema do arranjo experimental do sistema de fixação e acionamento do EDR FT= foto-transistor, LE= lâmpada , M=motor, TA=tubo de alumínio,TL=tubo de lucite, CC= carvão para contacto elétrico, EG= eixo guia.

3.2.6 Termostato

O controle da temperatura do eletrólito foi mantido através de um fluxo contínuo de água no interior da camisa de circulação de água disposta ao redor da célula eletrolítica (Figura 3.2), empregando-se um termostato fabricado pela Precision Scientific Co.

3.2.7 Controle da Excentricidade do Eletrodo de Disco Rotativo

O eletrodo de disco rotativo era fixado no interior de um tubo de aço inox (TG, tubo guia), figura 3.1, por meio de dois parafusos. Este tubo guia estava conectado dir<u>e</u> tamente com eixo de rotação do motor de acionamento do eletrodo.

Para evitar a turbulência no eletrólito e manter um fluxo laminar na direção do eletrodo corrigia-se a excentricidade com o auxílio de um relógio medidor de excentricidade da Mitutoyo, modelo 2046E-08 de intervalo l0mm e gradu<u>a</u> ção 0'.01mm. O valor mínimo considerado foi de três divisões (0,03 mm).

3.2.8 Frequencimetro

Para medida precisa da frequência de rotação do <u>e</u> letrodo de disco rotativo empregou-se um frequencímetro fabricado pelo Instituto de Pesquisas Tecnológicas, modelo FM O sinal enviado ao frequencimetro provém do sistema⁹⁹ de medida da frequência de rotação do eletrodo que se encontra fixado sobre o motor de acionamento do mesmo (Figura 3.1). O eixo do motor possui dois furos ortogonais, através dos quais passa um feixe luminoso de uma pequena lâmpada (LE) que atinge a base de um fototransistor (FT). A cada incidência do feixe luminoso na base do fototransistor gera-se um pequeno pulso de tensão num resistor, o qual é utilizado na entrada de um amplificador operacional comparador, cuja saída fornece uma onda quadrada que é enviada ao frequencím<u>e</u> tro.

3.2.9 Viscosimetro

As viscosidades das soluções empregadas foram medi das, utilizando-se um viscosímetro tipo Ostwald.

3.3 CELULA ELETROLÍTICA

A célula eletrolítica, figura 3.2, utilizada, era de vidro pirex, com volume de aproximadamente 200 ml. Ela apresenta ao seu redor uma camisa de circulação de água para termostatização e na parte superior uma tampa de lucite contendo uma junta esmerilhada (10/14) e dois outros orifícios onde eram posicionados o eletrodo de trabalho (orifício central) e o eletrodo auxiliar que era disposto no interior da célula dentro de um pequeno tubo de vidro com fundo poroso.

50

5D.

FIGURA 3.2. Célula Eletrolítica. EA= Eletrodo auxiliar; N=Entr<u>a</u> da de nitrogênio; CL= Capilar de Luggin; TL= Tampa de lucite.

Um capilar de Luggin era inserido através da junta esmerilh<u>a</u> da. O eletrodo de referência era alojado num tubo de vidro em forma de cachimbo ligado ao capilar de Luggin por meio de uma torneira de vidro de duas vias.

Na tampa de lucite foram ainda fixados dois tubos de vidro para introduzir nitrogênio na célula eletrolítica. O contato destes dois tubos com o sistema de purificação do nitrogênio era feito por meio de uma torneira lateral de duas vias. Um dos tubos tem a finalidade de manter uma atmosfera de nitrogênio por sobre a solução eletrolítica durante a ex<u>e</u> cução das experiências e o outro tubo que termina no interior da célula, mantendo contato com a solução, possui na e<u>x</u> tremidade um dispersor do gás de vidro para assegurar a d<u>e</u> saeração da solução.

3.4 SISTEMA DE PURIFICAÇÃO DO NITROGÊNIO

O nitrogênio empregado na desaeração das soluções era purificado previamente, fazendo-o passar por frascos lavadores contendo soluções de vanádio II⁹⁶ e zinco amalgama do, água tridestilada e por último, uma solução do eletrólito suporte com a mesma concentração que a das experiências em execução. Durante qualquer medida o nitrogênio era mantido por sobre a solução eletrolítica para impedir a entrada de oxigênio na solução de trabalho.

Neste trabalho foram utilizados dois tipos de eletrodos de disco rotativo; um eletrodo de ouro coberto com um filme de mercúrio e um eletrodo de zinco. A Figura 3.3 mostra esquematicamente um eletrodo de disco rotativo.

A técnica empregada normalmente na construção desses eletrodos já foi descrita anteriormente⁹⁹. Na construção do eletrodo de zinco ao invés de soldar-se o disco(diâmetros: 0,730 cm, 0,700 cm e 0,800 cm) na extremidade de uma haste de aço, preferiu-se fazer esta conexão por meio de uma rosca.

3.5.1 ELETRODO DE DISCO ROTATIVO DE ZINCO

O zinco policristalino empregado na construção dos eletrodos de disco rotativos é de pureza 99,98%, e antes do início de uma dada experiência, este eletrodo recebia os s<u>e</u> guintes tratamentos superficiais para garantir uma boa repr<u>o</u> dutibilidade nas medidas.

3.5.1.a Lixamento Fino

A superfície do eletrodo era lixada com uma sequê<u>n</u> cia de lixas de SiC, carbeto de silício de grana 320, 400 e 600 dispostas sobre uma superfície de vidro empregando-se m<u>o</u> vimentos reprodutíveis.

3.5.1.b Polimento Final

Nesta etapa procurava-se remover tanto os riscos como também a fina camada deformada, proveniente do estágio anterior de polimento grosseiro. Empregou-se alumina em pó colocada sobre uma flanela e lubrificada com água bidestilada.

Através de uma análise visual (macroscopicamente) pode-se observar que os eletrodos de zinco utilizados apresentavam superfície exposta às reações com diferentes formas de crescimento cristalino. Um dos eletrodos mostrou superfície com formação de cristais colunares característica da solidificação sob velocidade de resfriamento rápido, o outro eletrodo mostrou-se com cristais poliédricos denominados equiaxiais, característica de uma velocidade de resfriamento lenta e de uma nucleação desordenada.

3.5.2 Eletrodo de Disco Rotativo de Filme de Mercúrio

O eletrodo de disco rotativo de filme de mercúrio tem como substrato um disco de ouro de diâmetro $\phi = 0,465$ cm. Antes de receber a camada de mercúrio o eletrodo era polido com óxido de cromo $(0, 1 - 0, 5\mu)$ e a seguir limpo com álcool etílico e água. Sobre a superfície limpa colocava-se mercú rio metálico até obter-se uma superfície uniforme e espelhada; o excesso de mercúrio era removido girando-se o eletrodo a 10.000 rpm¹⁰². O eletrodo assim preparado não se mostrou reprodutível devido à formação de compostos intermetálicos entre o zinco e o ouro¹⁰³⁻¹⁰⁶ sobre esta superfície. Este pro blema foi contornado deixando-se o eletrodo em repouso duran te alguns dias coberto com mercúrio e antes de cada experimento adicionava-se uma nova camada de mercúrio seguindo-se os mesmos cuidados anteriores de remoção do excesso, assegurando-se desta forma uma superficie inicial somente de mercu rio. Antes de cada medida experimental este eletrodo era man tido submerso no eletrólito suporte.

Com esse eletrodo de ouro amalgamado foram realiza das várias experiências de redução do fon $[Fe(CN)_6]^{3-}$ em meio de KCl 0,5 M. Os voltamogramas obtidos para diferentes velocidades de rotação permitiram calcular o coeficiente de dif<u>u</u> são do fon férrico, admitindo-se que a área do disco de ouro amalgamado fosse igual ao do disco de ouro. Os resultados obtidos para o coeficiente de difusão D = $(6,70 \pm 0,20) \cdot 10^{-6} \text{cm}^2 \text{seg}^{-1}$ concordam perfeitamente com os descritos na literatura¹⁰⁷.

Nestas condições, foi possível considerar a área do eletrodo de ouro recoberto com mercúrio como a própria área do disco de ouro.

3.5.3 Eletrodo de Referência

O eletrodo de referência empregado em todas as med<u>i</u> das experimentais foi o de calomelanos saturado de cloreto de potássio (ECS) construído neste laboratório.

3.5.4 Eletrodo Auxiliar

O eletrodo auxiliar empregado foi uma folha de platina de grande área soldada a um fio também de platina, usado para conexão elétrica.

3.6 REAGENTES

Todas as soluções foram preparadas com água tridestilada e reagentes pró-análise sem prévia purificação.

Foram empregados reagentes Merck e Carlo Erba na pr<u>e</u> paração das soluções de hidróxido de sódio. Para as demais s<u>o</u> luções, sulfato de zinco, cloreto de sódio, ferricianeto de p<u>o</u> tássio, benzoato de sódio e silicato de sódio foram utilizados somente reagentes Merck.

(HATTUTO IN AROUSED ENERGETICARE SUCCEARES

3.7 VOLTAMOGRAMAS. PROCEDIMENTO EXPERIMENTAL

O eletrólito suporte era adicionado à célula de eletrólise, com os eletrodos de referência e auxiliar já posicionados no seu interior. Durante alguns minutos, mantinha-se constante o fluxo de nitrogênio no interior da célula para desaeração da solução e aguardava-se o equilíbrio termostático na temperatura escolhida. A seguir, o eletrodo de trabalho era introduzido no interior da solução e registravam-se os voltamogramas, fazendo-se variar a velocidade de ro tação do eletrodo, o mesmo procedimento era empregado após a introdução da solução do íon eletroativo no eletrólito supor te. A introdução da solução contendo o íon eletroativo em es tudo no interior da célula foi feita empregando-se um tubo de plástico fino e longo que se ajustava perfeitamente a uma pipeta volumétrica.

O conjunto de voltamogramas obtidos para as várias velocidades de rotação do eletrodo era repetido pelo menos duas vezes. Antes do início de cada conjunto de medidas o eletrodo era removido do tubo guia, polido, recolocado no tubo guia do motor de acionamento do eletrodo e corrigida a sua excentricidade.

Quando necessário, fazia-se a medida do potencial (de repouso/misto) em circuito aberto, isto é, determinava--se a diferença entre o potencial do eletrodo de trabalho e do eletrodo de referência. Estas medidas foram feitas após vários intervalos de tempo (1, 10 e 30 minutos) em que o el<u>e</u> trodo era mantido em aberto em contato com a solução eletrolítica.

CAPÍTULO 4

A REDUÇÃO DO ÍON ZINCATO SOBRE O EDR DE FILME DE MERCÚRIO

4.1 INTRODUÇÃO

O estudo do sistema zinco em meio alcalino inicio<u>u</u> -se, escolhendo-se para superfície de reação o mercúrio met<u>á</u> lico. O processo eletroquímico enfocado é a reação de red<u>u</u> ção do fon tetrahidróxizincato, forma complexa do zinco predominante⁹⁰⁻⁹² no intervalo de concentração do NaOH empregado (1-4M).

Empregando-se o mercúrio, pode-se trabalhar com uma superfície que não contivesse os inconvenientes normalmente presentes nas superfícies metálicas sólidas, devido tanto às etapas de cristalização como também aos problemas inerentes ao preparo das mesmas.

Por outro lado, outro aspecto que muito contribuiu para que trabalhássemos com esta superfície metálica foi o de podermos efetuar um estudo cinético comparativo do sistema zinco-zincato em igualdades de condições experimentais a de uma superfície metálica sólida.

4.2 CONDIÇÕES EXPERIMENTAIS, RESULTADOS E DISCUSSÕES

4.2.1 Condições Experimentais

O intervalo de potencial aplicado na obtenção dos voltamogramas I x E foi mantido entre -1,200V até -1,900V, sempre referidos ao eletrodo de calomelanos saturado (ECS). Todos os voltamogramas assim obtidos foram registrados automaticamente, mantendo-se a velocidade de varredura dos pote<u>n</u> ciais sempre constante em 10 mV/s.

Os voltamogramas da redução do $Zn(OH)_4^{2-}$ foram obt<u>i</u> dos em meio de NaOH nas concentrações 1, 2, 3 e 4 M. Em cada solução do álcali foi empregado o seguinte conjunto de concentrações do íon zincato: 1, 2, 4, 6, 8 e 10 mM. Estas soluções, com diferentes concentrações do íon zincato, foram obtidos a partir de alíquotas conhecidas de uma solução estoque de sulfato de zinco heptahidratado 0,202M.

As experiências de redução do ion zincato foram executadas nas seguintes temperaturas: 25, 30, 35 e 40 \pm 1[°]C e variando-se a frequência de rotação do eletrodo, de tal forma, que a f^{1/2} adquiria valores inteiros no intervalo entre 2 e 8 Hz^{1/2}.

4.2.2 Resultados e Discussões

As figuras 4.1 e 4.2 mostram os voltamogramas obt<u>i</u> dos na redução do ion zincato de concentração 2 mM em NaOH 1 e 4M, respectivamente, e em várias frequências de rotação do eletrodo. A temperatura nas duas experiências era mantida constante em 25 \pm 1[°]C.

Verifica-se que o aumento da concentração do NaOH não modifica o comportamento das curvas de redução do ion zincato e do hidrogênio.

As curvas A, obtidas em presença unicamente do eletrólito suporte, mostram que a onda de redução do hidrogê nio e a corrente residual se mantém constantes e independen tes da variação da frequência de rotação do eletrodo. As cur vas B correspondentes à redução do $Zn(OH)_4^{2-}$ se mostram mais irreversíveis com o aumento da frequência de rotação do el<u>e</u> trodo, como pode ser constatado pelo deslocamento do potencial de meia onda⁸⁹ (E_{1/2}) no sentido dos potenciais mais negativos, caracterizando o fato de que a etapa de transferência de carga torna-se cada vez mais lenta do que a etapa de transporte de matéria.

A corrente limite de redução do $Zn(OH)_4^{2-}$ acontece mais cedo, em potenciais menos catódicos (-1,400V), quando comparada com a onda de redução de hidrogênio curva (A).

FIGURA 4.1. Voltamograma da redução do $Zn(OH)_{4}^{2-}$: 2 mM sobre EDR de filme de Hg em NaOH 1M e T = 25°C.

FIGURA 4.2. Voltamograma da redução do $Zn(OH)_4$: 2 mM sobre EDR de filme de Hg em NaOH4M e T = 25°C.

CONTRACTOR OF ARCONSAS ENERGETIONS & PRODUCT

Mostrando assim, que durante o processo de redução do $Zn(OH)\frac{2}{4}$ praticamente não há interferência da reação de redução do hidrogênio.

Verifica-se também, através destas mesmas figuras que a corrente limite de redução do $Zn(OH)_4^{2-}$ cresce com o aumento da frequência de rotação do eletrodo indicando que o processo está sob controle difusivo convectivo.

4.2.2.1 Coeficiente de Difusão do $Zn(OH)_{4}^{2-}$

A corrente limite de redução do $Zn(OH)\frac{2^{-}}{4}$ medida na região do patamar da curva I x E permitiu que se verificasse através das figuras 4.3a e b que a lei de Lévich (equação 2.2.12) é observada para todas as concentrações de zincato e NaOH estudadas.

A partir do coeficiente angular das retas da figura 4.3, determinou-se o coeficiente de difusão do fon zincato, fazendo-se uso da equação 2.2.13. Na tabela 4.1 estão dispostos os resultados obtidos neste trabalho para o coeficiente de difusão.

FIGURA 4.3.a. Verificação da Lei de Levich EDR de filme de Hg em (III) NaOH 2M com Zn $(OH)_4$ / mM l=2; 2=4; 3=6; 4=8; 5=10 e (IV) NaOH 4M com Zn $(OH)_4$ / mM l=2; 2=4; 3=6; 4=8; 5=10.

FIGURA 4.3.b. Dependência da razão $I_D^{L} / f^{1/2}$ com a concentração do Zn(OH), em (1) NaOH 1M (2) NaOH 2M, (3) NaOH 3M, (4) NaOH 4M

TABELA 4.1 - Coeficientes de Difusão Médios do Íon Zincato $(D.10^{6}/cm^{2}s^{-1})$. Concentração de NaOH/M, do Zn(OH) $_{4}^{2-}$ entre 1 e 10mM e temperatura em $^{\circ}C$.

NaOH/T	25	30	35	40
1	4,90 ± 0,20	5,40 ± 0,30	7,10 ± 0,10	6,70 ± 0,10
2	4,60 ± 0,20	4,70 ± 0,20	4,90 ± 0,20	6,30 ± 0,10
3	3,80 ± 0,10	4,00 ± 0,10	4,80 ± 0,20	6,40 ± 0,10
4	3,10 ± 0,10	3,40 ± 0,10	4,10 ± 0,20	5,50 ± 0,20

Os valores do coeficiente de difusão do ion zincato apresentados na literatura^{19,31,52,53,93,94} são discrepantes mesmo quando são empregados um mesmo método de medida e mant<u>i</u> da as mesmas condições experimentais. Por outro lado, alguns autores^{31,52,94} quando se utilizam do coeficiente de difusão, empregam valores somente como ordem de grandeza.

A tabela 4.2 apresenta os coeficientes de difusão do ion zincato obtidos por vários autores para uma concentração do álcali de 1M e temperatura de 25⁰C.

AUTOR	MÉTODO	D.10 ⁶ /cm ² s ⁻¹
Dirkse ⁹³	Polarografia	11,9
Popova e col. ⁵³	EDR de zinco	9
McBreen ⁹³	Polarografia	6,8
Meites ⁹⁶	Polarografia	2,6
Payne e col. ^{19**}	Polarografia	6,60
	Cronoculometria	6,11

TABELA 4.2 - Coeficiente de Difusão do $Zn(OH)_4^{2-*}$

- * A concentração de $Zn(OH)_4^{2-}$ utilizada quando conhecida varia até 3mM.
- ** Resultado de medidas no intervalo de concentração do álca li entre 0,18M e 4M.

Acredita-se que uma das justificativas para este comportamento discrepante quando se emprega o mesmo método de medida, no caso, a polarografia, é a de que a onda de redução do ion zincato apresenta máximos de segunda espécie⁹³.

4.2.2.2 Raio solvodinâmico

A figura 4.4 mostra que existe uma variação linear entre o logarítimo do coeficiente de difusão e o inverso da temperatura para diferentes concentrações de hidróxido de s<u>ó</u> dio, indicando que esta variação obedece a uma equação do t<u>i</u> po,

$$D_{T} = D_{O} \exp \left[- \frac{\Delta Eat}{R} \frac{1}{T} - \frac{1}{TO} \right]$$
 4.1

A partir das curvas da figura 4.4 foi possível determinar a energia de ativação (Eat) do processo de difusão. Os valores obtidos são apresentados na tabela 4.3.

TABELA 4.3 - Energias de Ativação de Difusão do fon Zincato

NaOH/M	∆Eat/Kcal mol ⁻¹
1	9,70
2	10,80
3	10,20
4	10,80
	$\overline{\Delta}$ Eat = (10,40 ± 0,50)

FIGURA 4.4. Variação do ln $D_{Zn} (OH)_4^{-1}$ versus T^{-1} em meio de (1) NaOH 1M, (2) NaOH 3M (3) NaOH 2M e (4) NaOH 4M.

Conhecendo-se as viscosidades dinâmicas (n) do eletrólito empregado, e os coeficientes de difusão (D), determinou-se os valores do coeficiente de Stokes-Einstein¹¹³ bem como os valores do raio solvodinâmico do íon zincato através da equação

$$\frac{D\eta}{T} = \frac{K}{6\pi r} \qquad 4.2$$

onde K = constante de Boltzmann.

Os resultados obtidos estão apresentados na tabela 4.4 mostrando que o coeficiente de Stokes-Einstein independe da variação de temperatura, mas varia em cerca de 20% com o aumento da concentração do álcali, o que gera uma diminuição da mesma ordem de grandeza no raio solvodinâmico.

NaOH/M	τ∕°c	(Dn/T) x 10 ¹⁰ /cm ² poise K.s.	r x 10 ⁸ /cm
1	25 30 35 40	1,97 1,68 1,94 1,66	$3,71 4,35 3,75 4,40 \bar{r} = (4,10\pm0,40)$
2	25 30 35 40	1,98 1,73 1,56 1,89	3,694,224,683,85r = (4,10±0,40)
3	25 30 35 40	2,04 1,90 2,02 2,36	3,583,833,623,09r = (3,50±0,30)
4	25 30 35 40	2,14 2,06 2,16 2,51	$3,413,543,382,91\bar{r} = (3,30\pm0,30)$

TABELA 4.4 - Coeficiente de Stokes-Einstein e raio solvodinâmico do fon zincato.

4.2.2.3 A cinética da eletroredução do Ion zincato

Em meio de baixa complexação o mecanismo proposto é de que a reação de transferência de carga se processa entre a espécie hidratada de zinco e em duas etapas de um elétron cada uma, tanto sobre eletrodo de amálgama⁹⁷ de zinco como sobre eletrodo de zinco sólido⁹⁸, na seguinte sequência de possíveis reações,

$$Zn^{2+}$$
 (aq) + e $\longrightarrow Zn^{+}$ (aq) (a)
4.3
 Zn^{+} (aq) + e $\longrightarrow Zn$ (b)

ao invés da reação heterogênea ocorrer numa única etapa de dois elétrons do tipo

$$\operatorname{Zn}^{2+}$$
 (aq) + 2e \longrightarrow Zn (c)

<u>.</u>

Este modelo foi fundamentado em estudos cinéticos efetuados em meio complexante sendo razoável apesar da meia vida da espécie intermediária (Zn⁺) ser extremamente curta⁹⁹, 10 ms que contribue para a sua instabilidade em soluções aquosas. A probabilidade de uma reação seguir um ou outro mecanismo está relacionada com a análise comparativa que pode ser feita entre as alturas das barreiras de energia para os dois casos. Bockris e Conway⁷⁶ mostraram que quando a espécie intermediária univalente é estável, por exemplo, a presença de íons cuprosos no sistema, a reação de transferência

THE ELEVENT OF THE SOUTH AS ENTREMAND AND THE SOUTH AND THE SOUTH AS ENTREMAND

de carga ocorre numa única etapa de dois elétrons. Entretanto, se a estabilidade da espécie intermediária univalente di minuir, a diferença entre as barreiras de energia diminui, sem contudo, evidenciar que um dos mecanismos é mais favorável do que o outro.

De qualquer forma, acredita-se ser pequena a prob<u>a</u> bilidade de que dois elétrons sejam transferidos simultaneamente através da barreira de energia potencial da reação el<u>e</u> tródica.

Para meios de forte complexação, soluções alcal<u>i</u> nas ou de haletos, o mecanismo geral proposto é semelhante ao das equações 4.3a e b, mas contém etapas de dissociação química entre as espécies complexas presentes. Uma sequência possível destas etapas, onde a forma predominante de complexação do zinco é tetraédrica, é a seguinte¹¹¹:

$$Zn (X)_{4}^{2-} \longrightarrow Zn (X)_{3}^{-} + X^{-} (a)$$

$$Zn (X)_{3}^{-} \longrightarrow Zn (X)_{2}^{-} + X^{-} (b)$$

$$4.4$$

$$Zn (X) + e \xrightarrow{edv} ZnX + X^{-} (c)$$

$$Zn (X) + e \longrightarrow Zn + X^{-} (d)$$

onde (X) representa um ânion qualquer cuja concentração d<u>e</u> terminará qual o grau de complexação e, por conseguinte, qual a espécie dominante em solução, e a equação 4.4.c a etapa determinante da velocidade do processo (edv) (etapa len-

ta).

A sequência de como estas etapas ocorrem, isto é, etapas de transferência de um elétron cada, precedidas, sucedidas e mesmo intercaladas por etapas puramente químicas, fo<u>r</u> nece inúmeras possibilidades de mecanismo geradas pela natur<u>e</u> za da superfície de reação (Cap. 2), pela composição do el<u>e</u> trólito e também pelo método eletroquímico empregado.

Nosso estudo, da cinética do processo de redução do Ion zincato através do emprego do método do EDR, efetuou-se a partir do conhecimento das curvas de Tafel. A corrente devida unicamente ao processo de transferência de carga, i_k eliminada a difusão, foi obtida através da equação 2.2.16, isto é, fêz-se o gráfico do inverso da densidade de corrente total contra o inverso da raiz quadrada da frequência de rotação do eletrodo. A i_k foi então determinada extrapolando-se a reta obtida para $f^{-1/2} = o$, isto é, $f^{1/2} \rightarrow \infty$ para vários potenciais.

A figura 4.5 mostra algumas destas curvas onde no conjunto global das experiências feitas, variou-se a concentração do NaOH, do ion zincato e a temperatura da solução el<u>e</u> trolítica.

Pode-se distinguir nas retas da figura 4.5 os diferentes processos que se sucedem. Quando o transporte é a etapa lenta têm-se as retas l e quando a transferência de carga é a etapa lenta têm-se as retas de 2, 3 e 4, sendo que, em am bos os conjuntos de retas, é constante o valor do coeficien te angular.

FIGURA 4.5. Determinação da corrente cinética e verificação da ordem de reação em relação ao $Zn(OH)_{4}^{2-}$, (I) $Zn(OH)_{4}^{2-}$ = 10 mM e NaOH 1M, (II) $Zn(OH)_{4}^{2-}$ = 8 mM e NaOH 2M para diferentes valores de E:1 = 1,700 V (i_{D}^{L}); 2 = 1,575 V; 3= -1,550 V; 4= -1,538 V.

A linearidade das curvas obtidas para os vários potenciais indica que a reação é de primeira ordem em relação ao ion zincato. A tabela 4.5 confirma este comportamento, uma vez que os valores obtidos para o coeficiente angular das cu<u>r</u> vas, isto é, d (1/i) / d ($1/f^{1/2}$) = B^{-1} são os esperados te<u>o</u> ricamente para a constante B. Os valores teóricos calculados a partir da equação 2.2.12 estão apresentados na tabela 4.5, e só dependem das condições do meio.

A constância nos valores obtidos para os coeficientes angulares torna evidente tratar-se de regiões tafeli<u>a</u> nas.

TABELA 4.5 - Valores Teóricos e Experimentais de $d(1/i)/(1/f^{\frac{1}{2}})$ = B⁻¹ (B.10³/mA cm⁻² Hz^{1/2})

		Bteórico	^B experimental E/V		
			-1,575	-1,550	-1,538
NaOH]	M	унаан талан тал		anii (V4 (),,,,,, - <u>-</u> 1, , , , , , , , , , , , , , , , , , ,	
Zn (OH) 2	2- 10mM	1,95	2,08	2,00	1,92
NaOH 2	2M				
$\operatorname{Zn}(\operatorname{OH})_4^2$	2- 8mM	1,32	1,35	1,35	1,32
NaOH 3	BM				
Zn (OH) 2/	2- 6mM	0,85	0,89	0,78	0,83
NaOH 4	M				
Zn (OH) 2	2- 6mM	0,71	0,71	0,67	0,63

A partir das densidades de correntes relativas ao processo de transferência de carga obteve-se as várias curvas de polarização para todas as condições experimentais estudadas.

Na figura 4.6 é apresentada a curva de polarização para NaOH 1M, $Zn(OH)_4^{2-}$ 4 e 10mM e temperatura de 25 ± 1[°]C.

FIGURA 4.6. Curvas de polarização catódica da redução do Zn (OH) $_{4}^{2}$ sobre EDR de filme de Hg (1) Zn(OH) $_{4}^{2}$ = 4mM; (2) Zn(OH) $_{4}^{2}$ = 10 mM.

Observam-se nas curvas da figura 4.6 mudanças de inclinação dentro do intervalo de potencial estudado. Na primeira região de potencial menos catódico, o declive de Tafel calculado $b_{k1} = 2,30 \text{ RT}/\alpha_{k1}F$ é de 136mV dec⁻¹ para $Zn(OH)_4^{2-}$ 10mM e de 157mV dec⁻¹ para $Zn(OH)_4^{2-}$ 4mM. Na segunda região onde o potencial apesar de ser mais catódico, i~i_D, a corrente não sofre influência do processo de transporte de matéria e obteve-se $\alpha_{k2} = 2,30 \text{ RT}/\alpha_{ks}F$ de 77mV dec⁻¹ e 78mV dec⁻¹ respectivamente para as mesmas concentr<u>a</u> ções de zincato.

Esta mudança de inclinação sugere que o mecanismo de redução do ion zincato ocorre com etapas limitantes distintas de um elétron de cada vez dentro de cada intervalo de potencial.

Uma vez fixada a concentração de hidróxido de sódio e variando-se a concentração do ion zincato os declives de Tafel obtidos ($b_{k1} e b_{k2}$) apresentaram quase que uma con<u>s</u> tância com uma dispersão das medidas menor do que 10% que está dentro do desvio de nossas medidas experimentais. Este comportamento indica que as constantes de Tafel obtidas não dependem da concentração do zincato pelo menos dentro do i<u>n</u> tervalo estudado.

Na tabela 4.6 apresentam-se para $T = 25 \pm 1^{\circ}C$ os valores médios dos b_{ks} obtidos para todas as soluções estudadas. Os valores médios dos coeficientes de transferência (α_{ks}) também são mostrados e foram calculados a partir das respectivas constantes (b_k) de Tafel.

TABELA 4.6 - As constantes de Tafel e os coeficientes de trans ferência da reação global $Zn(OH)_{4}^{2-} + 2e^{-} \rightarrow Zn + 4OH^{-}$ $T = 25^{\circ} \pm 1^{\circ}C$ obtidos a partir de curvas $\frac{1}{i}$ versus $1/f^{1/2}$ variando-se a concentração de zincato em 1,2,4,6,8 e 10mM.

NaOH/M	b _{Kl} /mV dec ⁻¹ (sobretensões r	^α Kl mais altas)	b _{K2} /mV dec ⁻¹ (sobretensões ma	^α K2 ais baixas)
1	132 ± 20	0,46 ± 0,06	74 ± 9	0,81 ± 0,10
2	118 ± 9	$0,50 \pm 0,04$	77 ± 8	0,77 ± 0,08
3	99 ± 1	0,60 ± 0,01	68 ± 8	0,88 ± 0,10
4	97 ± 10	0,62 ± 0,08	54 ± 1	1,10 ± 0,02

Os valores obtidos para as constantes de Tafel (b_{kS}) , tabela 4.6, apresentam uma tendência para um controle difusivo, à medida que a concentração do hidróxido aumenta. Este com portamento é justificável, uma vez que sob idênticas condições experimentais o coeficiente de difusão do íon zincato se torna menor (tabela 4.1).

As constantes de Tafel foram também determinadas а partir da equação geral para um processo irreversível que relaciona o logi/(i_D^L -i) com o potencial de forma linear, permitindo a determinação da $b_{K} = d \log \left[i/(i_{D}^{L} - i)\right] / dE$. Estes cal culos foram efetuados, pois em algumas concentrações do NaOH e do ion zincato a obtenção da densidade de corrente da etapa de transferência de carga a partir da equação 2.2.16 foi imprecisa, devido a flutuação dos dados experimentais que se acentuou

LIP 5 3

à medida que se aumentava a frequência de rotação do eletrodo, isto é, quando o transporte de matéria se tornava mais rápido.

Na figura 4.7 apresentam-se as curvas de polarização obtidas, utilizando $\log i/(i_D^L-i)$ versus E para algumas frequência de rotação do eletrodo e temperatura de 25 ± 1°C.

Observa-se nas figuras 4.7 comportamento semelhante aos da figura 4.6, ou seja, a curva de polarização catód<u>i</u> ca apresenta duas regiões lineares; a primeira delas acontecendo em potenciais menos catódicos (sobretensões mais ba<u>i</u> xas) e a segunda em potenciais mais catódicos (sobretensões mais altas) permitindo obter-se duas constantes de Tafel, uma para cada intervalo de potencial.

Os valores médios de b_k obtidos a partir do conjun to de medidas experimentais através dos quais foram construí das as curvas da figura 4.7a estão dispostos na tabela 4.7 e os valores médios da situação representada na figura 4.7b são respectivamente $b_{k1} = 87 \pm 7 \text{mV} \text{ dec}^{-1}$ e $\alpha_{k1} = 0,69 \pm 0,06$ e $b_{k2} = 66 \pm 4 \text{mV} \text{ dec}^{-1}$ e $\alpha_{k2} = 0,90 \pm 0,06$.

FIGURA 4.7.a. Curva de polarização catódica da redução do Zn $(OH)_{4}^{2-} = 10 \text{ mM}$ em meio de NaOH 1M e f^{1/2} = 2,4,6 Hz^{1/2}.

-E/V

FIGURA 4.7.b. Curva de polarização catódica da redução do Zn $(OH)_{4}^{2}$ = mM em meio de NaOH 2M e f^{1/2} = 5, 6, 7 Hz^{1/2}

TABELA 4.7 - As constantes de Tafel e os coeficientes de trans ferência para a redução do $Zn(OH)_4^{-2}$ em meio de NaOH 1M e T = $25\pm1^{\circ}C$ a partir das curvas E versus log i/(i_D^L-i).

$Zn(OH)\frac{-2}{4}/mM$	$b_{K1}/mV dec^{-1}$	αĸı	b _{K2} /mV dec	ι α _{K2}
1	94±4	0,63±0,03	66±11	0,91±0,20
2	87±7	0,69±0,06	68±2	0,87±0,03
4	92±2	0,65±0,01	68±3	0,88±0,04
6	82±5	0,73±0,04	67±7	0,89±0,10
8	87±5	0,68±0,04	61±1	0,97±0,02
10	84±10	0,71±0,08	61±3	0,96±0,05

A partir de gráficos semelhantes aos apresentados nas figuras 4.7 construídos para diferentes valores da concentração do ion zincato, foi possível a obtenção dos valores médios de b_k para cada uma das concentrações de NaOH utilizadas. Esses valores médios assim como os correspondentes valores médios do coeficiente de transferência α_k acham -se expressos na tabela 4.8.

Com os valores obtidos para a constante de Tafel, verifica-se a tendência para a reversibilidade à medida que a concentração do NaOH aumenta (tabela 4.8) e de que as me<u>s</u> mas independem da concentração do íon zincato (tabela 4.7) dentro do intervalo de concentrações empregado.

Os valores de b_{k2} obtidos pelos dois métodos (tabelas 4.6 e 4.8) mostram-se concordantes dentro do desvio experimental, entretanto se observa uma maior dispersão dos resultados entre os valores obtidos para b_{k1} , na região de sobretensões mais elevadas. Esta região caracteriza-se por densidades de correntes elevadas e próximas ao valor da i_D^L $(i \sim i_D^L)$. Desta forma, ao se eliminar o transporte, mediante o processo de extrapolação para $f^{-1/2} = 0$ $(f^{1/2} \rightarrow \infty)$ empregado nas curvas da figura 4.5 e apesar delas terem gerado maior dispersão nos valores de b_{k1} , obtém-se densidades de correntes cinéticas mais confiáveis.

Verificamos que os nossos resultados experimentais, tabelas 4.6 e 4.8 são compatíveis com o modelo propo<u>s</u> to por Losev¹¹⁷ para quando o mecanismo da reação eletródica ocorre em multietapas de transferência de um elétron em

TABELA	4.8 -	As constantes de Tafel e os coeficientes de trans
		ferência da reação global $Zn(OH)_4^{-2} + 2e^- \rightarrow Zn + 4OH^-$
		obtidos a partir das curvas E versus log i/(i $\frac{L}{D}$ -i)
		variando-se a concentração de zincato em 1,2,4,6,
		8 e 10mM e a frequência de rotação do eletrodo em
		$4,9,16,25 e 36Hz e T = 25 \pm 1^{\circ}C.$

NaOH/M	b _{kl} /mV dec ⁻¹ (sobretensões :	α _{Kl} mais altas)	b _{K2} /mV dec ⁻¹ (sobretensões mais	α _{K2} baixas)
1	86±7	0,69±0,06	64±6	0,92±0,08
2	84±8	0,71±0,08	64±4	0,93±0,06
3	74±4	0,80±0,05	57±4	1,04±0,07
4	77±6	0,77±006	56±5	1,06±0,10

cada etapa e todas elas com velocidades comparáveis.

As velocidades das diferentes etapas sucessivas de transferência de carga por dependerem distintamente do pote<u>n</u> cial, proporcionarão o aparecimento de quebras sobre a curva das correntes parciais versus o potencial nas vizinhanças do potencial de equilíbrio (com as etapas apresentando velocid<u>a</u> des comparáveis). Estas quebras correspondem à transição entre as etapas limitantes do processo, critério das quebras¹¹⁷ e consequentemente apresentarão diferentes valores para as constantes de Tafel.

Devido às nossas condições experimentais, a curva de polarização catódica é quem permite obter melhores informações acerca da cinética do processo, uma vez que a concentração do ion zincato é de maior grandeza do que a concentr<u>a</u> ção da forma reduzida, o zinco.

A região de sobretensões menos catódicas na curva de polarização, segundo Losev deve então fornecer uma con<u>s</u> tante de Tafel - b_{k2} - de tal forma que o coeficiente de transferência aparente a ela associado se situe dentro do seguinte intervalo $1 < (\alpha_{k2})_{ap} < 2$, onde $(\alpha_{k2})_{ap} = 1 + \alpha_{k2}$ que se composta com o coeficiente de transferência anódico na região de elevadas sobretensões (α_{a2}) forneceria $1 < (\alpha_{k2})_{ap}$ + $\alpha_{a2} < 2$. Nossas condições experimentais não permitiram obter este parâmetro (α_{a2}) para o processo anódico, e os resul tados determinados para o processo catódico (tabelas 4.6 e 4.7) na região de sobretensões mais baixas foram menores do que os esperados.

Entretanto, à medida que a concentração do álcali aumenta, o valor experimental obtido para $(1 + \alpha_{k2})$ tende para o valor esperado teoricamente, isto é, $1 < (1 + \alpha_{k2}) < 2$. Evidenciando que o processo de deposição ocorre com duas etapas de transferência de um elétron cada.

Nos inúmeros trabalhos publicados para o estudo do sistema zinco em meio alcalino sobre eletrodos de gota pendente tanto de mercúrio¹⁰ como de amálgama de zinco¹⁸ existe muita controvérsia, tanto no que se refere ao número de elétrons que são transferidos nas diversas etapas que com põem a reação global, como também quanto a natureza das et<u>a</u> pas puramente químicas que acompanham aquelas reações de transferência de carga.

Gerischer^{10,12} trabalhando com um eletrodo de gota pendente de mercúrio propõe que a redução do ion zincato ocorre em duas etapas. Uma reação química homogênea rápida de simples dissociação (Q), acompanhada de uma etapa única de transferência de dois elétrons (E) na seguinte sequência de reações,

$$Zn(OH)_{4}^{2-} \xrightarrow{} Zn(OH)_{2} \qquad (Q)$$

$$4.1$$

$$Zn(OH)_{2} + 2e \xrightarrow{edv} Zn + 2OH^{-} (E)$$

tendo ainda determinado o coeficiente de transferência de carga da etapa.

Este mecanismo foi confirmado por vários pesquisadores^{11,13,14,18,112} mesmo empregando métodos experimentais distintos ao de Gerischer.

Em trabalhos mais recentes, por razões já abordadas, o mecanismo proposto para a redução do ion zincato sobre eletrodos de mercúrio ou de amálgama se constitui de tran<u>s</u> ferência de um elétron em duas etapas consecutivas. Este é o mecanismo proposto por Payne e Bard¹⁹ estabelecido a partir de vários métodos eletroquímicos como a cronoculometria com degrau de potencial, polarografia ac e dc e voltametria de varredura linear e variando a concentração do álcali dentro do intervalo de 0,18 até 4M.

Estes autores determinaram os coeficientes de trans ferência a partir das curvas de polarização catódica e anód<u>i</u> ca apesar de não ser evidente nos gráficos apresentados a l<u>i</u> nearidade nestas curvas de Tafel.

Os resultados obtidos por Payne e Bard para os co<u>e</u> ficientes de transferência são, $\alpha_k = 0,82 \ e \ a_a = 0,34$. Tais valores não satisfazem perfeitamente um mecanismo de transf<u>e</u> rência de dois elétrons numa única etapa^{113,114}, isto é, qua<u>n</u> do $\alpha_a + \alpha_k = n = 2$, mas sim com um de transferência consecutiva de um elétron. O mecanismo proposto onde todas as et<u>a</u> pas estão no equilíbrio é do tipo QEQE.

Para Despic e col.²⁰ ao trabalharem com o método galvanostático e o cronopotenciométrico aplicado ao eletrodo de gota pendente de amálgama de zinco dentro de um amplo intervalo de concentração do álcali (KOH 1-14M) como do zinca-

to em solução $(10^{-2} - 10^{-1} \text{ M})$, puderam obter em alguns dos experimentos curvas de polarização catódicas e anódicas com duas regiões lineares, indicativas de duas etapas de transf<u>e</u> rência de um elétron. Na tabela 4.9 apresentam-se os result<u>a</u> dos por eles obtidos, para o processo catódico, fixada a co<u>n</u> centração do zincato em 10⁻² M.

Como resultado final de todas as experiências executadas, as constantes de Tafel obtidas foram de $b_{k2} = 60mV \text{ dec}^{-1}$ e $b_{k1} = 120mV \text{ dec}^{-1}$ para as regiões de sobr<u>e</u> tensões catódicas baixas e mais altas respectivamente, tendo apresentado uma dispersão de 4,5% nos valores medidos em sobretensões catódicas mais baixas. Os valores obtidos para os coeficientes de transferência de carga foram respectivamente $\alpha_{k2} = 1,00$ e $\alpha_{k1} = 0,49$. Para as curvas anódicas somente foi estudada uma região de baixas sobretensões, obtendose $b_a = 60mV \text{ dec}^{-1}$ e $\alpha_a = 1,00$ mostrando assim uma simetria nas curvas de Tafel anódicas e catódicas, na região pr<u>ó</u> xima ao potencial reversível.

С _{ОН} -/М	$b_{k1}^{mV} dec^{-1}$	α _{kl}	$b_{k2}/mV dec^{-1}$	α _{k2}
1 .	110	0,54		
2	109,3	0,54	51,4	1,15
3	95,1	0,62	62,2	0,95

TABELA 4.9 - Constantes de Tafel e Coeficientes de Transferên cia^{*} Obtidas por Despic²⁰ $Zn(OH)_{4}^{2-}$ 10⁻²M.

^{*} Calculados a partir das constantes de Tafel.

O mecanismo proposto por Despic é do tipo QEQE, sen do que a etapa lenta é a dissociação química do complexo de zinco univalente num outro complexo com um menor número de l<u>i</u> gantes. Este mecanismo foi estabelecido a partir da comparação dos parâmetros experimentais obtidos e o modelo de tran<u>s</u> ferência de elétrons em multietapas de Bockris¹¹³, levando em consideração apenas a região de sobretensões catódicas mais elevadas e a região de sobretensões anódicas baixas.

Os resultados obtidos neste trabalho para as con<u>s</u> tantes de Tafel catódicas são consonantes com os resultados obtidos por Despic, dentro da mesma faixa de concentração do álcali; apesar deste autor não ter observado mudanças de inclinação nas curvas de polarização catódica para a concentração 1M do álcali.

4.3 CONCLUSÕES

A linearidade verificada nas curvas $i_D^L \ge f_D^{1/2}$, f<u>i</u> guras 4.3, para todos os experimentos executados, nos permite concluir que, nesta região do processo de redução do ion zincato, onde a lei de Levich foi amplamente observada, que se existirem reações químicas que tanto podem anteceder, suceder ou se intercalar entre as etapas rápidas de transferê<u>n</u> cia de carga, elas estarão no equilíbrio^{62,116,117}.

O coeficiente de difusão médio do ion zincato, D = $(4,90 \pm 0,20) \cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$ em NaOH 1M e T = 25 ± 1°C, obtido neste trabalho, representa uma média de quarenta determinações com uma dispersão nos resultados (4,5%) bem menor do que o desvio experimental considerado. O elevado número de determinações do coeficiente de difusão e a pequena dispersão nos resultados obtidos, mostra a eficiência do método do EDR⁶⁷ empregado na obtenção deste parâmetro.

Se considerarmos os resultados obtidos por outros autores para a mesma concentração do álcali e temperatura mas empregando o método polarográfico, tabela 4.2, constatamos uma grande dispersão nos valores fornecidos para o coeficie<u>n</u> te de difusão $(2,0 - 12)10^{-6}$ sugerindo que talvez a presença de máximos de segunda espécie que acompanham o processo de redução do ion zincato⁹³ sejam os responsáveis por este a<u>m</u> plo intervalo de resultados.

De acordo com a tabela 4.4 constatamos que o aumento da concentração do NaOH, mantendo-se constante a temp<u>e</u> ratura, resulta numa diminuição do raio solvodinâmico do ion zincato. Este comportamento não pode ser justificado por uma possível modificação nas espécies complexas de zinco presentes nestas concentrações do hidróxido, uma vez que, nesta fa<u>i</u> xa de pH empregada, a forma predominante em solução é o ion tetrahidroxizincato, $Zn(OH)_{4}^{2-90-92,115}$.

Entretanto, é possível que o aumento da concentração do NaOH e consequente decréscimo na concentração da água, se traduza por uma diminuição muito acentuada no número de moléculas de água disponíveis para formar as camadas de hidratação ao redor das espécies presentes em solução, os ions OH⁻, Na⁺ e Zn (OH) $_{4}^{2-}$.

Assim, por exemplo, o número de moléculas de água disponíveis para formar as camadas de hidratação ao redor dos ions passa de 22 para 7, quando a concentração do NaOH passa de 1M para 4M. Desta forma, o número de moléculas de água di<u>s</u> poníveis por ion quando a concentração do NaOH é de 4M, se <u>a</u> proxima muito do número de moléculas de água necessárias para a formação da primeira camada de hidratação ao redor do ion¹¹³. Este fato então, pode ser o responsável pela diminu<u>i</u> ção observada para o raio solvodinâmico do ion zincato com o aumento da concentração do NaOH.

A cinética da redução do ion zincato sobre o EDR de filme de mercúrio foi possível de ser estudada, uma vez que o processo se apresentou irreversível (tabela 4.7) para todas as condições experimentais.

Nossos resultados experimentais permitiram constatar que a transferência de cargas do processo de redução, d<u>e</u> ve ocorrer em duas etapas de um elétron cada uma e com velocidades comparáveis sendo que para cada região de potencial uma velocidade estaria predominando sobre a outra.

Quanto a possível ocorrência de etapas químicas presentes no mecanismo global de redução do ion zincato, no<u>s</u> sos resultados experimentais não permitiram nenhuma divagação.

CAPÍTULO 5

ESTUDO DOS PROCESSOS ANÓDICO E CATÓDICO DO SISTEMA ZINCO EM MEIO DE NaOH 1M

5.1 INTRODUÇÃO

O estudo da eletrodeposição e da eletrodissolução quando se emprega eletrodos sólidos apresenta algumas diferenças (Cap. 2), no mecanismo com que cada processo ocorre, quando comparado com o uso de eletrodos metálicos renováveis. Ao lado dos processos eletródicos básicos que ocorrem, tran<u>s</u> ferência de carga, reações químicas acopladas e transporte das espécies eletroativas devem ser considerados os processos de crescimento, destruição do retículo cristalino ao lado do processo de difusão através da superfície do sólido. Em alguns sistemas eletroquímicos, muitas vezes uma das etapas do mecanismo global, relacionada com a modificação do retículo cristalino, vem a representar a reação que comanda o processo.

O sistema eletrodo de zinco em meio alcalino, quer no estudo da redução de ions zincato, quer no estudo da dissolução do zinco, seguida da passivação do metal, tem produzido resultados controvérsos, mesmo quando são mantidas as me<u>s</u> mas condições experimentais de medida e o único parâmetro a<u>l</u> terado for a orientação do plano do cristal metálico exposta à reação^{6,119,120,122}.

Os mecanismos propostos para às reações de deposição e de dissolução que tem lugar na superfície sólida do zinco são vários.

Lorenz¹²¹ propõe a seguinte sequência de etapas para a deposição do zinco a partir de soluções de cloreto,

 Zn^{2+} (aq) (interior da solução $\Longrightarrow Zn^{2+}$ superficie + aq (a) Zn^{2+} superficie + $2e^- \rightleftharpoons Zn$ adsorvido (cunha) (b) 5.1 Zn adsorvido (cunha) \xrightarrow{edv} Zn (reticulo) (c)

Neste mecanismo os ions de zinco se difundem para a superficie do eletrodo, e na transferência simultânea de dois elétrons formam átomos adsorvidos, adátomos. Os adátomos se movimentam sobre a superficie do retículo através do processo de difusão superficial, até se incorporarem nos sítios de crescimento mais ativos (cunha, dobra, etc.).

Farr e Hampson^{24,26}, trabalhando nas regiões de baixas sobretensões, tanto com substrato policristalino como de uma única orientação em soluções alcalinas, propõem que no mecanismo da deposição/dissolução do zinco a transferência de carga ocorre em duas etapas^{122,123} monoeletrônicas sucessivas, que involvem um intermediário de zinco monovalente. Neste mecanismo a etapa de difusão superficial do adátomo é a determinante da velocidade do processo global (edv).

Bockris e cols.³¹, trabalhando em regiões de eleva
das sobretensões, confirmam que a transferência de carga ocorre em duas etapas, porém, intercaladas por reações de di<u>s</u> sociação de natureza apenas química e a etapa lenta do pr<u>o</u> cesso é representada pela primeira reação de transferência de carga.

Tanto Farr como Bockris propuseram que o mecanismo catódico é semelhante ao anódico devido, a coincidência dos resultados obtidos para as densidades de corrente de troca determinadas a partir das retas de Tafel nos ramos anódico e catódico, e os obtidos a partir da relação linear entre a de<u>n</u> sidade de corrente e a sobretensão nas proximidades do pote<u>n</u> cial de equilíbrio (região de baixas sobretensões $n \leq 5mV$).

O processo de dissolução do zinco em meio alcalino apresenta uma curva de I versus E peculiar a este sistema. Quatro regiões distintas são observadas à medida em que o po tencial se faz mais positivo. Na primeira região, figura 5.1 o aumento de potencial a partir de E_A produz um aumento de corrente, até atingir um potencial E_{pp} . A região delimitada pelos potenciais E_A e E_{pp} é denominada de região de dis solução ativa do metal. Na segunda região onde o potencial está compreendido entre E_{pp} e E_p a corrente praticamente não varia com o aumento de potencial; esta região de patamar é denominada de pré-passiva. Atingindo-se o potencial E_p a corrente cae rapidamente permanecendo constante com o aumento de potencial até alcançar o potencial E_{TP} . Esta região com preendida entre E_p e E_{TP} representa a região passiva. Para potenciais mais positivos do que E_{TP} a corrente volta a

crescer, caracterizando a quarta região, isto é, região tran<u>s</u> passiva.

Na região pré-passiva ainda está presente o processo de dissolução do metal, mas acompanhado de um aumento na velocidade de reação do processo de bloqueio da superfície do metal (formação de filmes), para na região de passivação ati<u>n</u> gir uma cobertura máxima que impede a dissolução do metal.

Na região de transpassividade devido às mudanças na composição e estrutura do filme formado sobre o eletrodo, que acarreta uma diminuição na efetividade do bloqueio, é po<u>s</u> sível que o metal sofra novamente o processo de dissolução só que em potenciais bem mais positivos do que os anteriores.

FIGURA 5.1. Curva anódica do sistema zinco / OH-.

Devido a este comportamento, as informações acerca do mecanismo da deposição/dissolução do zinco que podem ser extraídos das curvas anódicas são muito limitadas.

A espécie predominante do produto da dissolução do zinco em soluções alcalinas isenta de qualquer ânion como foi visto, é o complexo solúvel zincato ao lado do hidrogênio, produto da reação catódica. Entretanto, à medida que o zinc<u>a</u> to vai se formando, o desprendimento de hidrogênio vai diminuindo e em soluções com concentração de zincato a partir de lmM em NaOH 5M o desprendimento cessa por completo¹²⁴. Expl<u>i</u> ca-se este comportamento pela mudança de um potencial misto em um potencial de equilíbrio, fixado pelo par $Zn/Zn(OH)_A^{2-}$.

Ao lado destas reações, dissolução do zinco e inibição da reação catódica, outras reações começam a acontecer antes que se penetre na região pré-passiva. Armstrong e Bell²⁸ confirmaram, fazendo uso do método da impedância far<u>a</u> daíca, que a reação de dissolução do eletrodo de zinco em v<u>á</u> rias concentrações de KOH ocorre em duas etapas monoeletrôn<u>i</u> cas, com a formação de uma espécie intermediária monovalente que se adsorve na região de potenciais mais negativos do que -1,34V vs Hg/HgO. Entretanto, a contribuição das espécies a<u>d</u> sorvidas só passam a ser significativas quando o potencial <u>a</u> plicado ao eletrodo se torna mais positivo do que -1,31V vs Hg/HgO. Nestas condições, as espécies adsorvidas se comportam segundo uma isoterma de adsorção de Langmuir.

Estas espécies adsorvidas gerando a formação de filmes anódicos finos e porosos restringem o intervalo útil

para o estudo da reação de dissolução ativa da superfície lim pa do eletrodo de zinco.

5.2 CONDIÇÕES EXPERIMENTAIS

Para o estudo do sistema $Zn/Zn(OH)\frac{2^{-}}{4}/OH^{-}$ foram fix<u>a</u> das a concentração do hidróxido de sódio em 1M e a temperatura em 25[°]C. As concentrações do ion zincato empregadas no estudo catódico pertencem ao intervalo de 4 a 10mM e no estudo anódico de zero a 16mM.

O eletrodo de trabalho foi um de zinco policristal<u>i</u> no. A velocidade de varredura dos potenciais foi fixada em 10 mV s⁻¹ para todos os experimentos e a frequência de rotação do EDR foi variada de tal forma que f^{1/2} = (n +1) Hz^{1/2} com n <u>a</u> presentando valores inteiros entre 1 e 7.

5.3 RESULTADOS E DISCUSSÃO

5.3.1 Processos Catódicos

Na figura 5.2 são apresentados os voltamogramas obtidos para o eletrólito suporte, NaOH 1M sob diferentes cond<u>i</u> ções experimentais. A curva 1 foi levantada, colocando-se o EDR de zinco recém-polido em contato com o eletrólito, fazendo-se em seguida a varredura do potencial em várias frequências de rotação do eletrodo. A curva 2 foi obtida, mantendo se o eletrodo recém-polido em contato com o NaOH durante vinte minutos para, em seguida, fazer-se a varredura do potencial nas várias frequências de rotação. Em ambas as curvas o intervalo de potencial aplicado foi de -1,500V até -1,750V versus ECS.

O potencial de circuíto aberto medido com o eletro do parado foi de -1,510V no instante da imersão no NaOH; e de -1,505V após um minuto e de -1,506V após vinte minutos. Quando as medidas eram interrompidas mantinha-se o potencial no eletrodo fixo em -1,550V com a finalidade de protegê-lo contra a corrosão.

Comparando-se as curvas l e 2 da figura 5.2 observa-se na curva 2 um decréscimo na onda de redução do hidrog<u>ê</u> nio em toda a extensão de potencial aplicado, sendo mais acentuado na região de potenciais mais negativos do que -1,600 V.

E/V vs ECS

FIGURA 5.2. Voltamograma do eletrólito suporte, NaOH lM. $T = 25 \pm 1^{\circ}C$, $f^{\frac{1}{2}} = 2$, 3, 4, 5, 6, 7, 8 $Hz^{\frac{1}{2}}$ (1) contacto imediato eletrodo/eletrólito suporte;

(2) contacto após vinte minutos.

Este comportamento é concordante com o observado por Muralidharan e col.¹²⁴ e sugere que a presença do ion zi<u>n</u> cato, produto da dissolução espontânea do eletrodo de zinco no álcali, quando mantido em circuíto aberto, sem passagem de corrente externa e sob atmosfera de nitrogênio, modifica o p<u>o</u> tencial misto do sistema conduzindo-o a fixação de um potencial de equilíbrio, além de deslocar a onda de redução do hidrogênio para potenciais mais negativos.

A figura 5.3 mostra como o potencial de equilíbrio do sistema zinco-zincato varia com a concentração do ion zincato. Com o aumento da concentração do ion zincato o potencial de equilíbrio se desloca no sentido anódico e o valor de dE_{equi} /d log C_{zincato} calculado a partir desta figura é o valor esperado teoricamente pela equação de Nernst; eviden ciando de certa forma o deslocamento da onda de redução do h<u>i</u> drogênio anteriormente mencionado.

log C_{Zn(OH)4}/mM

FIGURA 5.3. Variação do potencial de equilíbrio do par Zn / Zn (OH) $_{4}^{2-}$ com a concentração do Zn(OH) $_{4}^{2-}$

Entretanto, apesar de a onda de redução do hidrog<u>ê</u> nio ter-se deslocado para potenciais mais catódicos do que o potencial onde se inicia a onda de redução do fon zincato , figura 5.4, ela continua a influenciar de forma significativa¹³³ esta última redução.

Na figura 5.4 apresentam-se um dos voltamogramas obtidos para a redução do ion zincato, em condições de estado estacionário. A análise desses voltamogramas indica qual<u>i</u> tativamente que o processo se torna menos reversível com o aumento da frequência de rotação do eletrodo, como pode ser visto pelo deslocamento do potencial de meia onda para valores de potencial mais positivos.

FIGURA 5.4. Voltamograma da redução do $Zn(OH)_4^-$: 8mM sobre EDR de zinco, em NaOH 1M e T = 25°C.

Therefore an an annual second se

A presença do ion zincato em concentrações mais el<u>e</u> vadas do que as dos experimentos da figura 5.4 deve deslocar a onda de redução do hidrogênio para potenciais mais catód<u>i</u> cos¹²⁴ sem contudo deixar de acompanhar a onda de redução do ion zincato.

Este último comportamento fica melhor evidenciado quando se comparam as curvas de redução do hidrogênio sobre os eletrodos de filme de mercúrio, figuras 4.1 e 4.2, e as cu<u>r</u> vas obtidas sobre o eletrodo de zinco, figura 5.4.

Em média, a densidade de corrente de redução do hidrogênio sobre o eletrodo de zinco é seis vezes maior do que sobre o eletrodo de filme de mercúrio. Para um potencial fixo de -1,650V dentro da região do patamar de corrente limite de difusão do ion zincato, as densidades de correntes de redução do hidrogênio são $i_{H_2}^{Hg} = 0,15$ mA cm⁻² sobre o eletrodo de fil me de mercúrio e $i_{H_2}^{Zn} = 0,86$ mA cm⁻² sobre o eletrodo de zinco, mostrando que a reação de desprendimento de hidrogênio sobre o zinco é muito mais favorecida do que sobre o mercúrio, mesmo o zinco apresentando elevada sobretensão ao hidrogênio.

Observam-se também nas curvas da figura 5.4, que o aumento da frequência de rotação do eletrodo conduz a uma diminuição na extensão do patamar de corrente limite de difusão do fon zincato. Neste caso, dois processos colaboram para este comportamento; a reversibilidade da reação de redução do fon zincato fica cada vez menos acentuada com o aumento da frequência de rotação do eletrodo, $E_{1/2}$ se desloca para potenciais mais catódicos e, o potencial onde se inicia o despren-

dimento do hidrogênio se mantém constante (E ~ -1,600V) e independente da frequência de rotação do eletrodo.

Deve-se ressaltar então, que na região do patamar, a influência da corrente de desprendimento do hidrogênio na corrente limite de difusão do íon zincato será cada vez menor uma vez que à medida em que se eleva a frequência de rotação do eletrodo somente um dos processos é controlado pelo transporte de matéria, o que produz um aumento significativo na r<u>e</u> lação i_{D}^{L} zincato/Zn $/i_{H}^{+}/H_{2}^{-}$.

Assim, este efeito produz uma maior impressão na determinação da corrente limite de difusão do ion zincato, ob tida tanto a partir da intersecção das retas tangentes ao potencial de meia onda e ao patamar, como também ao se fixar um potencial qualquer pertencente a região do patamar.

Na figura 5.5 apresentam-se as curvas da variação da densidade de corrente limite de difusão do ion zincato com a frequência de rotação do eletrodo. A linearidade observada nesta figura sugere que se houverem reações químicas homog<u>ê</u> neas ou heterogêneas, elas estarão no equilíbrio, não se con<u>s</u> tituindo na etapa determinante da velocidade do processo de redução do ion zincato. A presença da reação de redução do h<u>i</u> drogênio que acompanha a reação de redução do ion zincato na região do patamar de corrente limite de difusão é mostrada na mesma figura 5.5, através da intersecção positiva da reta obtida com o eixo das ordenadas.

Através dos coeficientes angulares das retas da figura 5.5 e da equação 2.2.13 determinou-se o coeficiente de

difusão do fon zincato com um valor médio de $\overline{D} = (6,00\pm0,50)10^{-6}$ cm²s⁻¹.

O estudo cinético de qualquer sistema eletroquímico, quando realizado em condições experimentais tais que a rel<u>a</u> ção entre a concentração da forma reduzida seja muito maior do que a concentração da forma oxidada (sistema eletrodo de zinco-ion zincato), permite¹¹⁴ que a curva de polarização anódica contribua para uma melhor elucidação das etapas, em que se processa o mecanismo global do sistema.

Como vímos, esta situação é oposta à proporcionada quando se trabalha com um eletrodo de filme de mercúrio.

FIGURA 5.5. Verificação da Lei de Levich EDR de zinco, NaOH lM $T = 25 \pm 1^{\circ}C C_{Zn (OH)_{4}}/mM l = 4; 2=6; 3=8; 4=10 E = -1,625 V vs ECS.$

As curvas de polarização catódica, log $i/(i_D^L-i)$ ve<u>r</u> sus -E, figuras 5.6 foram construídas considerando-se as de<u>n</u> sidades de correntes limite de difusão do íon zincato obtidas nos experimentos com o EDR de filme de mercúrio, com o propósito de minimizar a imprecisão criada com o valor de co<u>r</u> rente determinado sobre a superfície sólida.

-E/mV vs ECS

As curvas log $i/(i_D^L-1)$ versus -E revelam que para o sistema zincato/zinco, o valor do dE/d log $i/(i_D^L-i) \approx 30$ mV dec⁻¹ obtido para $f^{\frac{1}{2}} = 7$ Hz^{$\frac{1}{2}$} para todas as concentrações de zincato estudadas, jã é característico de um processo reversível, logo para valores de frequência de rotação do eletrodo menores devemos esperar um aumento do caráter reversível do sistema. O decréscimo na frequência de rotação do eletrodo se traduz como uma diminuição do efeito do transporte de matéria e portanto uma maior reversibilidade.

Desta forma, os parâmetros cinéticos, constante de Tafel, coeficiente de transferência catódico e a densidade de corrente de troca do sistema, foram obtidos construindo-se as curvas de polarização catódica a partir da determinação das densidades de corrente devidas unicamente ao processo de trans ferência de carga i_K, através da extrapolação das retas de l/i versus l/f^{1/2} para $f^{-1/2} = o (f^{1/2} \rightarrow \infty)$, figura 5.7. Este procedimento permite que se elimine o processo de transporte de matéria diretamente, sem que haja necessidade de se corrigir a densidade de corrente limite de difusão da influência da reação de desprendimento do hidrogênio. Os valores das cor rentes utilizadas na figura 5.7, foram obtidas no início da curva I x E de redução do ion zincato, onde a influência do hidrogênio é então menos acentuada devido ao deslocamento de sua onda de redução, para potenciais mais negativos na presença dos íons zincato.

FIGURA 5.7. Curva i/i versus $l/f^{1/2}$ para C_{zincato} = 6mM em vários potenciais.

A linearidade observada nas curvas da figura 5.7, foi também verificada para as demais concentrações de zincato, e indicam uma cinética de primeira ordem em relação ao ion zincato. O declive 1/i / d $1/f^{1/2} = 1/B$ (equação 2.2.12) na figura 5.7, de valor $B = 1,52.10^{-3} \text{mA cm}^{-2} \text{ Hz}^{1/2}$ é concordante com o resultado obtido teoricamente e de valor $B = 1,15.10^{-3} \text{mA cm}^{-2} \text{ Hz}^{1/2}$.

A figura 5.8 apresenta as curvas de polarização p<u>a</u> ra várias concentrações do íon zincato, construídas a partir dos resultados de curvas semelhantes às obtidas na figura 5.7. As constantes de Tafel calculadas a partir das retas da figura 5.8 estão dispostas na tabela 5.1; nesta mesma tabela são apr<u>e</u> sentados os coeficientes de transferência catódicos ($\alpha_{\rm K}$) e as densidades de corrente de troca ($i_{\rm O}$) obtidas extrapolando-se as retas de Tafel para o potencial de equilíbrio e referentes às mesmas concentrações do íon zincato constantes na figura 5.8. Os valores médios obtidos para $b_{\rm K}$ e $\alpha_{\rm K}$ são respectivamente, $\bar{b}_{\rm K}$ = (95 ± 3)mV dec⁻¹ e $\bar{\alpha}_{\rm K}$ = (0,62 ± 0,02).

FIGURA 5.8. Curva de polarização catódica do sistema $Zn(OH)_4^2/Zn, C_{Zn(OH)_4}^{am}$ mM l=4; 2=6; 3=8; 4=10

$Zn(OH)\frac{2}{4}/mM$	$\frac{dE}{d \log i_{K}}/mV dec^{-1}$	α _K	i _o /mA cm ⁻²	
4	94	0,63	3,65	
6	92	0,64	4,17	
8	94	0,63	5,50	
10	100	0,59	6,60	

TABELA 5.1	-	Parâmetros	Cinéticos	Catódicos	do	Sistema
	$\operatorname{Zn}(OH)^{2-}_{\Lambda}/\operatorname{Zn}/OH^{-}$.					

Nossos resultados são concordantes com os obtidos por Bockris e cols.³¹, tanto no que se refere à constante de Tafel catódica de valor $\bar{b}_{K} = 113 \pm 30$ mV dec⁻¹ como, também, da densidade de corrente de troca. Bockris empregou na obtenção destes parâmetros, tanto o método transitório galvanostático como o potenciostático, além de utilizar um sofisticado sistema de purificação do eletrólito (KOH: 0,1 à 3,0M e Zn(OH)²⁻₄: 0,0001 à 0,5M).

Armstrong³⁰ empregando o método do EDR de zinco p<u>a</u> ra soluções de NaOH de 3.10^{-2} até 2M, isentas de zincato inicial, determinou experimentalmente a constante de Tafel <u>a</u> nódica b_a, e a partir da relação 1/30 = $1/b_a + 1/b_K$ obteve a constante de Tafel catódica para a redução do ion zincato de valor b_K = 105mV dec⁻¹.

Muralidharan e cols.¹²⁴ empregando o método estacionário obtiveram para b_K o valor médio de $\bar{b}_K = (175 \pm 20) \text{mV}$ dec⁻¹ e, através do método transitório potenciostático e ga<u>l</u> vanostático $\bar{b}_{K} = (200 \pm 20) \text{mV} \text{dec}^{-1}$ fixando a temperatura em 40°C em todos os experimentos. Entretanto, Ptitsyna e col.¹²⁵ trabalhando no intervalo de temperatura de -20 até +20°C, com o método estacionário do EDR, obteve para a constante catód<u>i</u> ca de Tafel o valor $b_{K} = 116 \text{mV} \text{dec}^{-1}$; tendo verificado que a variação de temperatura no intervalo estudado não altera a cinética de redução do fon zincato e nem produz um aumento significativo no valor da constante de Tafel b_{K} .

Nossos resultados de b_{K} , então, se mostram concordantes com os obtidos tanto por Armstrong como por Ptitsyna.

Como era esperado¹¹⁴, de acordo com as nossas condições experimentais, ou sejam, com $C_{Red} >> C_{Oxi}$, não se ob servou mudanças de inclinações (quebras) nas curvas de polarização catódica (fig. 5.8) que nos possibilitassem const<u>a</u> tar qualquer transição no mecanismo catódico.

5.3.2 Processos Anódicos

```
5.3.2.1 Eletrólito inicialmente isento de Zn(OH)^{2-}_{A}
```

Na figura 5.9 e 5.10 apresentam-se os voltamogra mas obtidos para o processo de dissolução do EDR de zinco em meio de NaOH 1M, na ausência de ions zincato e variando-se a frequência de rotação do eletrodo. Estas curvas, típicas da dissolução do zinco em meio alcalino exibem três regiões. A região que se estende de -1,500V até -1,300V é a região de dissolução ativa, a que se estende desde -1,300V até -1,100V representa a região pré-passiva e a região seguinte a passiva, que se estende além de -1,100V até atingir o potencial em que se inicia novamente a reação de dissolução do metal.

Estes valores de potencial apresentam um deslocamen to no sentido anódico com o aumento da frequência de rotação do eletrodo, devido ao aumento da irreversibilidade do processo.

As curvas I x E da dissolução do EDR de zinco (figu ras 5.9 e 5.10) apresentam três picos característicos à medida em que se aplicam potenciais mais anódicos ao eletrodo e somente um pico quando se percorre o caminho inverso de poten cial. Os dois primeiros picos se posicionam delimitando a região do voltamograma em que a corrente sofre pequena variação com o aumento do potencial aplicado: região do patamar. O pri meiro pico ocorre em -1,255V, quando a frequência de rotação do eletrodo é de 4 Hz, apresentando um deslocamento no senti do mais anódico de cerca de 140mV para a frequência de rota ção mais elevada, f = 64 Hz; o segundo pico ocorre para f = 4 Hz em -1,135V, exibindo um deslocamento de 120mV para quando f = 64 Hz. Após o segundo pico, a corrente cai rapidamente e o terceiro pico surge em -1,115V para f = 4 Hz e mantendo o mesmo deslocamento anterior.

As características destes três picos se modificam à medida em que se aumenta a frequência de rotação do eletrodo; o primeiro pico fica menos nítido ao mesmo tempo em que o segundo pico se torna mais acentuado, fazendo com que o declive entre os dois picos fique mais pronunciado, já o terceiro pico vai diminuindo gradativamente.

FIGURA 5.9. Voltamogramas anódicos do EDR de zinco em NaOH lM e f $\frac{1}{2}$ = 2, 3, 4, 5, 6, 7, 8 Hz $\frac{1}{2}$.

FIGURA 5.10. Voltamogramas da dissolução do EDR de zinco em NaOH 1M. Varredura de potenciais sentidos anódico (+) e catódico (+). Curva (a) $f^{1/2} = 3 \text{ Hz}^{1/2}$ e curva (b) $f^{1/2} = 8 \text{ Hz}^{1/2}$.

O mesmo perfíl de curva I x E foi também observado por vários autores^{27,28,30,32,38,40,42,52,57,119,125-128}, empregando diferentes métodos eletroquímicos e condições experimentais, tanto no que se refere à qualidade do zinco metálico empregado como eletrodo - pureza, orientação cristal<u>o</u> gráfica da face exposta à reação, tratamento superficial, etc - como, também, na natureza do eletrólito alcalino util<u>i</u> zado - concentrações variando desde 0,5 até 7M.

Um aspecto importante observado nestes trabalhos se relaciona com as condições convectivas do eletrólito que influenciam mais significantemente^{38,57} o perfíl das curvas I x E, fazendo com que ou não se verifique a presença de qua<u>l</u> quer pico¹¹⁹ em toda a extensão do voltamograma, ou que o pr<u>i</u> meiro pico, no início do patamar, fique mais acentuado que o segundo^{27,38,42}. Acreditamos que a elevada concentração do álcali empregada por estes autores (7M) por si só não seja a responsável por este comportamento, pois o que se observa nas curvas I x E é que um aumento na concentração do álcali proporciona apenas um aumento de corrente e não uma modificação no perfíl dos voltamogramas, indicando ser mais uma influên cia da agitação do eletrólito.

Hull e col.⁵⁷, fazendo voltametria cíclica com fios de zinco em soluções de KOH 1-5M só deixou de obter o perfíl usual das curvas I x E apenas quando os experimentos foram executados sem agitação do eletrólito e não por aumentar a concentração do álcali.

Os voltamogramas da figura 5.10 são mostrados sob

distintas frequências de rotação do eletrodo para que melhor se visualize o comportamento do pico que surge quando se faz a volta catódica, isto é, ao variar-se o potencial a partir da região passiva no sentido dos potenciais mais negativos. Com o aumento da frequência de rotação do eletrodo a corrente relativa a este pico passa de um valor maior do que a co<u>r</u> rente do primeiro pico, para f = 9 Hz para um valor memor com f = 64 Hz ou seja, as correntes relativas ao primeiro pico são respectivamente 120 e 190mA e as do pico de retorno cat<u>ó</u> dico 140 e 170mA.

Inúmeros são os trabalhos dedicados unicamente ao estudo das várias regiões da curva I x E de dissolução do eletrodo de zinco em meio alcalino, enfocando principalmente as várias espécies químicas que se formam dentro do amplo i<u>n</u> tervalo de potencial do processo. As referências 59, 93 e lll são revisões que abordam com detalhes os vários processos eletroquímicos deste sistema.

Os vários autores 38,42,57 são concordantes de que na região de potencial que se estende desde o potencial misto até o potencial que dá início ao patamar (primeiro pico), não se observam filmes (de qualquer espessura) sobre a supe<u>r</u> fície do eletrodo, permanecendo o mesmo brilhante em toda e<u>s</u> ta extensão de potencial.

Acreditamos que apesar de não ser visível, existe uma fina película que vai se formando sobre o eletrodo a pa<u>r</u> tir do início do seu contato com o eletrólito, e que vai sofrendo modificações à medida que o potencial se faz mais <u>a</u>

nódico. Esta afirmativa se alicerça nos resultados obtidos <u>a</u> través das curvas de polarização anódica, fixando-se como i<u>n</u> tervalo de potencial para o estudo a região compreendida entre -1,450V até -1,310V.

A curva de polarização anódica, figura 5.12 foi construída a partir de procedimento jã empregado, utilizando -se os resultados obtidos da figura 5.11. A figura 5.12 permitiu determinar a constante de Tafel anódica $b_a = 232 \text{mV} \text{ dec}^{-1}$ com um coeficiente de transferência anódico correspondente de $\alpha_a = 0,25$ e densidade de corrente de troca $i_0 = 17 \text{mA cm}^{-2}$, obtida extrapolando-se a reta até o potencial de circuito aberto.

O elevado valor que se obteve para a constante de Tafel, em uma região de potencial aquém da região do patamar e desta forma isenta da influência da reação que predomina nesta região, pode estar ligado à existência de um filme an<u>ó</u> dico sobre a superfície do metal que pode ter como origem a adsorção^{28,126} da espécie intermediária monovalente formada durante o processo global de dissolução do zinco.

FIGURA 5.11. Curva $1/i_{x} 1/f^{1/2}$ para NaOH 1M sem zircato inicial (1) E= -1380 mV, (2) E= -1390 mV, (3) E= -1400-V, (4) E= -1410 mV.

E/mV

FIGURA 5.12. Curva de polarização anódica do EDR de zinco em NaOH 1M.

Desta forma as curvas de polarização anódica foram obtidas fixando-se uma região de potencial próxima ao potencial misto e sem influências da reação inversa; pois, acredi ta-se que o curto intervalo de tempo, em que o metal permanece em contato com o eletrólito, não seja suficiente para que a formação dos núcleos das espécies adsorvidas sobre a superfície do metal seja significante, e possa conduzir à imprecisões na determinação dos parâmetros cinéticos. Para assegurar uma superfície isenta de películas quaisquer, antes de se obter cada voltamograma o mesmo procedimento anterior era executado, isto é, o eletrodo após o polimento era manti do dentro do eletrólito suporte sob um potencial catódico pa ra promover a redução da película existente.

A curva de polarização anódica, figura 5.14 obtida sob estas condições, e a partir das densidades de correntes de dissolução do zinco eliminada a influência do processo de difusão, isto é, da figura 5.13, permitiu que se determinasse o valor da constante de Tafel anódica de valor $\bar{b}_a = (52 \pm 3) \text{mV}$ dec⁻¹, o respectivo coeficiente de transferência $\bar{a}_a = 1,14\pm0,07$ e a densidade de corrente de troca $\bar{i}_o = (1,18\pm0,25) \text{ mA cm}^{-2}$. Estes resultados se mostram concordantes com os descritos na literatura^{93,11}.

Um primeiro contato com a região do patamar da cu<u>r</u> va I x E de dissolução do zinco em meio alcalino, sugere que o produto solúvel da dissolução do metal atingiu o seu limite de saturação (concentração crítica) dentro das condições experimentais, e desta forma bloquearia a superfície do ele -

trodo inibindo a dissolução. A etapa limitante do processo seria o transporte da espécie solúvel, ion zincato formado na superfície do eletrodo para o interior da solução. Desta forma é de se esperar que a construção dos gráficos de co<u>r</u> rente limite versus a frequência de rotação do eletrodo nesta região de patamar, forneçam retas que se extrapolam à origem. Entretanto, este comportamento não foi observado.

Na figura 5.15 apresentam-se as curvas de $i_L \times f^{\frac{1}{2}}$ construídos a partir das densidades de corrente limite dete<u>r</u> minadas sob os dois picos que delimitam a região do patamar. A não linearidade observada para as duas curvas, não satisf<u>a</u> zendo a lei de Levich e o valor positivo obtido para a inte<u>r</u> secção com o eixo das ordenadas, indicam que o processo que ocorre nesta região de pré-passivação é muito mais complexo do que o produzido pelo bloqueio da superfície do metal, dev<u>i</u> do a precipitação dos produtos da dissolução do metal.

FIGURA 5.13. Curvas i/i x $1/f^{1/2}$ em NaOH 1M sem zincato inicial (i) E= -1,440 V, (2) E= -1,450 V, (3) E= -1,460V, (4) E= -1,470 V e (5) E= -1,480 V.

E/mV

FIGURA 5.14. Curva de polarização anódica do EDR de zinco em NaOH 1M.

 $f^{1/2} / Hz^{1/2}$

FIGURA 5.15. Verificação da Lei de Levich na região do patamar anódico. Curvas 1 e 2 relativas às correntes lim<u>i</u> tes dos picos que delimitam esta região.

Assim, a figura 5.15 nos permite constatar que o processo que ocorre nesta região de patamar, pré-passiva está sob controle misto, isto é, a velocidade de transporte de matéria e a velocidade das reações químicas homogêneas ou h<u>e</u> terogêneas contribuem igualmente para o processo. O processo de transporte de matéria estaria associado à dissolução do metal que então ocorreria nos sítios ativos, por exemplo nas discordâncias em hélice^{38,47}, não bloqueados pela adsorção da espécie intermediária que se forma na interface eletrodoeletrólito. As reações químicas estariam associadas tanto ao processo de formação do filme anódico como também ao da dissolução química deste filme.

O comportamento observado por Hull⁵⁷ na verific<u>a</u> ção da lei de Levich é semelhante ao da figura 5.15, já, K<u>a</u> banov⁵² observou que a densidade de corrente considerada na região do patamar varia linearmente com a raiz quadrada da frequência de rotação do eletrodo (f = 9 a 64 Hz), apresen tando também um coeficiente linear positivo.

O modelo baseado na dissolução do metal seguida por uma precipitação gerada pelo alcance do limite de saturação, foi proposto por Kabanov para explicar a formação do filme anódico apassivante sobre o eletrodo de zinco. Este modelo foi fundamentado tanto na constatação da linearidade das cu<u>r</u> vas $i_L \propto \omega^{1/2}$ como também da verificação da forte influência da variação da concentração dos ions zincato na solubilid<u>a</u> de do composto que forma o filme anódico, ou seja, o aumento da concentração do zincato no eletrólito diminui a sua solubilidade indicando que existe uma concentração crítica, con-

centração limite das espécies solúveis presentes na superficie do eletrodo, no momento em que o filme se forma.

Para Hull^{40,57} este modelo não se aplica pois, além da falta de linearidade observada para as correntes limites dos dois picos que delimitam a região do patamar, experiências de redução efetuadas com o eletrodo de anel disco rotativo, disco de zinco e anel de grafita, com o anel mantido num potencial suficientemente catódico para que qualquer espécie solúvel formada e transportada até ele fosse reduzida, mostrou o mesmo perfíl de curva que a obtida para o eletrodo de disco.

O modelo proposto por Hull, para explicar a formação do filme anódico sobre a superfície do metal e sua post<u>e</u> rior apassivação num potencial mais positivo, é o da adsorção de espécies químicas que se formam na interface eletrodo-fi<u>l</u> me-eletrólito, e que conduzem à formação de uma monocamada d<u>i</u> retamente sobre a superfície do eletrodo, podendo ter como composição uma das possíveis formas do hidróxido de zinco¹²⁹.

A corrente de dissolução que se observa na região do patamar, delimitada pelos dois picos de corrente deve então ser controlada pelo grau de cobertura do filme, e desta forma, pela velocidade com que o processo de transporte dos ions zincatos formados ocorre através do filme.

Existe uma outra corrente de pesquisadores³⁰ que propõe que o mecanismo da apassivação do eletrodo seguiria o modelo de uma nucleação bidimensional, entretanto, Armstrong⁵⁹ ressalta que é difícil se fazer uma distinção entre este mo-

delo e o fundamentado na adsorção, pois, para que isto possa ser feito é necessário demonstrar que sobre a superfície metálica policristalina a nucleação bidimensional ou está presente ou ausente. E, como ressalta Brodd e Leger¹¹¹, antes do início de um processo de crescimento bidimensional ocorre fracamente o processo de adsorção.

Assim, já que na região pré-passiva o controle do processo é misto e a corrente limite que se observa é devida à contribuição de pelo menos dois processos distintos, isto é, um relacionado com o transporte do ion zincato e o outro relacionado com as modificações químicas no filme existente sobre a superfície metálica (formação e dissolução), processos evidenciados na figura 5.15, e uma vez que a $i_L \propto f^{1/2}$ não segue a lei de Levich, procurou-se determinar em separado cada contribuição, ou seja, a densidade de corrente limite de difusão do ion zincato e a densidade de corrente devida à contribuição puramente química.

A separação dos processos é possível¹¹⁷, e tanto Zembura¹³⁰ como Pleskov¹³¹ afirmam que, quando o processo de dissolução de um metal ocorre como resultado de duas reações simultâneas e uma delas for a reação de transporte de mat<u>é</u> ria, o estudo através do método do EDR é adequado para que se possa fazer uma distinção entre as reações.

 $1/i_{T}/mA cm^{-1}$

 $1/f^{1/2} / Hz^{1/2}$

FIGURA 5.16. Curva $1/i_{L} \times 1/f^{1/2}$ para a dissolução do EDR de zinco em NaOH lM.

(1) primeiro pico de corrente;

(2) segundo pico de corrente.

Verifica-se na figura 5.15, que a extrapolação para $f^{1/2} \rightarrow \infty$ das curvas de densidade de corrente limite conduzem a um mesmo valor de intersecção com o eixo das ordenadas, indicando, que a reação química na região pré-passiva é de mesma natureza em toda a sua extensão. A densidade de corrente relativa a esta contribuição química, representa o coeficiente linear da extrapolação para $f^{-1/2} = 0$ das retas da figura 5.16 e tem valor $i_Q = 288$ mA cm⁻².

A figura 5.17 construída a partir dos resultados ob tidos na figura 5.16, e fazendo-se uso da equação 2.2.17, representa a densidade de corrente limite de difusão do ion zin cato para os picos de corrente que delimitam a região prépassiva.

A linearidade observada na figura 5.17 indica que a lei de Levich é verificada, e que se existirem outras re<u>a</u> ções estas serão extremamente rápidas (equilíbrio) permitindo que se determine a concentração do ion zincato existente na superfície do eletrodo fazendo-se uso da equação 2.2.12. A concentração do ion zincato presente na superfície do eletrodo representa uma concentração crítica que ocasionaria, a partir da saturação da solução, a precipitação ou do óxido de zinco ou de um hidróxido.

Os valores obtidos para o primeiro e segundo pico são respectivamente $C_1^S = 368 \text{mM}$ e $C_2^S = 483 \text{mM}$. Comparandose estes resultados com os fornecidos a partir de dados termodinâmicos⁹⁵, para a concentração da forma amorfa do ion zi<u>n</u> cato e de valor 330 mM, vê-se que nossos resultados se apr<u>e</u> sentam mais elevados.

Entretanto, este comportamento é possível uma vez que a obtenção eletrolítica do ion zincato ocorre de tal for ma que permite o alcance de uma solução supersaturada. Dirkse⁹³, verificou que o ion zincato formado eletrolit<u>i</u> camente, não produz soluções supersaturadas no sentido usual do termo; pois nem a agitação nem a existência de um poss<u>i</u> vel núcleo para dar início à precipitação, contribuem para este processo^{134,135}. Ao invés disso, o óxido/hidróxido de zinco se precipita vagarosamente, num processo que se assem<u>e</u> lha bastante a uma reação de decomposição.

Figura 5.17 Verificação da Lei de Levich para a região prépassiva do sistema Zn/OH⁻.

- (1) PRIMEIRO PICO DE CORRENTE
- (2) SEGUNDO PICO DE CORRENTE
Os resultados obtidos neste trabalho sugerem que além do processo de adsorção, também a precipitação de um produto insolúvel no álcali são os responsáveis pela passiv<u>a</u> ção do eletrodo de zinco.

O terceiro pico que surge logo após a queda brusca de corrente nas curvas I x E, figuras 5.9 e 5.10, e que dá início a um bloqueio mais completo do eletrodo, foi analisado por Hull; no final do patamar, região do segundo pico de corrente, a superfície do metal ainda permanece escura para a seguir se tornar mais clara, deixando o eletrodo coberto com uma camada cristalina branca de apassivação, caracterizando assim uma região de transição na composição do filme <u>a</u> nódico.

Para Diard e Gorrec¹²⁸, durante a queda brusca na curva I x E, o terceiro pico que se forma é devido unicamente às características da função de transferência do sistema eletrônico e não a um fenômeno químico/eletroquímico.

Os resultados por nós obtidos mostraram que, com o aumento da frequência de rotação do eletrodo, este pico des<u>a</u> parece indicando que não se trata de uma resposta do equipamento empregado, mas provavelmente que o filme anódico que então se forma na superfície do eletrodo é cada vez mais resistente à passagem da corrente, confirmando uma transição de composição.

Quando se faz a varredura de potencial a partir da região passiva no sentido catódico, observa-se que o pico de corrente, figura 5.10, que caracteriza o rompimento do filme anódico que bloqueia a superfície do eletrodo apresenta menor magnitude com o aumento da frequência de rotação do eletrodo, quando comparada com os picos de corrente que delimitam a região do patamar. Entretanto, o potencial em que oco<u>r</u> re o rompimento do filme anódico é praticamente constante e de valor E = -1,190V, apresentando um deslocamento máximo de l0mV no sentido dos potenciais positivos, para o maior valor de frequência de rotação empregado.

Este comportamento sugere que na reativação do el<u>e</u> trodo, o filme existente sobre o mesmo é de natureza distinta ao existente na região pré-passiva; mas que à medida que as condições de agitação do eletrólito aumentam, aquele filme passa a apresentar características semelhantes ao da r<u>e</u> gião pré-passiva. Entretanto, acredita-se que este retorno às características ativas do eletrodo, não ocorre de maneira completa, pois ao se fazer uma variação de potencial anódica com o mesmo eletrodo já utilizado, observa-se uma hist<u>e</u> rese na nova curva I x E quando comparada com a precedente.

5.3.2.2 Eletrólito contendo $Zn(OH)\frac{2}{4}$ presente inicialmente

Na figura 5.18 apresentam-se as curvas I \times E da dissolução do EDR de zinco em meio de NaOH 1M e $Zn(OH)\frac{2}{4}$ 10mM para várias frequências de rotação do eletrodo.

E/V vs ECS

FIGURA 5.18. Voltamograma da dissolução do EDR de zinco em meio āe $Zn(OH)_{4}^{2-}$: 10 mM.

A presença inicial do ion zincato, dentro do inter valo de concentrações de 2 a 16mM não modificou o perfil da curva I x E em toda extensão dos potenciais estudada (-1,500V até -0,800V). Entretanto, pode-se notar comparando-se estes voltamogramas com os obtidos na ausência do ion zincato, figura 5.9, que, houve uma diminuição de corrente em toda a ex tensão da curva, e uma antecipação de 15mV no aparecimento do segundo pico de corrente no final da região pré-passiva e início da região passiva.

Estes comportamentos mostram que a presença in<u>i</u> cial do ion zincato dificulta¹²⁴ a dissolução do eletrodo de zinco, além de colaborar para que a passivação do eletrodo ocorra em potenciais menos anódicos.

Ao serem feitas as varreduras de potencial a par tir da região passiva para a região ativa, figura 5.18, a pre sença inicial do ion zincato não introduz nenhuma modificação nas curvas I x E obtidas quando este ion estava ausente no eletrólito. O potencial em que acontece o pico de corrente de retorno se mantém em E = -1,195V; apresentando um deslocamento no sentido anódico de cerca de 10mV quando se au menta a frequência de rotação do eletrodo. O mesmo foi obser vado na dissolução do EDR de zinco só em meio de NaOH 1M.

Para todas as concentrações de ions zincato empregadas foram construídas as curvas $i_L \propto f^{\frac{1}{2}}$ e em todas foi ob servado o mesmo comportamento anterior. Não há linearidade para a variação das densidades de correntes do primeiro e se gundo pico com a raiz quadrada da frequência de rotação do <u>e</u>

letrodo, e existe uma intersecção positiva com a ordenada, in dicando que na região pré-passiva o controle do processo é misto, isto é, ao lado da etapa de transporte do ion zincato para além da interface zinco-filme-anódico-eletrólito, existe etapas devidas a reações químicas na mesma interface. A figura 5.19 mostra o resultado obtido para uma concentração de 10mM do ion zincato.

FIGURA 5.19. Comportamento da densidade de corrente limite an<u>ó</u> dica na presença de $Zn(OH)_{4}^{2-}$: 10 mM.

- (1) primeiro pico de corrente;
- (2) segundo pico de corrente.

As densidades de corrente limite de difusão para as várias concentrações do ion zincato, foram obtidas empregando -se o mesmo procedimento já descrito. A figura 5.21 apresenta o resultado obtido a partir da figura 5.20 para uma concentr<u>a</u> ção de 10mM de $Zn(OH)_4^{2-}$ e para os dois picos de corrente lim<u>i</u> te.

Os valores das densidades de corrente química para as várias concentrações do íon zincato, obtidas a partir de curvas semelhantes às da figura 5.20 são praticamente consta<u>n</u> tes, como pode ser visto na tabela 5.2.

TABELA 5.2 - Densidades de corrente química da região pré-pas siva do processo de dissolução do EDR-Zn em meio de Zn(OH) $\frac{2}{4}$.

C _{zincato} /mM	i _Q /mA cm ⁻²
0	288
2	278
4	286
6	270
8	263
10	263
16	238

A tabela 5.3 mostra as concentrações do ion zincato na superfície do eletrodo obtidas a partir de retas semelhantes às da figura 5.21 para as várias concentrações do ion zi<u>n</u>

FIGURA 5.20. Curva $i_{L}^{-1} \times f^{-1/2}$ para a dissolução do EDR de zinco em meio de Zn (OH)₄ 10 mM, (1) primeiro pico de corrente (2) segundo pico de corrente.

 $f^{1/2} / Hz^{1/2}$

FIGURA 5.21. Verificação da Lei de Levich para a região pré-pas siva do sistema zinco / zincato/OH⁻.

C [∞] ∕mM	C ^S ₁ /mM	C ^S ₂ /mM	
	lo Pico de Corrente	2º Pico de Corrente	
0	368	483	
2	368	477	
4	325	426	
6	338	408	
8	315	396	
10	328	415	
16	291	393	

TABELA 5.3 - Concentrações do íon zincato presentes na supe<u>r</u> fície do eletrodo C^S,e no interior da solução eletrolítica, C[∞].

Os resultados da tabela 5.3 mostram que o aumento de concentração do ion zincato no eletrólito modifica pouco o equilíbrio químico do sistema, uma vez que, a concentração crítica do ion zincato na superfície do eletrodo sofre apenas um pequeno decréscimo, para as primeiras concentrações de zincato para a seguir permanecer praticamente constante.

Para completar o estudo cinético do sistema EDR de zinco em meio alcalino foram construídas as curvas de polar<u>i</u> zação anódica, figura 5.23, para o intervalo compreendido e<u>n</u> tre -1,480V até -1,440V e para diferentes concentrações iniciais do ion zincato, a partir de curvas $1/i \times 1/f^{\frac{1}{2}}$ seme lhantes às obtidas na figura 5.22. A linearidade observada

 $1/f^{1/2} / Hz^{1/2}$

FIGURA 5.22. Curvas l/i x l/f^{1/2} para dissolução do EDR de zinco em meio de Zn (OH)₄ 8 mM (1) E= -1,440 V, (2) E = -1,445 V, (3) E= -1,450 V.

E/V

FIGURA 5.23. Curva de polarização anódica do EDR de zinco em meio de $Zn(OH)_4^2$ (1) 2 mM (2) 8 mM, (3) 10 mM,(4) 16 mM.

nas curvas da figura 5.22 são indicativas de uma reação de primeira ordem em relação ao ion zincato, produto solúvel da dissolução do EDR de zinco.

Devido às nossas condições experimentais de trabalho, onde a concentração da forma reduzida (EDR de zinco) é muito maior do que a concentração da forma oxidada (ion zincato presente no eletrólito suporte) era esperado teoricame<u>n</u> te¹¹⁴ que no processo de dissolução do zinco, a curva de polarização anódica fosse fornecer melhores informações sobre o mecanismo com que ocorrem as várias etapas do processo, ou seja, através da presença das mudanças de inclinações na referida curva (quebras) pois, a nitidez com que é possível observar estas mudanças de inclinações está intimamente ligada àquelas relações de concentração.

Entretanto, o comportamento do zinco no NaOH impediu que fosse feito o estudo em sobretensões mais elevadas do que as empregadas na obtenção das curvas de polarização anódica.

Outros autores^{28,30,31,52,125,126} mesmo trabalhando com métodos transitórios, também não puderam contornar os mesmos impedimentos experimentais encontrados por nós. Assim, as curvas de polarização anódica do zinco, figura 5.23, não apresentaram as mudanças de inclinações esperadas, mas variaram linearmente com o potencial, permitindo que fossem calculadas as constantes de Tafel, os coeficientes de transferência anódicos e as densidades de corrente de troca, tab<u>e</u> la 5.4, ao extrapolar-se as retas obtidas para o potencial

OF HOLD ENERS

de equilíbrio do sistema.

Os valores médios encontrados para a constante de Tafel anódica são $\overline{b}_a = (61 \pm 5) \text{mV} \text{dec}^{-1} \text{ com coeficiente de transferência anódico } \overline{a}_a = 0,99 \pm 0,10.$

TABELA 5.4 – Parâmetros cinéticos anódicos do sistema $Zn/Zn(OH)\frac{2^{-}}{4}/OH^{-}$.

$Zn(OH)\frac{2}{4}/mM$	$b_a = \frac{dE}{d \log i_K} / mV dec^{-1}$	α _a	i _o /mA cm ⁻²
2	59	1,00	4,80
4	61	0,97	5,10
6	60	0,99	4,80
8	70	0,84	5,30
10	60	0,99	6,20
16	53	1,12	3,80

Bockris e col.²¹ apresenta como resultado de várias medidas experimentais empregando tanto o método galva nostático como o potenciostático, transitório o valor médio da constante de Tafel anódica $\bar{b}_a = 49 \pm 13$ mV dec⁻¹. As dens<u>i</u> dades de corrente de troca extrapoladas no ramo anódico e c<u>a</u> tódico das retas de Tafel ao potencial de equilíbrio foram coincidentes e concordantes dentro do intervalo de 10 à 30% com as obtidas para a região de baixas sobretensões. Estes resultados, permitiram que aqueles autores concluissem que o mecanismo do processo anódico é idêntico ao do catódico $(i_{0}^{\text{extrapolada}} \approx i_{0}^{\text{baixas sobretensões}})$ e que ocorre em multietapas ($\alpha_{a} + \alpha_{K} \approx 2$). Além disso, comparando os valores ex perimentais obtidos para os coeficientes de transferência aparentes anódico e catódico com os valores calculados teoricamente¹¹³, estabeleceram que a etapa determinante da velocidade do processo é a primeira transferência de elétron quando se caminha no sentido da redução da espécie complexa sol<u>ú</u> vel de zinco. O mecanismo proposto é o seguinte:

$$Zn (OH) \frac{2}{4} \longrightarrow Zn (OH) \frac{1}{3} + OH (a)$$

$$Zn (OH) \frac{1}{3} + e \xrightarrow{edv} Zn (OH) \frac{1}{2} + OH (b)$$

$$Zn (OH) \frac{1}{2} \longrightarrow Zn (OH) + OH (c)$$

$$5.1$$

$$Zn(OH) + e \longrightarrow Zn + OH$$
 (d)

Os resultados médios obtidos para a constante de Tafel anódica por Armstrong^{28,30} e Rajagopalan¹²⁴ através de estudos em estado estacionário são respectivamente $\bar{b}_a = (42 \pm 5) \text{ mV dec}^{-1}$ e $\bar{b}_a = (50 \pm 10) \text{ mV dec}^{-1}$. Estes autores admitem o mesmo mecanismo proposto por Bockris, pelo menos no que se refere às etapas de transferência de elétrons, como também, qual é a etapa mais lenta do processo global (equação 5.1.b).

Os resultados por nos obtidos, mostraram serem coincidentes as densidades de corrente de troca extrapoladas das

retas de Tafel para o potencial de equilíbrio no ramo anódico para baixas sobretensões e no ramo catódico para sobrete<u>n</u> sões mais altas, para as mesmas concentrações do ion zinc<u>a</u> to, tabelas 5.1 e 5.3, indicando que o mecanismo do processo anódico é o mesmo do que o catódico.

Verifica-se também, que o processo anódico/catódico, ocorre em multietapas de transferência de elétrons uma vez que a soma dos valores obtidos para os coeficientes de transferência anódico e catódico apresentam um valor α_a + $\alpha_c \approx 2$, indicando também que uma das etapas de transferência de elétron é a determinante do processo¹¹³.

Estes resultados sugerem que para o processo anód<u>i</u> co/catódico, o mecanismo pode ser do tipo,

$$\operatorname{Zn}(OH)_{4}^{2-} \xrightarrow{} \operatorname{Zn}^{2+} + 4OH^{-}$$
 (a)

$$Zn^{2+} + e \xrightarrow{edv} Zn^{+}$$
 (b) 5.2

$$Zn^+ + e \longrightarrow Zn$$
 (c)

onde a etapa determinante seria a primeira transferência de elétron quando se caminha no sentido catódico de elevadas so bretensões, uma vez que a etapa (5.2.b) é favorecida apenas pelo decréscimo na energia de ativação, ao passo que a etapa (5.2.c) é favorecida além do decréscimo da energia de ativação, também pelo aumento da concentração da espécie intermediária (Zn⁺), contribuição que é englobada na equação de velocidade desta etapa. Caso invertessemos o sentido de varia-

ção do potencial, isto é, percorressemos potenciais cada vez mais anódicos, teríamos para a região de baixas sobreten sões, a mesma etapa (b) como a determinante do processo.

A primeira etapa (5.2.a) correspondente a uma dissociação química se torna possível, uma vez que o processo de redução/oxidação, ocorre numa região de potencial onde a carga do metal é negativa, além do que o potencial de carga zero do zinco¹³² é de valor $E_{\rm PZC} = -0,64V$ versus ENH, justificando assim uma maior atração pela espécie ${\rm Zn}^{2+}$ do que pela ${\rm Zn}({\rm OH})^{2-}_{4}$.

5.4 CONCLUSÕES

A presença do ion zincato na solução de NaOH prot<u>e</u> ge o eletrodo de zinco deslocando a reação de desprendimento de hidrogênio para valores de potenciais mais catódicos, e co<u>n</u> tribue para que se tenha um potencial reversível ao invés de um potencial misto. Com o aumento da concentração do ion zi<u>n</u> cato aquele potencial se torna cada vez mais anódico.

Entretanto, a influência do desprendimento do hi drogênio, ao longo da onda de redução do ion zincato, é mais acentuada quando se emprega o eletrodo de zinco ao invés do eletrodo de filme de mercúrio. Este comportamento é mais <u>a</u> centuado na região do patamar, sendo observado um aumento médio em cerca de 11% para a densidade de corrente limite de difusão do ion zincato sobre o eletrodo sólido, comparado com o de filme de mercúrio, para as mesmas frequências de rotação

do eletrodo.

Desta forma, os resultados obtidos para o coeficie<u>n</u> te de difusão do ion zincato sobre a superficie de mercúrio são mais confiáveis do que os obtidos para a superficie sólida de zinco.

O processo de redução do ion zincato sobre o eletro do de zinco se apresenta irreversivel, tabela 5.1, quando se faz uso do EDR. Mesmo comportamento foi observado para o mesmo processo de redução sobre o eletrodo de filme de mercúrio, tabela 4.6.

De acordo com as nossas condições experimentais, não se observou mudanças de inclinação (quebras) nas curvas de polarização catódica, que nos possibilitassem constatar qua<u>l</u> quer transição no mecanismo da reação de redução do ion zinc<u>a</u> to sobre o eletrodo de zinco.

O elevado valor obtido para a constante de Tafel anódica, b_a para uma região de sobretensão de cerca de 80mV e bem aquém da região do patamar de corrente limite, nos permite concluir, apoiados nos resultados obtidos por Armstrong e Col.^{28,30}, que na região de dissolução ativa à partir de um certo potencial, além do potencial misto, já existem presentes na superfície do eletrodo sólido espécies químicas adsorvidas. Estas espécies adsorvidas bloqueiam em parte a superf<u>í</u> cie do metal, não impedindo, no entanto, a sua dissolução e por outro lado não são visíveis, pois Hull⁵⁷ não as pode ide<u>n</u> tificar.

O aumento que se observa no declive entre os dois

picos de corrente que delimitam a região pré-passiva quando se aumenta a frequência de rotação do eletrodo, indica que o processo de passivação do eletrodo de zinco ocorre através de pelo menos um processo de adsorção, e não a partir de apenas um processo de precipitação. Assim, este aumento no declive indica também uma menor resistência do filme anódico formado sobre a superfície do eletrodo nesta região de pote<u>n</u> cial, ou seja, quanto maior é a agitação do eletrólito menor é a espessura do filme. O aumento de corrente limite que se observa confirma este comportamento, uma vez que quanto menor for a espessura do filme, maior será a corrente através do mesmo⁵⁷.

A corrente limite que se observa na região pré-pa<u>s</u> siva é o resultado de processos distintos que ocorre na interface eletrodo-filme-eletrólito, ou seja, processo de nat<u>u</u> reza química, formação e dissolução do filme e processo de transporte do ion zincato formado na superficie do eletrodo. Através do método do EDR foi possível isolar as duas co<u>m</u> ponentes distintas do processo, evidenciadas nas curvas de $I_L \propto f^{\frac{1}{2}}$ por não obedecerem a Lei de Levich. Entretanto, não foi possível, dentro das nossas condições experimentais, estabelecer a natureza destas reações químicas homogêneas e h<u>e</u> terogêneas acopladas à reação de transporte de matéria.

A partir da componente difusiva da corrente limite da região pré-passiva, foi então possível determinar a concentração do ion zincato na superfície do eletrodo, isto é, concentração crítica, e verificar que são diferentes as concentrações para os dois picos de corrente que delimitam aque

la região. Constatou-se também, que o valor de cada concentração está acima do valor calculado através de considerações termodinâmicas⁹⁵.

Estes resultados nos permitem concluir que a passi vação do eletrodo de zinco ocorre como resultado de dois pro cessos distintos. O primeiro seria a formação de um filme anódico do tipo descontínuo, através de um processo de adsorção de produtos da reação de dissolução do metal, que se iniciaria dentro da região de dissolução ativa, o qual sofre um espessamento dentro da região pré-passiva. O segundo processo conduziria ao bloqueio total desta nova superfície e te ria como origem o alcance de uma concentração crítica por par te do ion zincato, e a posterior precipitação de um óxido/hidróxido de zinco insolúvel sobre o filme. Este segundo processo tem início na região do primeiro pico de corrente limi te, acentuando-se na região do segundo pico e, atingindo o seu limite máximo de supersaturação na região do terceiro pi co de corrente situado no início da região passiva.

O terceiro pico que surge logo após a queda brusca de corrente, caracteriza a transição nos processos que estão acontecendo na interface eletrodo-filme-eletrólito, ou seja, evidencia uma mudança de fase no filme anódico formado sobre o eletrodo.

Quanto ao pico de corrente observado quando se faz a varredura de potenciais no sentido catódico a partir da r<u>e</u> gião passiva, verifica-se que o mesmo ocorre praticamente num mesmo potencial que independe tanto da variação da frequên-

cia de rotação do eletrodo como também da adição de concen trações crescentes de íon zincato ao eletrólito. O decréscimo de corrente verificado naquele pico com o aumento de frequência de rotação, quando comparado com as correntes limites da região pré-passiva, sugere que, ou existem pontos mais frágeis sobre o filme formado sobre o eletrodo, ou que o me<u>s</u> mo possui uma menor resistência, permitindo assim sua rem<u>o</u> ção de forma mais rápida.

A presença inicial do fon zincato no eletrólito, durante o processo anódico apenas modificou a grandeza da corrente em toda a extensão da curva I x E, acentuando-se na região pré-passiva; talvez nesta região, ocorra uma diminuição da solubilidade do composto de que o filme anódico é cons tituído.

O sistema zinco em meio alcalino não permitiu que se observassem as mudanças de inclinações nas curvas de pol<u>a</u> rização anódicas, previstas teoricamente para um mecanismo de multietapas com velocidades comparáveis, restringindo a nossa região de trabalho, só para sobretensões anódicas mais baixas, onde então a adsorção de espécies intermediárias pode ser considerada desprezível.

O processo de redução do ion zincato sobre o eletrodo de zinco é o mesmo que o processo de oxidação do zinco. O mecanismo global ocorre com duas etapas de um elétron cada uma, sendo a etapa determinante da velocidade do processo a primeira transferência de elétron, quando se percorre o sentido dos potenciais catódicos.

Os resultados obtidos na redução do ion zincato sobre o eletrodo de filme de mercúrio são concordantes com os obtidos sobre a superfície sólida, no que concerne as etapas com que são transferidos os elétrons - duas etapas e cada uma com um só elétron. Entretanto, o que se verificou para a superfície metálica líquida é de que as velocidades das etapas de transferência apresentavam velocidades comparáveis.

Uma possível explicação para este comportamento dis tinto é de que a transferência de elétrons na superfície de mercúrio é mais rápida do que na superfície metálica sólida, ou que talvez o processo de dissolução do complexo intermedi<u>á</u> rio formado é mais lento na primeira superfície. Entretan to, não estamos em condições de afirmar quantitativamente estas explicações.

CAPÍTULO 6

A INFLUÊNCIA DO CLORETO, BENZOATO, BENZOTRIAZOL E SILICATO NO SISTEMA ZINCO EM MEIO DE NAOH 1M

6.1 INTRODUÇÃO

Inúmeros são os trabalhos desenvolvidos^{83,136-138,140} no sentido de minimizar e, se possível, inibir de forma co<u>m</u> pleta o processo de corrosão que atinge a grande maioria dos metais não nobres.

Os problemas que a corrosão metálica propiciam podem ser então contornados, através de uma seleção adequada e econômica de procedimentos que minimizem aqueles problemas. Estes procedimentos podem ser de várias naturezas como por e xemplo, através de uma polarização externa anódica ou catódi ca, do recobrimento da peça por uma película mais resistente ao meio (tinta, cromação, galvanização) ou mesmo atuando diretamente no ambiente onde se encontra o metal, através da adição de íons ou moléculas que diminuem a agressividade do meio. Este último procedimento permite que se formem sobre o metal películas protetoras, a partir ou de um processo de ad sorção daquelas espécies químicas (inibidores), ou através de um mecanismo de precipitação de espécies complexas não solúveis, que porventura se formem e envolvem aquelas espécies qui micas.

São várias as substâncias empregadas como agentes inibidores do processo de corrosão e todas elas estão intim<u>a</u> mente ligadas com a natureza do metal e do meio ambiente. A<u>s</u> sim, têm-se os inibidores que aumentam a sobretensão do h<u>i</u> drogênio e outros que dificultam a formação do hidrogênio m<u>o</u> lecular. Quando se quer eliminar a ação do oxigênio sobre o processo de corrosão, isto é possível de ser feito através de uma desaeração do eletrólito por meio de um gás inerte, ou então, empregando-se espécies químicas adequadas como a hidr<u>a</u> zina e os sulfatos.

Estas reações inibidoras formam uma parte importan te da prevenção à corrosão^{113,141-143}, pois mesmo que a pel<u>í</u> cula que se forma sobre a superfície do eletrodo (metal) não a bloqueie completamente, a reação de dissolução que ocorrerá na fração de superfície descoberta (1- θ) apresentará uma co<u>r</u> rente de dissolução menor.

Ao se trabalhar em meio ácido, são eficientes, na formação de películas protetoras a partir do processo de adsorção, os compostos orgânicos que contenham N, S e O na for ma de grupos funcionais amino, imino, tio, carbonila e mesmo carboxila, por exemplo, benzoato de sódio^{144,145}, benzotriazol^{140,146,148}, gelatina, formaldeido, etc. Para soluções neutras são eficientes os compostos que contenham nitritos e cromatos e para meio alcalino são poucos os inibidores que realmente são eficazes; de um modo geral são empregados os sais de amônio quaternário^{47,147,149-151,153-155}. Estes sais de amônio são também amplamente empregados durante o processo de redução do ion zincato com a finalidade de inibir a

formação de dendrites^{150,152,155}.

Boratos, silicatos, carbonatos e fosfatos têm também sido amplamente empregados como inibidores pela sua capa cidade de formar tampões em soluções alcalinas e neutras, uma vez que nestes meios à medida que a reação de dissolução anódica evolue, o consumo de hidroxila tende a diminuir o pH nas proximidades da superfície do eletrodo e assim favorecer o processo de corrosão. Estes ions inorgânicos também contr<u>i</u> buem para a formação de filmes protetivos bem resistentes, sobre a superfície do eletrodo; este é o caso, por exemplo, da ação do HPO_4^{2-} que se complexa com os ions de zinco presen tes em meio alcalino, formando um filme vítreo de NaZnPO₄.H₂0¹²⁶.

O estudo da influência de certas substâncias na cinética de redução do fon zincato sobre EDR de zinco e da dis solução do mesmo eletrodo foi conduzida neste trabalho centralizando nossos estudos no fon cloreto, por sua forte influência corrosiva, nos compostos orgânicos benzoato de so dio e benzotriazol por fazerem parte de pesquisas anteriores deste laboratório^{136,139} e no fon inorgânico silicato, por ter se mostrado um eficiente inibidor da corrosão do zinco em meio alcalino^{50,156-158}.

6.2 A INFLUÊNCIA DO ÎON CLORETO

6.2.1 Processo Catódico

A verificação da influência do ion cloreto no processo de redução do ion zincato sobre um EDR de zinco foi conduzida mantendo-se fixa a concentração do fon zincato em 10 mM e variando-se a concentração do fon cloreto em 10^{-3} , 10^{-2} e 10^{-1} M.

Na figura 6.1 apresentam-se os vários voltamogramas obtidos em condição de estado estacionário, para a redução do ion zincato em várias frequências de rotação do eletrodo (A) e nas três concentrações do ion cloreto empregadas (B). Observa-se que o aumento da frequência de rotação do eletrodo faz com que o potencial de meia onda ($E^{1/2}$) se desloque no sentido dos potenciais mais negativos, indicando que com o aumento da agitação do eletrólito, a transferência de carga no processo de redução do ion zincato se torna mais lenta (onda de redução menos reversivel).

A partir das curvas da figura 6.1 foram construí das as curvas de densidade de corrente limite de difusão do ion zincato versus a f^{1/2} para as várias concentrações de cl<u>o</u> reto, figura 6.2. A linearidade verificada para as curvas $i_D^L x f^{1/2}$, para todas as concentrações de cloreto empregadas, mostra que o processo de redução do ion zincato em meio de cloreto segue a lei de Levich. O aumento da concentração do ion cloreto praticamente não modifica o valor do coeficiente angular das retas, de $i_D^L x f^{1/2}$, como pode ser visto na tabela 6.1,

TABELA 6.1 - Coeficientes d $i_D^L / d f^{\frac{1}{2}} = B^*$ $C_{C1}^{-/M}$ 6_{x10}^{-8} 10^{-3} 10^{-2} 10^{-1} $B.10^{3}/mA \text{ cm}^{-2} \text{ Hz}^{\frac{1}{2}}$ 2,202,101,961,93* Calculados empregando D = 4,9 x $10^{-6} \text{ cm}^2 \text{s}^{-1}$.

FIGURA 6.1. Voltamogramas da redução do $Zn(OH)_{4}^{2}$ 10 mM sobre EDR-Zn em meio de NaOHIM e (A) C1^{-10⁻³} M, (B) man tendo-se fixa f^{1/2} = 4 Hz^{1/2} e C_{C1}⁻ / M, 1= 10⁻³; 2 = 10^{-2} ; 3= 10^{-1}

I/mA

mesmo quando o cloreto está presente como uma impureza da so lução de NaOH empregada (6 x 10^{-8} M).

Na mesma figura 6.2 está disposta a variação da $i_D^L x f^{\frac{1}{2}}$, curva 4 quando a redução do ion zincato foi feita com o cloreto presente como impureza do NaOH, mostrando que o cloreto não introduz nenhuma modificação neste processo, apesar de conduzir a um decréscimo em cerca de 10% nas correntes limites de difusão do ion zincato.

A cinética da redução do ion zincato na presença do ion cloreto foi estudada, fazendo-se uso do mesmo proced<u>i</u> mento analítico já empregado nos capitulos anteriores deste trabalho. A figura 6.3 mostra as curvas de polarização catódica obtidas a partir das densidades de correntes devidas unicamente ao processo de transferência de carga, e determinadas empregando o método matemático dos mínimos quadrados para os valores experimentais de $1/i \times 1/f^{\frac{1}{2}}$. A tabela 6.2 mos tra os resultados obtidos para a constante de Tafel, coeficiente de transferência e densidade de corrente de troca obtida, extrapolando-se a reta de Tafel ao potencial de equil<u>i</u> brio.

 $f^{1/2}/Hz^{1/2}$

Figura 6.2 - Verificação da Lei de Levich para a redução do $Zn(OH)_4^{2-} = 10mM \text{ em}$ meio de NaOH LM e Cl⁻¹ (1) $10^{-1}M$; (2) $10^{-2}M$; (3) $10^{-3}M$; (4) $6x10^{-8}M$.

FIGURA 6.3. Curvas de polarização catódica para a redução do $Zn(OH)_{4}^{2-}$ 10 mM em meio de cloreto (1) $10^{-1}M$, (2) 10^{-2} e 10^{-3} M.

TABELA 6.2 - Parâmetros cinéticos da redução do $Zn(OH)_4^{2-}$ em meio de Cl⁻.

Cl ⁻ /M	$b_{K}^{}/mV dec^{-1}$	αĸ	i _o /mA cm ⁻²	^E equi ^{/V}
10 ⁻³	86	0,69	5,50	-1,500
10-2	86	0,69	5,50	-1,494
10 ⁻¹	84	0,70	5,75	-1,491

 $\bar{b}_{K} = (85\pm1) \,\mathrm{mV} \,\mathrm{dec}^{-1}; \ \bar{\alpha}_{K} = 0,69\pm0,01; \ \bar{1}_{O} = (5,60\pm0,10) \,\mathrm{mA} \,\mathrm{cm}^{-2}$

Comparando-se os resultados da tabela 6.1 com os resultados da tabela 5.1 vê-se que os mesmos são concordantes, dentro de nossas medições experimentais, indicando que a presença do ion cloreto não modifica a cinética de redução do ion zincato sobre o EDR de zinco.

6.2.2 Processo Anódico

A influência do ion cloreto na dissolução do EDR de zinco foi conduzida em dois experimentos em separado, onde num deles apenas variou-se a concentração do ion cloreto em 10^{-3} , 10^{-2} e 10^{-1} M no NaOH 1M e no outro adicionou-se a estas mesmas concentrações de ion cloreto, 10mM do ion zinc<u>a</u> to.

Na figura 6.4 apresentam-se os vários voltamogramas obtidos para a dissolução do EDR de zinco em meio de 10^{-3} M de cloreto; curvas semelhantes foram obtidas para as ou tras concentrações de cloreto e também na presença do ion zin cato quando comparadas com as curvas obtidas em presença unicamente do NaOH.

A presença do ion cloreto ocasiona um pequeno decréscimo de corrente em toda a extensão da curva I x E da dis solução do EDR de zinco, quando comparada tanto com a curva ob tida em presença unicamente do NaOH como também em presença do ion zincato (figuras 5.9 e 5.18). Por outro lado, não se observa nenhuma modificação no que se refere ao aumento do de clive entre os picos de corrente, que delimitam a região pré--passiva com o aumento da frequência de rotação do eletrodo e nem com a diminuição do terceiro pico, que surge logo após a brusca queda de corrente na região pré-passiva. Observa-se também para este terceiro pico, o mesmo deslocamento de potencial em cerca de 100mV com o aumento da frequência de rota ção do eletrodo. Assim, para f = 4Hz e 64Hz temos respectivamente E = -1,110V e -0,990V, e estes valores se mantém os mes mos para todas as demais concentrações do ion cloreto e também para quando o ion zincato se faz presente no eletrólito.

Para a região pré-passiva (patamar) observa-se um decréscimo na densidade de corrente limite do pico de corrente, que dá início ao processo de passivação em cerca de 10% para os experimentos contendo tanto o ion cloreto como também o ion zincato, quando comparada com os experimentos executados na ausência do ion cloreto. Este comportamento se repete com o aumento da concentração do cloreto. Entretanto, na presença do ion zincato ocorre apenas uma pequena diminuição da densidade de corrente limite com o aumento da concentração do ion cloreto.

Estes resultados sugerem que a presença do ion clo reto na dissolução do EDR de zinco favorece a formação do filme anódico apassivante, talvez por diminuir a solubilidade tanto das espécies que formam o filme, como também do próprio ion zincato no meio de NaOH 1M, ou ainda, por formar novos complexos com as espécies presentes no meio que contribuirão para produzir um filme mais resistente.

Nas figuras 6.5 e 6.6 apresentam-se os resultados da variação da densidade de corrente limite da região prépassiva com a raiz quadrada da frequência de rotação do eletrodo para todos os experimentos. Verifica-se o mesmo compo<u>r</u> tamento anteriormente observado (figuras 5.15 e 5.19) ou seja, nesta região da curva I x E o controle do processo é mi<u>s</u> to - reação de transporte do ion zincato e reação química de formação/dissolução do filme anódico e existente sobre a superfície do eletrodo.

FIGURA 6.4. Voltamogramas da dissolução do EDR-Zn em meio de NaOHIM e Cl⁻ 10⁻³M.

- (→) Varredura de potenciais anódicos;
- (→) Varredura de potenciais catódicos

FIGURA 6.5. Verificação da Lei de Levich para a dissolução do EDR-Zn em meio de cloreto (1) 10⁻³M, (2) 10⁻²M, (3) 10⁻¹M.

Empregando o mesmo procedimento anterior de análise, foi possível separar a contribuição de cada processo na região pré-passiva, isto é, reação de difusão do ion zincato da superfície do eletrodo para o interior da solução e re<u>a</u> ção química de formação/dissolução do filme anódico.

FIGURA 6.6. Verificação da Lei de Levich para a dissolução do EDR-Zn em meio de zincato 10 mM e cloreto (1) 10^{-3} M, (2) 10^{-1} M.

A densidade de corrente do processo químico obtida aplicando-se o método dos mínimos quadrados aos resultados experimentais para $1/i_L \times 1/f^{\frac{1}{2}}$ são, respectivamente, $i_Q =$ 288mA cm⁻² e $i_Q = 267$ mA cm⁻² para o meio só de ion cloreto e para o meio de ion cloreto e ion zincato.

Estes resultados são concordantes com os obtidos para os mesmos processos eletroquímicos (Cap. 5), só que na ausência do íon cloreto; mostrando assim que este íon não afeta o processo químico que ocorre na superfície do eletr<u>o</u> do.

A densidade de corrente limite de difusão do ion zincato obtida varia linearmente com a f $\frac{1}{2}$ para todos os experimentos, como pode ser visto na figura 6.7, permitindo que se determine o valor da concentração do íon zincato presente na superfície do eletrodo no início da passivação. Os resultados obtidos para este parâmetro (C_S) são apresentados na tabela 6.3, e mostram que na presença do ion cloreto a con centração crítica de saturação atingida pelo ion zincato na região do pico de corrente do início da região passiva, é pró xima ao valor da concentração prevista, a partir de dados termodinâmicos⁹⁵. Este comportamento acrescenta mais uma ev<u>i</u> dência de que a presença do íon cloreto diminui a solubilida de do ion zincato nas proximidades do eletrodo.

FIGURA 6.7. Verificação da Lei de Levich para a dissolução do EDR-Zn em meio de cloreto (1) 10⁻³M, (2) 10⁻³M, (3) 10⁻¹M.

TABELA 6.3 - Concentração do ion zincato na superficie do EDR de zinco no início da passivação em presença do ion cloreto.

с – /М	C _S /mi	M
Cl ^{-/M}	$Zn(OH) \frac{2}{4} = 10 \text{ mM}$ inicial	$Zn(OH) \frac{2}{4} = 0$ inicial
10 ⁻³	332	364
10 ⁻²	265	314
10-1	265	266

Quando se faz a varredura de potenciais a partir da região passiva no sentido dos potenciais catódicos, ou seja, se devolve as características ativas ao eletrodo, observa-se que o aumento da frequência de rotação do eletrodo, figura 6.4, faz com que o pico de corrente de rompimento do filme apassivante seja maior do que a corrente em que se inicia a região pré-passiva. Este comportamento é verificado em todos os d<u>e</u> mais experimentos executados em meio do íon cloreto sendo entretanto, contrário ao observado em meio só de NaOH ou de íon zincato, dapítulo 5, figuras 5.10 e 5.18, apesar de o potencial onde ocorre este pico de corrente se manter constante em E = -1,190V, sugerindo que, apesar do processo de passivação do EDR de zinco ser mais facilitado na presença do cloreto, a qualidade do filme é de certa forma afetada pela mesma.

A cinética de oxidação do EDR de zinco em meio de cloreto foi estudada a partir do mesmo procedimento já empre-
gado neste trabalho (cap. 4 e 5). A tabela 6.4 mostra os resultados obtidos em todas as experiências com ion cloreto, a partir das curvas de polarização anódicas, figuras 6.8 e 6.9, bem como os valores do potencial de circuito aberto. A presen ça do ion cloreto, quer isoladamente com o NaOH, quer em presença de certa concentração inicial do ion zincato, não modifica o mecanismo da reação de dissolução do zinco como pode ser visto comparando-se os resultados da tabela 6.4 com os r<u>e</u> sultados das tabelas 5.4 e os obtidos apenas em meio de NaOH IM.

FIGURA 6.8. Curva de polarização anódica do sis tema $Zn/OH^{-} + Cl^{-}(1) l0^{-3}M$, (2) $l0^{-2} e l0^{-1}M$.

FIGURA 6.9. Curva de polarização anódica do sistema Zn/OH^{-} + zincato 10 mM + Cl⁻. (1) 10⁻³ e 10⁻²M, (2) 10⁻¹M.

TABELA 6.4 - Parâmetros Cinéticos da Dissolução do EDR de Zinco em Meio de NaOH 1M.

		Zn (OH)	2- 4]inicial	= 0		$\left[2n \left(OH \right) \frac{2}{4} \right]$	inicial =	10mM
^С с1 ⁻ /м	10 ⁻³	10-2	10-1	Valor médio	10-3	10-2	10 ⁻¹	Valor médio
$b_a = \frac{dE}{d \log i_K} / mV dec^{-1}$	55	53	53	54±1	63	63	61	62±1
αa	1,07	1,12	1,12	1,10±0,03	0,94	0,94	0,97	0,95±0,02
i _o /mA cm ⁻²	3,09	3,60	4,17	3,60±0,50	3,30	4,10	4,40	3,90±0,60
circuito E aberto /mV	-1 505	-1 498	-1 495		-1 500	-1 494	-1 491	

6.3 A INFLUÊNCIA DO BENZOATO DE SÓDIO (BZNa)

6.3.1 Processo Catódico

Na verificação da influência do BzNa no processo de redução do ion zincato, manteve-se fixa a concentração do $Zn(OH)_4^{2-}$ em 10mM e variou-se a do BzNa em 10⁻⁵, 10⁻⁴, 10⁻³ e 10^{-2} M.

Na figura 6.10 apresentam-se os voltamogramas obtidos para a redução do ion zincato em meio de BzNa 10^{-2} M, para várias frequências de rotação do eletrodo. O mesmo perfil de curvas I x E foi também obtido para as demais concentrações de BzNa; não se observando qualquer modificação quando se co<u>m</u> para estes resultados com os obtidos, quer só na presença do ion zincato, figura 5.4, quer na presença do ion cloreto, figura 6.1a.

Quando se compara a região do patamar de corrente limite de difusão do ion zincato na presença do BzNa e do ion cloreto e na ausência destas duas espécies químicas, verific<u>a</u> -se que na primeira situação têm-se praticamente os mesmos v<u>a</u> lores de corrente, mas, para a segunda situação, isto é, na presença unicamente do ion zincato, observa-se uma pequena d<u>i</u> minuição na corrente (cerca de 6%).

Estes resultados sugerem que a presença do BzNa pr<u>a</u> ticamente não introduz modificações notáveis no processo de redução do ion zincato.

FIGURA 6.10. Voltamogramas da redução do $Zn(OH)_4^{-1} = 10$ mM, sobre EDR-Zn em meio de NaOHIM e benzoato de sódio 10^{-2} M.

A partir das densidades de corrente limite de difusão do ion zincato foi possível construir o gráfico de $i_D^L \times f^{1/2}$, figura 6.11 e verificar que a Lei de Levich é obedecida para todas as concentrações do BZNa estudadas e que se nesta região houverem reações químicas acopladas elas estarão em equilíbrio.

 $f^{1/2}/Hz^{1/2}$

Alguns dos parâmetros cinéticos relativos ao proces so de redução do ion zincato em meio de BzNa foram obtidos através das curvas de polarização catódica, figura 6.12. Estas curvas foram construídas a partir dos resultados fornecidos, ao se empregar o método dos mínimos quadrados aos dados experimentais de densidade de corrente total e frequência de rot<u>a</u> ção do eletrodo na equação 2.2.16.

Figura 6.12 - Curva de polarização catódica da redução do $Zn(OH)\frac{2}{4} = 10mM$ em meio de NaOHIM e BzNa (.) $10^{-5}M$; (x) $10^{-4}M$; (O) $10^{-3}M$; (∇) $10^{-2}M$. Na tabela 6.5 apresentam-se os resultados obtidos para os parâmetros cinéticos da redução do ion zincato em meio de B Na. Pode-se notar, que a presença do BzNa praticamente conduz aos mesmos resultados obtidos, quer na prese<u>n</u> ça do ion cloreto, tabela 6.2, quer na ausência de qualquer outro ânion que não o ion zincato, tabela 5.1; apesar de que, para esta última situação, observa-se nos valores das constantes de Tafel catódicas uma pequena discrepância (menor do que 7%), que pode ser considerada como dentro do de<u>s</u> vio experimental de nossas medições.

TABELA 6.5 - Parâmetros cinéticos da redução do ion zincato em meio de NaOH 1M e BzNa.

[BzNa] / M	10 ⁻⁵	10-4	10-3	10-2	Valores médios
b_{K}^{mV} dec ⁻¹	85	88	90	90	88±2
αĸ	0,70	0,67	0,66	0,66	0,67±0,02
E*/V	-1,487	-1,486	-1,484	-1,482	-
io ^{extr} ./mA cm ⁻²	6,60	5,75	4,80	5,10	5,60±0,80

NO ENERGE.

6.3.2 Processo Anódico

O efeito do BzNa no processo de dissolução do EDR de zinco foi estudado, variando-se a concentração do BzNa em 10^{-5} , 10^{-4} , 10^{-3} , 10^{-2} , 5×10^{-2} e 10^{-1} M no NaOH 1M. Na figura 6.13 apresentam-se os voltamogramas obtidos para as várias concentrações do BzNa em condições de estado estacionário, fazendo-se variar o potencial no intervalo entre E = -1,500V até -0,900V e fixando-se a frequência de rotação do eletrodo em f = 9Hz.

A presença do BzNa durante o processo de dissolução do EDR de zinco no intervalo de concentrações entre 10^{-5} até 10^{-2} M, não introduz modificações acentuadas no perfíl das várias curvas I x E, quando comparadas com as curvas obtidas só na presença do álcali (figuras 5.9 e 5.10), tanto no que se refere à varredura de potencial no sentido anódico, quanto no sentido catódico. Neste último procedimento, o potencial onde ocorre o pico de corrente de rompimento do filme anódico que bloqueia o eletrodo se mantém o mesmo que na ausência do BzNa e de valor E = -1,195V. A única mudança de comportamento que se observa nas curvas I x E na presença d<u>a</u> quelas concentrações de BzNa é uma pequena diminuição na co<u>r</u> rente em toda a extensão dos voltamogramas obtidos.

^{6.3.2.1} Dissolução do EDR de zinco em meio de benzoato de sódio (BzNa).

FIGURA 6.13. Influência do BzNa na dissolução do EDR-Zn para f = 9Hz C_{BZNa}/M , l= 10^{-2} ; 2= 10^{-3} ; 3= 10^{-4} ; 4= 10^{-5} ; 5= 10^{-1} . (\rightarrow) Varredura de potenciais anódicos;

(+) Varredura de potenciais catódicos.

Entretanto, quando se eleva a concentração do BzNa presente no NaOH 1M para 5 x 10^{-2} M e para 10^{-1} M, verifica-se um aumento na corrente da curva I x E, a partir de E \simeq -1,450 V, com relação à curva obtida na ausência do BzNa, figura 5.9, que se acentua quando se penetra na região pré-passiva e faz com que esta região de patamar de corrente limite se alongue no sentido dos potenciais mais anódicos.

Este comportamento faz com que o potencial onde ocorre o início da passivação do eletrodo se desloque no sent<u>i</u> do dos potenciais positivos em cerca de 40mV, sugerindo que na presença do BzNa em concentrações maiores ou iguais às empregadas no álcali (>10⁻¹M), o processo anódico como um todo é facilitado.

Neste caso, a dissolução ativa do eletrodo é favor<u>e</u> cida e a formação do filme anódico sobre o metal é retardada desde a região ativa, o que faz com que haja aquele desloca mento de potencial no sentido anódico.

A figura 6.16a descreve o comportamento da i_L da região pré-passiva com o aumento de concentração do BzNa, permitindo constatar que o BzNa de um lado contribui para a formação do filme passivo sobre o eletrodo (concentrações menores do que 5 x 10^{-2} M) e de outro lado retarda este mesmo processo.

Para todas as concentrações de BzNa estudadas, verificou-se através da variação da densidade de corrente limite da região pré-passiva com a raiz quadrada da frequência de rotação do eletrodo, que o processo nesta região está sob con-

trole misto, uma vez que não se observou a linearidade nece<u>s</u> sária de $i_L \propto f^{1/2}$ para que o processo estivesse só sob co<u>n</u> trole do transporte de matéria (Lei de Levich). A figura 6.17a mostra o resultado obtido para uma concentração de BzNa de 10⁻³M, sendo este o mesmo comportamento observado p<u>a</u> ra as demais concentrações.

Assim, para a região pré-passiva da curva I x E de dissolução do EDR de zinco em meio de BzNa foi possível sep<u>a</u> rar as duas componentes de reação - reação de transporte do ion zincato e reação química - que contribuem para o processo eletródico, através do uso do método de análise já empregado anteriormente e adequado ao EDR.

Na tabela 6.6 apresentam-se os resultados obtidos para a componente química e também para a concentração do ion zincato na superfície do eletrodo, com concentração crítica, que contribui para a formação do filme passivo sobre o eletrodo de zinco. Estas concentrações foram obtidas através do coeficiente angular dos gráficos de $i_D^L \propto f^{\frac{1}{2}}$ semelhantes aos da figura 6.18.1 e em conjunto com a equação 2.2.12.

TABELA 6.6 - Concentração do $Zn(OH)_4^{2-}$ na superfície do EDR de zinco no início da passivação e componente química (i_Q) na região pré-passiva, em presença do benzoato de sódio.

C _{R7Na /M}	$\left[Zn\left(OH\right) \frac{2}{4} \right]$	-] = 10mM inicial	$\left[\text{Zn}(OH) \frac{2^{-}}{4} \right] = 0$ inicial		
D2Nd/M	C _S /mM	i _Q /mA cm ⁻²	C _S ∕mM	i _Q /mA cm ⁻²	
10 ⁻⁵	378	244	414	264	
10-4	361	221	369	255	
10 ⁻³	338	205	385	227	
10 ⁻²	285	198	317	226	
5x10 ⁻²	390	220	421	254	
10-1	360	520	368	576	

Através da tabela 6.6 vê-se que a presença do BzNa em concentrações menores do que 10^{-2} M afeta pouco a contri buição química (i_Q) para que haja o bloqueio do eletrodo, quando comparada quer com a presença do ion cloreto (tabela 6.3), quer com a presença ou não do ion zincato no NaOH (tabela 5.3). Observa-se também nesta tabela, que a C_S se aproxima do valor da concentração descrita a partir de consid<u>e</u> rações termodinâmicas⁹⁵ e dos resultados obtidos na presença do cloreto.

Os parâmetros cinéticos relativos à influência do BzNa na dissolução do EDR de zinco foram obtidos a partir

(a) A second statement of a statement of a statement of a statement of the statement of

a construction and the

das curvas de polarização anódica, figura 6.14. As densida des de corrente devidas unicamente ao processo de transferência de carga foram obtidas de maneira análoga à já descr<u>i</u> ta anteriormente. A tabela 6.7 apresenta os resultados obtidos para as várias concentrações de BzNa; nesta mesma tabela estão dispostos os potenciais medidos em circuito aberto e as densidades de corrente de troca extrapoladas das retas de Tafel a estes mesmos potenciais. Na ausência do ion zincato os potenciais medidos apresentavam uma flutuação de cerca de 10mV quando eram repetidas as mesmas experiências após te<u>r</u>--se polido e limpo o eletrodo.

Figura 6.14 – Curva de polarização anódica da dissolução do EDR-Zn em meio de NaOH LM e Benzoato de sódio (.) 10^{-5} M; (x) 10^{-4} M; (Δ) 10^{-3} M; (∇) 10^{-2} M; (O) 5×10^{-2} M; (\square) 10^{-1} M.

C _{BzNa/M}	10 ⁻⁵	10-4	10-3	10-2	5x10 ⁻²	10 ⁻¹
$b_a/mV dec^{-1}$	58	57	58	58	60	61
α _a	1,02	1,04	1,02	1,02	0,99	0,97
i _o /mA cm ⁻²	1,66	1,00	1,15	1,05	2,04	2,75
E [*] /V	-1,514	-1,510	-1,515	-1,510	-1517	-1,515

TABELA 6.7 - Parâmetros cinéticos da dissolução do EDR-Zn/OH⁻/BzNa.

Os valores médios de dE/d log $i_{K} = 59\pm 2mV \text{ dec}^{-1}$ obtidos são concordantes com os resultados dos outros experimentos anódicos já analisados; indicando que a presença do BzNa não afeta o mecanismo de dissolução ativa do eletrodo de zinco.

6.3.2.2 Dissolução do EDR de Zinco em Meio de BzNa e de $Zn(OH)_{4}^{2-}$ 10mM

A influência conjunta dos ions zincato e benzoato na oxidação do EDR de zinco é apresentada na figura 6.15 . Além de um decréscimo de corrente em toda a extensão das curvas I x E e de um deslocamento das mesmas no sentido anódico em cerca de 10mV, não são observadas modificações pronunciadas quando comparadas, quer com as curvas da figura 5.18 , Obtidas na presença unicamente do ion zincato, quer com as

FIGURA 6.15. Voltamogramas da dissolução do EDR-Zn em meio de NaOHIM, Zn(OH)₄ 10 mM e BzNa 10⁻² M. (→) Varredura de potenciais anódicos; (→) Varredura de potenciais catódicos.

curvas da figura 6.13 construídas na ausência do íon zincato. Curvas semelhantes às da figura 6.15 foram obtidas para as demais concentrações de B^zNa e de valor 10^{-5} , 10^{-4} e 10^{-3} M.

Na figura 6.15 é também mostrado o comportamento da curva I x E, quando são aplicados ao eletrodo potenciais mais negativos do que o potencial em que se encontra o mesmo, na região passiva (varredura de potenciais catódicos) em função da variação da frequência de rotação do eletrodo. É possível verificar nesta figura 6.15 que à medida em que se eleva а frequência de rotação do eletrodo, o pico de corrente que sur ge como consequência do rompimento do filme apassivante é de maior valor do que o pico de corrente que dá início à região pré-passiva; este procedimento é o mesmo observado na presença do ion cloreto, figura 6.4, sendo contrário ao observado, quer na presença unicamente do álcali, figura 5.9, como também na presença, tanto do ion zincato, figura 5.18, como também só para o BzNa, figura 6.13. O potencial, onde ocorre o rompimento do filme anódico, continua praticamente 0 mesmo que os observados nos demais experimentos anódicos e de valor E = -1,200V, mostrando-se assim independente da natureza do \hat{a} nion.

Estes resultados sugerem que com o aumento da agita ção do eletrólito, a ação conjunta dos ânions zincato e be<u>n</u> zoato sobre a formação do filme apassivante é fazer com que, ou o filme seja menos resistente (menos espesso) ou que, durante a sua formação ele venha a apresentar pontos mais frágeis, que permitam que a sua remoção seja mais facilitada. Ob serva-se, entretanto, que na presença das duas espécies quími-

cas, benzoato e zincato, dentro do intervalo de concentração entre 10^{-5} e 10^{-2} M, de que o processo de formação do filme anódico é facilitado quando comparado com os demais experimentos efetuados.

Quando se eleva a concentração do BzNa para 5×10^{-2} e 10^{-1} M no álcali contendo o íon zincato, verifica-se um au mento na corrente em toda a extensão da curva I x E, sendo mais pronunciada na região pré-passiva; este comportamento é semelhante ao observado na ausência do ânion zincato, figura 6.13. Na figura 6.16 é mostrada, então, como esta corrente limite varia com a concentração do BzNa para uma dada frequência de rotação. Nesta figura observa-se que para concentrações de BzNa maiores ou iguais a 5×10^{-2} M ocorre um aumento na corrente limite, mostrando que o BzNa em meio de NaOH lM e Zn(OH) $_4^{2-}$, também pode contribuir ou dificultar o processo de passivação do zinco.

As densidades de corrente limite da região pré-pa<u>s</u> siva não variam linearmente com a raiz quadrada da frequência de rotação do eletrodo, como pode ser visto na figura 6.17b. indicando que também na presença do ion zincato o co<u>n</u> trole do processo naquela região é misto. A separação dos dois processos que contribuem para este comportamento foi fe<u>i</u> ta e na tabela 6.6 são apresentados os resultados, tanto para a densidade de corrente do processo químico (I_Q) , como também a concentração do ion zincato na superfície do eletrodo obt<u>i</u> da através da componente difusiva do processo (figura 6.18.2 e equação 2.2.12). Aqui, as considerações quanto à variação da componente química (i_Q) e da C_S com a concentração do BzNa são as mesmas que as tratadas na ausência do ion zincato.

Através das curvas de polarização anódica, figura 6.19, foram determinadas as constantes de Tafel anódica (b_a) e a densidade de corrente de troca (i_o) para a dissolução do eletrodo de zinco em meio de BzNa e do ion zincato; os resu<u>l</u> tados obtidos estão dispostos na tabela 6.8 em conjunto com outros parâmetros cinéticos e permitem evidenciar que o mec<u>a</u> nismo do processo de dissolução do zinco neste meio é o mesmo que o anteriormente verificado.

FIGURA 6.16. Variação da i_L anódica com a concentração do be<u>n</u> zoato de sódio para f $^{1/2}$ = 25 Hz. Curva (A) sem zincato inicial Curva (B) com zincato 10 mM

FIGURA 6.17. Verificação da Lei de Levich para a dissolução do EDR-Zn em meio de NaOHIM. Curva (a) BzNa 10⁻³M Curva (b) BzNa 10⁻³M + Zn(OH),² 10 mM

FIGURA 6.18. Variação da $i_D^L \times f^{\frac{1}{2}}$ da região pré-passiva da dis solução do EDR-Zn em meio de NaOH1M e BzNa.

Curva (1) BzNa 5 x 10^{-2} M Curva (2) BzNa 10^{-5} M + Zn(OH)₄²⁻ 10 mM

				4		
C _{BzNa/M}	10 ⁻⁵	10-4	10-3	10-2	5.10 ⁻²	10 ⁻¹
b _a /mV dec ⁻¹	52	52	53	53	52	52
α _a	1,14	1,14	1,12	1,12	1,14	1,14
E _{equi} /V	-1,488	-1,486	-1,485	-1,483	-1,490	-1,493
i _o /mA cm ⁻²	3,24	3,22	3,02	3,60	3,02	3,98

TABELA 6.8 - Parâmetros cinéticos da dissolução do EDR-Zn/OH⁻/BzNa/Zn(OH) $_{4}^{2-}$ 10mM.

6.4 A INFLUÊNCIA DO BENZOTRIAZOL (BTA)

O estudo da influência do BTA nos processos eletro químicos do zinco em meio alcalino foi feito, em particular, para o processo anódico, devido principalmente à ampla aplicação desta espécie química como minimizadora do processo de corrosão de alguns metais. Na figura 6.20 apresentam-se os voltamogramas obtidos em condição de estado estacionário, p<u>a</u> ra a dissolução do EDR de zinco em meio de BTA 10^{-4} M, em várias frequências de rotação do eletrodo; este mesmo perfíl de curvas foi obtido para as demais concentrações de BTA empregadas $(10^{-3} e 10^{-2}$ M).

A figura 6.20 permite verificar que a presença do BTA vai modificando o perfil da curva I x E, a partir da fr<u>e</u> quência de rotação f = 25Hz, quando comparada com os outros

FIGURA 6.20. Voltamogramas da dissolução do EDR-Zn em meio de NaOHIM e Benzotriazol 10⁻⁴M

- (→) Varredura de potenciais anódicos;
- (+) Varredura de potenciais catódicos.

experimentos executados na ausência do mesmo. Para frequências de rotação mais elevadas (f > 25Hz) não se observa mais o aumento no declive entre os picos de corrente que delimitam a região pré-passiva, mas, sim, um aumento do primeiro pico, que para a máxima frequência empregada neste trabalho (f = 64 Hz) praticamente se iguala ao segundo pico, fazendo com que o patamar se estreite, dando a impressão de que este vai se tran<u>s</u> formar em apenas um pico de corrente (para f > 64Hz).

Estes resultados indicam que as condições de agitação do eletrólito interferem na qualidade do filme que se forma sobre o eletrodo, talvez diminuindo a espessura do mesmo ou então criando pontos frágeis que permitam que o peocesso de oxidação do metal tenha prosseguimento.

Não são observadas mudanças no andamento da curva I x E, figura 6.20, quando são alicados ao eletrodo potenciais mais negativos, a partir da região passiva, em relação às mesmas curvas obtidas, figura 5.10, na ausência de qua<u>l</u> quer ânion no álcali. Estes resultados se mantêm os mesmos p<u>a</u> ra as demais concentrações do BTA empregadas.

A presença do BTA no sistema Zn/OH, dentro do in tervalo de concentrações estudadas, fez também com que obti véssemos dendidades de corrente maiores do que observadas em todos os outros experimentos anódicos executados. Este andamento foi verificado em toda a extensão da curva I x E, sen do, entretanto, mais acentuado na região pré-passiva; a figura 6.21 descreve esta situação. Estes resultados sugerem que o BTA, presente no eletrólito alcalino, não diminui a velocida-

de de dissolução do zinco e também interfere nas características do filme apassivante que se forma sobre o eletrodo.

FIGURA 6.21. Variação da corrente limite anódica para o sistema Zn/NaOHIM + BTA (A) f= 25 Hz, (B) = 64 Hz

A variação da densidade de corrente limite da região pré-passiva com a $f^{\frac{1}{2}}$ apresentou os mesmos resultados anteriormente obtidos, isto é, não existe linearidade nos gr<u>á</u> ficos construídos, indicando que o controle do processo nesta região é misto - difusão do íon zincato e reação química homogênea/heterogênea -. Isolando-se cada uma das contribuições para esta corrente limite, foi possível determinar as densidades de corrente devidas unicamente ao processo químico e também às concentrações do ion zincato na superfície do eletrodo através do coeficiente angular das retas de i_D^L x $f^{1/2}$, figura 6.22 e da equação 2.2.12. Os resultados obtidos estão dispostos na tabela 6.9, não existindo discrepâncias com os mesmos resultados obtidos nos demais experimentos an<u>ó</u> dicos.

TABELA 6.9 - Concentração do $Zn(OH)_4^{2-}$ na superfície do EDR de zinco no início da passivação e componente química (i_Q) na região pré-passiva na presença de benzotriazol, BTA.

C _{BTA/M}	C _S /mM	i _Q /mA cm ⁻²
10 ⁻⁴	490	327
10 ⁻³	475	331
10 ⁻²	460	330

Os parâmetros cinéticos relacionados com a presença do BTA no sistema Zn/OH⁻ foram obtidos através das curvas de polarização anódica, figura 6.23, construídas a partir de procedimento já empregado anteriormente e estão dispostos na tabela 6.10, onde também são apresentados os potenciais de circuito aberto medidos para o sistema.

FIGURA 6.22. Verificação da Lei de Levich para a dissolução do EDR-Zn em meio de BTA.

Curva (1) 10^{-4} M Curva (2) 10^{-3} M

FIGURA 6.23. Curva de polarização anódica do EDR-Zn em meio de NaOHLM e BTA (·) 10^{-4} M e 10^{-3} M, (Δ) 10^{-2} M.

C _{BTA/M}	10 ⁻⁴	10-3	10 ⁻²
b _a /mV dec ⁻¹	55	54	55
aaaa	1,07	1,09	1,07
i _o /mA cm ⁻²	1,10	1,07	1,05
e*/v	-1,517	-1,518	-1,519

TABELA 6.10 - Parâmetros cinéticos da dissolução do EDR-Zn em meio de NaOH 1M e Benzotriazol.

Os resultados constantes da tabela 6.10 mostram que o BTA não modifica a cinética de dissolução ativa do zinco em meio de NaOH 1M, sendo concordantes com os demais resu<u>l</u> tados obtidos.

6.5 A INFLUÊNCIA DO SILICATO DE SÓDIO - (Na₂ Si O₃)

A motivação em se estudar a influência do ion silicato, sobre a dissolução do zinco em meio alcalino, deveu-se principalmente a sua ampla^{113,141,162} aplicação como inibidor da corrosão, nos processos industriais de eletropolimento deste metal. Alguns trabalhos produzidos por Flerov^{134,161} <u>fo</u> ram sem dúvidas os precursores para um aprofundamento mais recente do sistema $Zn/OH^{-}/Zn(OH)_{4}^{2-}$ sob a influência dos ions silicato^{49,50,157,158,160}.

Para Flerov, o ion silicato adicionado ao eletrólito atua estabilizando o óxido ou hidróxido de zinco que se forma sobre a superfície do eletrodo dentro de uma estrutura de micela. Como resultado desta reação, ocorre um aumen to na solubilidade das espécies de zinco (II) que se formam como produto da dissolução, na camada adjacente ao eletrodo, retardando a formação do filme apassivante. Flerov trabalhou com soluções paradas e de elevada concentração do álcali, estabelecendo que a presença do ion silicato no eletrólito é a de atuar como um ampliador do processo de dissolução, ou se ja, as possibilidades do uso do eletrodo de zinco em baterias são ampliadas no ramo anódico.

O grupo de pesquisadores, Drury, Hampson e Marshall 157 , apoiados nos trabalhos desenvolvidos por Flerov , estudaram a influência do íon silicato no processo anodico, em soluções alcalinas no intervalo de concentração entre 1 e 14M, com eletrodos de zinco fixos e com o eletrólito circu lante, numa vazão conhecida. Estes autores verificaram que para concentrações do álcali menores do que 3M, com ion sili cato em concentração de 2% (vv), a densidade de corrente limite anódica aumentava, contribuindo para que o eletrodo se apassivasse mais tarde. A carga teórica necessária para que então o eletrodo se apassivasse deveria ser infinita e que esta característica estava intimamente ligada com a capacida de de se bombear novo eletrólito e assim impedir que se acumulasse o produto óxido/hidróxido de zinco formado sobre o e letrodo. Neste caso, então, o filme anódico era removido da superfície do eletrodo e através de análise microscópica esta

superfície permanecia sempre brilhante.

Para concentrações maiores do que 3M a passivação do eletrodo ocorreria, pois, as espécies de zinco, produtos da dissolução do eletrodo, atravessariam o filme formado, que poderia então ser um complexo de zinco e silicato¹⁶², e por atingir uma concentração crítica precipitariam. Este filme se formaria sobre o eletrodo através da adsorção dos ions s<u>i</u> licato nos centros ativos e ainda não bloqueados por outras formas de zinco. Medidas galvanostáticas deste sistema indicaram uma diminuição da densidade de corrente de troca e da capacidade da dupla camada elétrica na presença dos ions silicato, confirmando então que existe a formação de uma camada adsorvida especificamente.

Lewis e Turner⁵⁰, trabalhando com voltametria ciclica de varredura linear, concluem que a presença do ion s<u>i</u> licato faz decrescer substancialmente a capacidade da dupla camada elétrica, indicando que os ions silicato se adsorvem especificamente. Apesar destes ions atuarem como um ampliador do sistema Zn/OH⁻, para a região de transição ativa-passiva, através da estabilização do ZnO/Zn(OH)_x formado na solução, eles não agem como um inibidor à passivação pois, na sua presença o filme apassivante continua se formando sobre a s<u>u</u> perfície do eletrodo.

As concentrações de Na₂SiO₃ empregadas neste estudo foram, 10; 30; 50; 70; 81,9 (1%vv); 100; 163,9 (2%vv); 328 (4%vv) e 409,6 mM (5%) mantendo-se a concentração de NaOH 1M em todos os experimentos; assim, o intervalo de concentração

do silicato no álcali vai de 1% até 40%. Na figura 6.24, apresentam-se os vários voltamogramas obtidos para a varredura an<u>ó</u> dica dos potenciais, de todas as concentrações de silicato ut<u>i</u> lizadas, fixando-se a frequência de rotação do eletrodo em 16 Hz.

Verifica-se que a presença do ion silicato diminui a corrente em qualquer potencial estudado, acentuando-se a partir da região pré-passiva. A figura 6.25 mostra a variação da corrente limite anódica da região pré-passiva em função da co<u>n</u> centração do ion silicato. A variação da corrente limite deixa de ser acentuada para concentrações de silicato maiores do que 240mM.

Este comportamento é contrário ao observado por Marshal e Hampson¹⁵⁸, apesar de nós não termos trabalhado com a concentração de 3M do álcali empregada pelos mesmos. Entretanto, Armstrong e Bell⁴⁹, trabalhando com as concentrações de 1 e 3M de KOH, obtiveram o mesmo comportamento que os aqui obtidos, ou seja, a adição do íon silicato (1%, 2% e 4%) não inibe a passivação do eletrodo, e afirmam que a inibição da dissolução do zinco é devida à adsorção dos íons silicato sobre a superfície do eletrodo.

Nossas medidas de viscosidade das soluções empregadas, tabela 6.11, indicam que a adição do ion silicato proporciona uma variação muito pequena na viscosidade do eletrólito (~ 9%) para a maior concentração do ion silicato empregada , sugerindo que este leve aumento de viscosidade não seja o responsável pelas modificações verificadas nas curvas I x E de di<u>s</u> solução do eletrodo de zinco.

FIGURA 6.24. Voltamogramas da influência do Na₂SiO₃ na dissol<u>u</u> ção do EDR-Zn em meio de NaOHIM. C_{Na₂SiO₃/mM,l=10; 2=30; 3=50; 4=70; 5=81,9 (1% vv); 6=100; 7=164 (2% vv); 8=328 (4% vv); 9=409,6 (5% vv), mantendose fixa f^{1/2} = 4 Hz^{1/2}:}

Figura 6.25 - Variação da densidade de corrente limite da região pré-passiva, com a concentração do Na_2SiO_3 , mantendo-se fixa a f^{1/2} = 7 Hz^{1/2}.

AMOSTRA	ρ/gcm ⁻³	η / CP
NaOH 1M	1,0412	1,222±0,008
Na ₂ SiO ₃ 10mM	1,0386	1,185±0,008
Na ₂ SiO ₃ 30mM	1,0409	1,202±0,009
Na ₂ SiO ₃ 50mM	1,0411	1,198±0,009
Na ₂ SiO ₃ 70mM	1,0440	1,222±0,009
Na ₂ SiO ₃ 100mM	1,0446	1,259±0,007
Na ₂ SiO ₃ 163,9mM	1,0463	1,279±0,008
Na ₂ SiO ₃ 328mM	1,0549	1,290±0,006
Na ₂ SiO ₃ 409,6mM	1,0602	1,335±0,007

TABELA 6.11 - Viscosidade dinâmica das soluções de silicato em meio de NaOH 1M.

As densidades de corrente limite da região pré-pas siva, apresentaram o mesmo comportamento anteriormente verificado em relação à variação da raiz quadrada da frequência de rotação do eletrodo. Nesta região da curva I x E, o controle do processo é por difusão do ion zincato e também pela reação química de formação/dissolução do filme anódico.

A separação das duas contribuições foi obtida de forma análoga à já feita anteriormente. Na tabela 6.12 estão dispostos os resultados para as várias concentrações do ion zincato na superfície do eletrodo (crítica), determinada através do coeficiente angular das retas da figura 6.26 de $i_D^L \propto f^{1/2}$ e também da equação 2.2.12. Nesta mesma tabela são
também apresentados os resultados referentes à contribuição química.

TABELA 6.12 - Concentração do $Zn(OH)_4^{2-}$ na superfície do eletrodo no início da passivação e componente qu<u>í</u> mica na região pré-passiva em presença de Na₂ SiO₃.

^C Na2 ^{SiO} 3/mM	C _S /mM	$i_Q/mA cm^{-2}$
10	436	311
30	378	280
50	334	254
70	329	232
81,9	259	224
100	288	220
163	182	177
328	145	134
409,6	143	111

Através da tabela 6.12 verifica-se que o aumento da concentração do silicato faz com que haja uma diminuição da concentração crítica do ion zincato, para valores bem menores do que os esperados a partir de considerações termodinâmicas⁹⁵. Estes resultados indicam que a presença do ion s<u>i</u> licato diminui sensivelmente a solubilidade do ion zincato no NaOH 1M.

> DALLETO DE PHOQUISAS ENERGÉTICIO E NUCLEARES I. P. E. N.

 $i_{\rm D}^{\rm L}$ / mA cm⁻²

FIGURA 6.26. Variação da $i_D^L \propto f^{1/2}$ da região pré-passiva da dis solução do EDR-Zn em meio de NaOHlM e Na₂SiO₃ (1) 10 mM, (2) 50 mM, (3) 81,9 mM, (4) 163 mM, (5) 409,6 mM

Além disso, a diminuição da i_Q com o aumento da con centração do fon silicato mostra que esta componente do processo de passivação vai se tornando cada vez mais significat<u>i</u> va.

O mecanismo da oxidação do EDR-Zn em meio do ion si licato não se altera, como pode ser visto através dos parâmetros cinéticos (tabela 6.13) obtidos das curvas de polariza ção anódica, figura 6.27, quando comparados com os resultados obtidos nos demais experimentos anódicos.

·	1								
^C Na ₂ SiO ₃ /mM	10	30	50	70	81,9	100	163 , 9	328	409,6
$b_a/mV dec^{-1}$	54	54	54	54	54	54	55	55	55
αa	1,09	1,09	1,09	1,09	1,09	1,09	1,07	1,07	1,07
i _o /mA cm ⁻²	1,07	1,15	1,20	1,23	1,29	1,58	1,35	1,00	1,00
e*/v	-1,517	-1,515	-1,514	- 1,512	-1,510	-1,506	-1,508	-1,520	- 1,519

TABELA 6.13 - Parâmetros cinéticos da dissolução do EDR-Zn em meio de Na₂SiO₃.

Admitindo que o silicato se adsorva sobre os sítios não cobertos pelo filme anódico que se forma sobre o eletrodo, foram calculadas para cada frequência de rotação do eletrodo qual a fração coberta, a partir da relação entre as densidades de corrente com e sem inibidor e a máxima densidade de corrente na presença do inibidor, isto é,

$$\theta = \frac{i_{SI} - i_{I}}{i_{SI} - i_{Imax}} \qquad 6.1$$

onde i_{SI} a densidade de corrente sem inibidor i_I a densidade de corrente com inibidor i_{Imáx} a densidade de corrente máxima com inibidor Assim, foram ajustados os resultados experimentais obtidos em algumas isotermas de adsorção, tanto graficamente como através do método numérico dos mínimos quadrados. Das isotermas estudadas, as de Langmuir e de Frumkin foram as que melhor se adaptaram com os nossos resultados experimentais.

A isoterma de Langmuir considera que todos os sítios de adsorção são equivalentes e que não há interação e<u>n</u> tre as moléculas dispostas em sítios adjacentes. A equação que a descreve é do tipo,

$$\frac{C_{I}}{\theta} = \frac{1}{K} + C_{I} \qquad 6.2$$

onde C_{I} representa a concentração do inibidor e $K = \frac{\overline{\Delta G}_{ads}^{0}}{RT} / 55,4 e \overline{\Delta G}_{ads}^{0}$ é a energia livre de adsorção.

A isoterma de Frumkin considera que os sítios são <u>e</u> quivalentes e que ocorre interação entre as espécies adsorvidas nos sítios adjacentes, sendo f o fator que leva em conta esta interação. A equação que descreve esta isoterma é a seguinte:

$$\frac{\theta}{1-\theta} \cdot e^{f\theta} = K C_{I}$$
 6.3

Se a interação das moléculas for de atração, o va lor para f será positivo e negativo para o processo de re pulsão.

A tabela 6.14 apresenta os resultados obtidos a partir dos mínimos quadrados para as duas Isotermas. Estes resultados mostram que qualquer uma das isotermas é igualmente <u>a</u> dequada ao nosso sistema uma vez que, o coeficiente angular obtido para a isoterma de Langmuir é próxima à unidade e por outro lado, o valor obtido para o parâmetro f, representativo da repulsão entre as espécies adsorvidas em sítios adjacentes, característico da isoterma de Frumkin, é relativamente pequeno, o que indica uma compatibilidade entre as isotermas.

	Lan	gmuir	<u></u>	Frumkin			
f ^{1/2} /Hz ^{1/2}	$-\overline{\Delta G}^{o}_{ads}$ /kcal mol ⁻¹	$d\left(\frac{C_{I/\theta}}{C_{I}}\right)$	Correlação	$-\Delta \overline{G}_{ads}^{\circ}/kcal mol^{-1}$	-f	Correlação	
2	15,20	0,760	0,961	13,30	1,89	0,987	
3	15,70	0,788	0,975	13,98	2,07	0,979	
4	15,40	0,800	0,979	14,15	1,63	0,982	
5	15,30	0,782	0,983	14,00	1,71	0,948	
6	15,00	0,780	0,978	14,00	1,47	0,960	
7	15,10	0,787	0,987	14,08	1,46	0,963	
8	15,20	0,816	0,995	13,98	1,48	0,968	

TABELA 6.14 - Isoterma de Adsorção para o Sistema EDR-2n/OH⁻/SiO₃²⁻

Assim, a película que se forma na presença do ion silicato sobre a superfície do filme anódico existente sobre o eletrodo, como também nos sitios não bloqueados sobre o metal, pode ter como precursores do processo de passivação, ta<u>n</u> to um processo de adsorção como também, a formação de um complexo com o ion silicato, que envolveria ou as espécies de zinco II que atravessariam aquele filme, ou mesmo as próprias substâncias (óxido/hidróxido de zinco) de que o filme é form<u>a</u> do.

6.6 CONCLUSÕES

Os ânions cloreto e benzoato não modificam o meca nismo de redução do fon zincato sobre o EDR-Zn em meio de NaOH 1M quando comparados com os resultados obtidos só na presença do álcali.

A velocidade de dissolução ativa do EDR-Zn não é <u>a</u> fetada pela presença do ion cloreto, mas faz com que o filme apassivante apareça mais cedo (correntes limites menores) através de um processo que diminui a solubilidade deste filme ou mesmo do próprio ion zincato, uma vez que foram determinadas as concentrações na superfície do eletrodo menores do que as obtidas na ausência do ion cloreto. É possível, também, que a diminuição das correntes limites esteja associada com a formação de novos complexos entre os ions de zinco e de clor<u>e</u> to, que então bloqueariam a superfície do eletrodo em conjunto com a precipitação dos ions zincato. A presença inicial do ion zincato, em conjunto com a do cloreto, não modifica estas constatações.

O ion cloreto não atua como um acelerador do proces so de dissolução do zinco em meio alcalino e também não altera o mecanismo de dissolução ativa do mesmo.

O fon benzoato se mostrou pouco eficiente na inibição do processo de dissolução do zinco em meio de NaOH 1M, dentro do intervalo de concentração de 10^{-5} até 10^{-2} M. Para as concentrações de 5 x 10^{-2} e 10^{-1} M de BzNa ocorreu um fav<u>o</u> recimento do processo de dissolução, uma vez que, foi verificado um aumento de corrente em toda a extensão da curva I x E. Para estas mesmas concentrações de BzNa o deslocamento da cu<u>r</u> va I x E, no sentido anódico em cerca de 30mV, mostra uma maior dificuldade em se formar o filme apassivante, conferindo por outro lado, um maior intervalo de dissolução ativa do metal.

A presença do benzotriazol durante o processo de di<u>s</u> solução do eletrodo de zinco em meio de NaOH 1M, proporcionou um aumento da velocidade de dissolução do metal, se acentuando na região pré-passiva e fazendo com que o início da passivação se deslocasse para potenciais mais positivos. Este comportamento indica que o BTA atua, de forma mais pronunciada, sobre o filme que se forma nesta região, interferindo assim, nas características do mesmo.

A componente química do processo de dissolução do eletrodo de zinco, determinada na região pré-passiva, é prat<u>i</u> camente a mesma em presença das espécies químicas, cloreto, benzoato, benzotriazol, zincato e também somente em presença do álcali. Assim, o processo de formação, através da ad-

2 8 m C

sorção das espécies de zinco II e mesmo o processo de dissol<u>u</u> ção do filme anódico não são afetados por estas espécies.

Entretanto, estas espécies atuam indiretamente na formação do filme, alterando o limite de solubilidade do ion zincato no NaOH lM; fazendo com que se atinja valores menores para a concentração crítica do ion zincato, em relação ao el<u>e</u> trólito que contenha somente o álcali. Desta forma, há uma maior contribuição para um bloqueio mais efetivo do eletrodo.

O fon silicato se mostrou a mais eficiente espécie química, na inibição do processo de dissolução do eletrodo de zinco. Sua influência é mais acentuada na região pré-passiva, sem, entretanto, deixar de atuar tanto na componente química do processo de passivação do zinco (as densidades de corrente química decrescem com o aumento da concentração do ion silic<u>a</u> to) como também na solubilidade do ion zincato, que representa a segunda parcela de reação do mesmo processo.

As isotermas de Langmuir e Frumkin foram igualmente adequadas aos resultados experimentais obtidos na presença do íon silicato. Assim, a contribuição deste íon, na complementação da formação do filme passivo, pode ter como origem não só um processo de adsorção (do íon silicato ou de outras formas complexas), mas também, a própria formação de novos com plexos entre os íons silicato e zincato, ou mesmo entre as es pécies óxido/hidróxido de zinco que formam o filme anódico ba se, que então bloqueariam os sítios ativos sobre o metal.

Para todos os ânions estudados têm-se a mesma cinética de oxidação do eletrodo de zinco que na ausência dos mes mos, o mesmo se verifica quanto a cinética de redução do ion zincato, quando tanto os ions cloreto e benzoato estão presen tes. As constantes de Tafel catódica e anódica médias são respectivamente $\bar{b}_{K} = (87\pm2) \text{mV} \text{dec}^{-1}$ e $\bar{b}_{a} = (56\pm3) \text{mV} \text{dec}^{-1}$.

CAPÍTULO 7

CONCLUSÕES FINAIS

Do presente trabalho destacam-se as seguintes conclusões:

1. O mecanismo de redução do fon zincato sobre EDR de filme de mercúrio ocorre em duas etapas de transferência de um el<u>é</u> tron cada uma, e ambas com velocidades de mesma grandeza.

2. O processo de redução do ion zincato sobre o EDR de filme de mercúrio se apresenta irreversível. As etapas químicas homogêneas/heterogêneas que existirem e acompanharem as etapas de transferência de carga estão no equilibrio.

3. O coeficiente de difusão do fon zincato em meio alcalino tem valor $\overline{D} = (4,90 \pm 0,20) \times 10^{-6} \text{ cm}^{-2} \text{s}^{-1}$.

4. A presença do ion zincato no álcali transforma o poten cial misto do eletrodo de zinco em potencial de equilibrio.

5. O mecanismo do processo catódico é o mesmo que o proces so anódico, sobre a superfície de zinco e ocorre em duas et<u>a</u> pas de transferência de um elétron cada uma. A primeira trans ferência de elétron, no sentido dos potenciais negativos, é a etapa determinante da velocidade (edv). 6. A mudança de inclinação (quebras) apresentada pelas cu<u>r</u> vas de polarização catódica da redução do fon zincato, somente sobre o eletrodo de filme de mercúrio, indica que a etapa de transferência de carga é mais lenta neste caso, do que quando o processo ocorre sobre a superfície de zinco.

7. A adsorção das espécies que se formam na dissolução do eletrodo de zinco, começam a afetar este processo já em sobretensões próximas ao potencial de equilíbrio/misto do me<u>s</u> mo.

8. A reação química homogênea/heterogênea presente durante o processo de dissolução do eletrodo de zinco, deve suceder a etapa de transferência de carga.

9. O processo de passivação do eletrodo de zinco ocorre co mo resultado de pelo menos dois processos distintos: a) a adsorção de espécies de zinco II formadas na dissolução do metal, com início na região ativa da curva I x E; b) a pr<u>e</u> cipitação do ion zincato, com início na região pré-passiva, primeiro pico de corrente limite e conduzindo a um bloqueio total do eletrodo, na altura do terceiro pico de corrente, dentro da região passiva.

10. Durante o processo de dissolução do eletrodo de zinco em meio de NaOH 1M, na presença ou não de benzotriazol e ion zincato inicial, são produzidas, na superfície do el<u>e</u> trodo, soluções supersaturadas que excedem o limite de concentração estipulado através de considerações termodinâmi

cas.

11. A cinética de oxidação do eletrodo de zinco em meio de NaOH 1M não se modifica na presença das espécies químicas cloreto, benzoato de sódio, benzotriazol e silicato de sódio.

12. O ion cloreto não acelera o processo de dissolução do <u>e</u> letrodo de zinco em NaOH lM.

13. O benzoato de sódio acelera o processo de dissolução do eletrodo de zinco em NaOH 1M a partir de concentrações mais elevadas do que 5 x 10^{-2} M.

14. O benzotriazol não atua como um inibidor do processo de dissolução do eletrodo de zinco em NaOH 1M.

15. O ion silicato diminui a velocidade do processo de dissolução do eletrodo de zinco em NaOH 1M; sendo mais pronunciada na passivação do eletrodo.

16. O bloqueio da superfície do eletrodo de zinco na presen ça do ion silicato pode ocorrer, tanto através de um processo de adsorção do silicato, como também devido à formação de um outro filme anódico com origem apenas na formação de no vos complexos entre os ions zincato e silicato.

17. A cinética de redução do ion zincato sobre o eletrodo de zinco em meio de NaOH 1M não se modifica, na presença das espécies cloreto e benzoato de sódio.

GLOSSÁRIO

A	área do eletrodo
В	constante de Levich
b _K	constante de Tafel catódica
b _a	constante de Tafel anódica
с	concentração
c [∞]	concentração no interior da solução
c ⁰ =c _s	concentração na superfície do eletrodo
cı	concentração do inibidor
D	coeficiente de difusão
Ε	reação eletroquímica
Е	energia potencial
E _{at}	energia de ativação
Eequi	potencial de equilíbrio
E _i	potencial inferior
E _s	potencial superior
Е*	potencial misto
ECS	eletrodo de calomelanos saturados
EDR	eletrodo de disco rotativo
edv	etapa determinante da velocidade
eV	elétron Volt

F constante de Faraday

f gravidade

- f frequência de rotação do eletrodo de disco
- f fator que leva em conta as interações entre as esp<u>é</u> cies adsorvidas, em sítios adjacentes
- G^O_{ads} energia livre padrão de adsorção
- I corrente total
- I_{T.} corrente limite
- I_D^L corrente limite de difusão
- i densidade de corrente total
- i^L_D densidade de corrente limite de difusão
- i_K densidade de corrente cinética
- i_T densidade de corrente com inibidor
- i_{Tmáx} densidade de corrente com inibidor máxima
- i_{SI} densidade de corrente sem inibidor
- i_O densidade de corrente química
- io densidade de corrente de troca
- j densidade de fluxo
- J vetor densidade de fluxo
- K constante de velocidade da reação heterogênea
- 1 comprimento
- M concentração molar
- n número de elétrons trocados

p pressão

- p ordem da reação
- q número de partículas que reagem por unidade de tem po
- Q reação química
- r,z,Ø coordenadas do sistema de coordenadas cilíndricas
- R constante geral dos gases
- Re número de Reynolds
- Re número de Reynolds crítico
- T temperatura
- t tempo
- v vetor velocidade
- v_r, v_z, v_{ϕ} composite composi
 - componentes de velocidade, radial, axial e tangencial
- v_{ct} velocidade característica do movimento do fluído
- vv velocidade de varredura dos potenciais
- vv percentagem em volume
- ω velocidade de rotação do eletrodo
- α_K coeficiente de transferência catódica
- α_a coeficiente de transferência anódica
- $(\alpha_{K})_{ap}$ coeficiente de transferência catódico aparente δ espessura da camada limite de difusão
- δ_{0} espessura da camada limite hidrodinâmica

η	viscosidade dinâmica da solução
η	sobretensão
θ	grau de recobrimento do eletrodo
ν	viscosidade cinemática da solução
ρ	densidade
V	operador laplaciano
9	derivada parcial
œ	infinito
0	subíndice que indica estado normal

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. G.M. Westrip, J. Chem. Soc., <u>125</u>, (1924), 1112.
- F. Mansfeld e S. Gilman, J. Electrochem. Soc., <u>117</u>, (1970), 1521.
- R.N. Snyder e J.J. Lander, Electrochem. Tech., <u>3</u>, (1965),
 161.
- 4. A.I. Oshe e V.S. Bagotskii, Z. Fiz. Khim., 35, (1961), 1641.
- J.W. Diggle, A.R. Despic e J.O'M. Bockris, J. Electrochem.
 Soc., <u>116</u>, (1969), 1503.
- J.O'M. Bockris, Z. Nagy e D. Drazic, J. Electrochem. Soc., 120, (1973), 30.
- 7. D. Drazic e Z. Nagy, J. Electrochem. Soc., 118, (1971), 255.
- 8. L.N. Popova e A.G. Stromberg, Elektrokhimiya, $\underline{4}$, (1968), 1147.
- 9. J. McBreen, J. Electrochem. Soc., 119, (1972), 1620.
- 10. H. Gerischer, Z. Physc. Chem., 202, (1953), 302.
- 11. B. Behr, J. Dojlido e M. Malyszko, Roczniki Chem., <u>36</u>, (1962), 725, cf. Chem. Abstracts, 58, (1963), 2143b.
- 12. H. Gerischer, Analyt. Chem., <u>31</u>, (1959), 33.
- 13. H. Matsuda e Y. Ayabe, Z. Elektrochem., <u>63</u>, (1959), 1164.

- 14. B. Behr, J. Chodkowski e A. Lichosik-Orlowska, Rocznike Chem., <u>36</u>, (1962), 1551, cf. Chem. Abstracts, <u>59</u>, (1964), 1287a.
- 15. A.G. Stromberg e L.F. Trushina, Elektrokhimiya, <u>2</u>, (1966), 1363.
- 16. A.G. Stromberg e L.N. Popova, Izv. tom sk. Polytekhn.Inst., 167, (1967), 91, apud ref. 111.
- 17. A.G. Stromberg e L.N. Popova, Elektrokhimiya, 4, (1968), 39.
- 18. J.P.G. Farr e N.A. Hampson, J. Electroanal., Chem., <u>18</u>, (1968), 407.
- 19. D.A.W. Payne e A.J. Bard, J. Electrochem. Soc., <u>119</u>, (1972), 1665.
- 20. A.R. Despic, Dj. Jovanovic e T. Takić, Electrochim. Acta, <u>21</u>, (1976), 63.
- 21. R.D. Armstrong, G.M. Bulman e H.R. Thirsk, J. Electroanal. Chem., 22, (1969), 55.
- 22. M.A.V. Devanathan e S. Lakskmanan, Electrochim. Acta., 13, (1968), 667.
- 23. B.N. Kabanov, Izv. Akad. Nauk. SSSR, 980, (1962). cf. Chem. Abstracts, 57, (1962), 8343f.
- 24. J.P.G. Farr e N.A. Hampson, Trans. Faraday, soc., <u>62</u>, (1966), 3493.
- 25. J. Euler, Electrochim. Acta, 11, (1966), 701.

- 26. J.P.G. Farr e N.A. Hampson, J. Electroanal. Chem., 13, (1967), 433.
- 27. J.P. Elder, J. Electrochem. Soc., 116, (1969), 757.
- 28. R.D. Armstrong e M.F. Bell, J. Electroanal. Chem., <u>55</u>, (1974), 201.
- 29. N.A. Hampson, G.A. Herdman e R. Taylor, J. Electroanal., Chem., <u>25</u>, (1970), 9.
- 30. R.D. Armstrong e G.M. Bulman, J. Electroanal. Chem., <u>25</u>, (1970), 121.
- 31. J.O'M. Bockris, Z. Naggy e A. Damjanović, J. Electrochem. Soc., <u>119</u>, (1972), 285.
- 32. T.P. Dirkse e N.A. Hampson, Electrochim. Acta, <u>17</u>, (1972), <u>135</u>, 383 e 387.
- 33. A. Marshal e N.A. Hampson, J.Appl. Electrochem., <u>7</u>, (1977) , 271.
- 34. R. Landsberg e H. Bartelt, Z. Elektrochem., 61, (1957), 1162.
- 35. H. Bartelt e R. Landsberg, Z. Phys. Chem., 222, (1963), 217.
- 36. T.I. Popova, N.A. Simonova e B.N. Kabanov, Elektrokhimiya, 2, (1966), 1476.
- 37. T.I. Popova, N.A. Simonova, Ya. Ya. Kulyabik e B.N. Kaba nov, Elektrokhimiya, <u>6</u>, (1970), 104.
- 38. R.W. Powers e M.W. Breiter, J. Electrochem. Soc., <u>116</u>, (1969), 719.

- 39. T.I. Popova, N.A. Simonova e B.N. Kabanov, Elektrokhimiya, <u>6</u>, (1970), 104.
- 40. M.N. Hull e J.E. Toni, Trans. Faraday Soc., <u>67</u>, (1971) , 1128.
- 41. T.P. Dirkse e N.A. Hampson, Electrochim. Acta, <u>16</u>, (1971), 2049.
- 42. M.C.H. McKubre e D.D. Mcdonald, J. Electrochem., Soc., <u>128</u>, (1981), 524.
- 43. C.S. Tsa e Z.A. Iofa, Doklad. Akad, Nauk. SSSR, <u>131</u>, (1960), 137.
- 44. J. Koryta, Electrochim. Acta, 6, (1962), 67.
- 45. T. Pyle e C. Roberts, J. Electrochem. Soc., <u>115</u>, (1968), 247.
- 46. J.W. Diggle, A. Damjanovic e J.O'M. Bockris, trabalho apresentado no "Electrochemical Society Meeting", Detroit, October, 1969, paper 18, apud R.D. Armstrong e M.F. Bell: Speciallist Periodical Report: Electrochemistry, vol. 4, pg.1, (1974).
- 47. F. Masfeld e S. Gilman, J. Electrochem. Soc., 117, (1970), 588.
- 48. S.A. Awad e Kh. M. Kamel, J. Electroanal. Chem., <u>24</u>, (1970), 217.
- 49. R.D. Armstrong e M.F. Bell, Electrochim.Acta, <u>21</u>, (1976), 155.
 50. R.W. Lewis e J. Turner, J. App. Electrochem., <u>5</u>, (1975), 343.
 51. W.J. Muller, Trans. Faraday Soc., <u>27</u>, (1931), 737.

- 52. T.I. Popova, V.S. Bagotskii e B.N. Kabanov, Zhur. Fiz. Khim., 36, (1962), 1433 e 1460.
- 53. B.N. Kabanov, Electrochim. Acta, 6, (1962), 253.
- 54. E.A. Ivanov, T.I. Popova e B.N. Kabanov, Elektrokhimiya, 5, (1969), 659.
- 55. M.N. Hull e J.E. Ellison, Electrochem. Soc. Abstracts, New York Meeting, 1969, p.596.
- 56. M.N. Hull e J.E. Toni, Electrochem. Soc. Abstracts, Detroit Meeting, 1969, p.39.
- 57. M.N. Hull, J.E. Ellison e J.E. Toni, J. Electrochem. Soc., <u>117</u>, (1970), 192.
- 58. H. Kaesche, Electrochem. Acta, 9, (1964), 383.
- 59. R.D. Armstrong e M.F. Bell, "Specialist Periodical Report: Electrochemistry, vol. 4, 1974, p.l. (London the Chemical Society).
- 60. M. Eisenberg, H.F. Bauman e D.M. Brettner, J. Electrochem. Soc., 108, (1961), 909.
- 61. H.A. Laitinen e I.M. Kolthoff, J. Phys. Chem. <u>45</u>, (1941) , 1079.
- 62. V.G. Levich, Acta Physicochim. URSS, <u>17</u>, (1942), 257, cf. Chem. Abstrac., <u>37</u>, (1943), 6561.
- 63. Yu.G. Siver e B.N. Kabanov, Zh. Fiz. Khim., 22, (1948),
 53 e 23, (1949), 428, cf. Chem. Abstracts, 42, (1948),
 5353h e 43, (1949), 6052a.

- 64. W.G. Cochran, Proc. Cambridge Phil. Soc. 30, (1934), 365, cf. ref. 66.
- 65. T.H. von Karman, Zeits. Angew. Math. und Mech; <u>1</u>, (1921), 233, cf. ref. 66.
- 66. V.G. Levich, Physiochemical Hydrodinamics, Prentice Hall, New Jersey, 1962.
- 67. F. Opekar e P. Beran, J. Electroanal. Chem. <u>69</u>, (1976),
 1.
- 68. A.J. Bard e L.R. Faulkner, "Electrochemical Methods Fun damentals and Applications", John Wiley & Sons, New York, 1980.
- 69. W.J. Albery, "Electrodes Kinetics", Clarendon Press, Ox ford, 1975.
- 70. D.C. Riddiford, em Advances in Electrochemistry and Electrochemical Engineering, vol. 4, Interscience, New York, 1966.
- 71. J. Newman, J. Electrochem. Soc., <u>113</u>, (1966), 501.
- 72. J.D. Newson e D.C. Riddiford, J. Electrochem. Soc., <u>108</u>, (1961), 695.
- 73. A.J. Arvia, J.C. Bazan e J.S.W. Carroza, Electrochim. Acta, <u>11</u>, (1966), 881.
- 74. J.P. Heith e J. Lothe, "Theory of the Dislocation", Mc. Graw-Hill, New York, 1968.
- 75. D. Hull, "Introduction to Dislocation", Pergamon Press, 1969, p.16,77.

- 76. B.E. Conway e J.O'M. Bockris, Electrochim. Acta, <u>3</u>, (1961), 340.
- 77. M. Fleischmann e H.R. Thirsk, "Metal Deposition and Electrocrystallization", in Advances in Electrochemis try and Electrochemical Engineering, vol. 3, p.123, 1963.
- 78. W.J. Lorenz, H.D. Hermann, N. Wülrich e F. Hilbert, J. Electrochem. Soc., <u>121</u>, (1974), 1167.
- 79. W. Allgaier e K.E. Heuster, J. Appl. Electrochem., <u>9</u>, (1979), 155.
- 80. J. Harrisson, J. Electroanal. Chem., <u>58</u>, (1975), 241 e <u>53</u>, (1974), 283.
- 81. J.O'M. Bockris e G.A. Razumney, "Fundamental Aspects of Electrocrystallization", Plenum Press, New York, 1967.
- 82. D.A. Vermilyea, "Advances in Electrochemistry and Electrochemical Engineering", P. Delahay e C. Tobias, eds., vol. 3, p.211, Interscience, New York, 1963.
- T.P. Hoar, "Modern Aspects of Electrochemistry", J.O'M. Bockris, ed., vol.2, p.262, Butterworth, London, 1959.
- 84. G.E. Thompson e G.C. Wood, in "Treatise on materials scien ce and tecnology", J.C. Scully, ed., vol. 23, p.205, Academic Press, London, 1983.
- 85. G. Butler e H.C.K. Ison, Corrosion. Scien., 6, (1966), 45.
- 86. L.I. Antropov, "Theoretical Electrochemistry", Mir Publishers, Moscow, 1977.
- 87. J.F. Dewald, J. Electrochem. Soc., 102, (1955), 1.

- 88. R.F. Strickland-Constable, "Kinetics and Mechanisms of Crystallization", Academic Press, London, 1968.
- 89. J.R. Ambrose, "Repassivation Kinetics", in "Treatise on Materials Science and Technology", J.C. Scully, ed., vol. 23, Academic Press, London, 1983.
- 90. T.P. Dirkse, J. Electrochem. Soc., <u>101</u>, (1954), 328.
- 91. J.S. Fordyce e R.L. Baum, J. Chem. Phys., <u>43</u>, (1965), 843.
- 92. G.H. Newman e G.E. Blomgreen, J. Chem. Phys. 43, (1965), 2744.
- 93. J. McBreen e E.J. Cairns: "Advances in Electrochemistry and Electrochemical Engineering", vol. II, H. Gerischer e C.W. Tobias, eds., John Wiley & Sons, New York, 1978, p.273.
- 94. Z. Zembura, J. Electroanal. Chem., <u>46</u>, (1973), 243.
- 95. M. Pourbaix, "Atlas of Electrochemical Equilibria", in "Aqueous Solutions", Pergamon Press, Oxford, p.406, 1966.
- 96. L. Meites, "Polarographic Techniques", Interscience, New York, 1965.
- 97. N.S. Hush e J. Blackledge, J. Electroanal. Chem., <u>5</u>, (1963), 420.
- 98. J.T. Clark e N.A. Hampson, J. Electroanal. Chem., <u>26</u>, (1970), 307.
- 99. H.C. Chagas, Ciênc. e Cult., 29(5), (1977), 601.

- 100. D. Sawyer e J. Roberts, "Experimental Electrochemistry for Chemists", John Wiley & Sons, New York, 1974, p.217.
- 101. D.E. Smith, J. Electroanal. Chem., 1, (1966), 1.
- 102. B. Miller e M.I. Bellavance, J. Electrochem. Soc., <u>119</u>, (1972), 1510.
- 103. M.Z. Hassan, D.F. Untereker, S. Bruckenstein, J. Electroanal. Chem. <u>42</u>, (1973), 161.
- 104. W. Kemula, Z. Kublik e Z. Galus, Nature, <u>184</u>, (1959), BA56, 1795.
- 105. W. Kemula, Z. Galus e Z. Kublik, Nature, <u>183</u>, (1958), 1227.
- 106. W.D. Ellis, J. of Chemical Educ., 50, (1973), Al31.
- 107. D. Jahn e Vielstich, J. Electrochem. Soc., 109, (1962),849.
- 108. W.G. Sherwood, D.F. Untereker e S. Bruckenstein, Anal. Chem., 47, (1975), 84.
- 109. H.C. Chagas, An. Acad. Bras. Ciênc., 49, (1977), 567.
- 110. D. Meyersten e W.A. Mulac, J.Phys. Chem., 72, (1968), 784.
- 111. R.J. Brodd e V.E. Leger, in "Encyclopedia of Electroch<u>e</u> mistry of the Elements", vol. V, Capítulo V-2, p.2, A J. Bard eds., New York, 1976.
- 112. K. Morinaga, J. Chem. Soc. Japan, <u>79</u>, (1958), 204, cf. Chem. Abstracts., 52, (1958), 19607f.
- 113. J.O'M. Bockris e A.K.N. Reddy, "Modern Electrochemis try, vol. 2, Plenum Press, New York, 1970.

- 114. V.V. Losev, "Modern Aspects of Electrochemistry", vol. 7, p.314, B.G. Conway e J.O'M. Bockris, eds., Prenum Press, New York, 1972.
- 115. D.P. Boden, R.B. Wylie e V.Y. Spera, J. Electrochem. Soc., 118, (1971), 1298.
- 116. S. Piekarski e R.N. Adams, "Voltammetry with Stationary and Rotated Electrodes", in Techniques of Chemistry. Physical Methods of Chemistry, part II A, p.531, Weissberg e Rossites eds., 1969.
- 117. K.J. Vetter, "Electrochemical Kinetics", Academic Press, New York, 1967.
- 118. I.V. Cirne, "Alguns Aspectos do Comportamento Eletroquími co do Zinco. I - Eletrodo de Zn²⁺/Zn(Hg). II - Eletrodo de Zn²⁺/Zn, Dissertação de Mestrado, IQUSP, 1981.
- 119. R.F. Ashton e M.T. Hepworth, Corrosion, NACE, <u>24</u>, (1968), 50.
- 120. J.L. Weininger e M.W. Breiter, J. Electrochem. Soc., <u>110</u>, (1963), 484.
- 121. W. Lorenz, Z. Physik Chem. NF, 19, (1959), 37.
- 122. K.E. Heusler e R. Knodler, Electrochim. Acta, <u>18</u>, (1973), 855.
- 123. D.M. Drazic, S. Hadzi-Jordanov e Z. Naggy, Croat. Chem . Acta, <u>45</u>, (1973), 199, cf. Chem. Abstracts, <u>79</u>, (1973), 841816.
- 124. V.S. Muralidharan e K.S. Rajagopalan, J. Electroanal. Chem., 94, (1978), 31.

- 125. T.V. Ptitsyna, I.A. Shoshina e A.L. Rotinyan, Zhur. Prikl. Khii., 48, (1975), 1764.
- 126. C.P. De Pauli, O.A.H. Derosa e M.C. Giordeno, J. Electroanal. Chem., <u>86</u>, (1978), 335.
- 127. I. Sanghi e M. Fleischmann, Electrochim. Acta, <u>1</u>, (1959), 161.
- 128. J.P. Diard e B. Le Gorrec, J. Electroanal. Chem., 103, (1979), 363.
- 129. Z. Ya. Nikitina, J. Appl. Chem., (USSR), <u>31</u>, (1958), 209.
- Z. Zembura e A. Fulinski, Electrochim. Acta, <u>10</u>, (1965), 859.
- 131. Yu. V. Pleskov, Zh. Fiz. Khim., 34, (1960), 623.
- 132. R.S. Perkins e T.N. Anderson, in "Modern Aspects of Electrochemistry, nº 5, Cap. 3, J.O'M. Bockris e B.E. Conway, eds., Plenum Press, New York, (1969).
- 133. I.M. Kolthoff e J.J. Lingane, "Polarography", vol. 2, Interscience, New York, 1952.
- 134. V.N. Flerov, Zh. Fiz. Khim., <u>31</u>, (1957), 310.
- 135. T.P. Dirkse, J. Electrochem. Soc., <u>102</u>, (1955), 497.
- 136. Z.P. Kajimoto, "Estudo da corrosão de aços carbono em meio ácido", tese, IQUSP, 1981.
- 137. J.O. Tognoli, "Complexos de cádmio com ions benzoato. Fenômeno da agregação do ion benzoato", dissertação, IQUSP, 1980.

- 138. F.M. Donanue, A. Akiyama e K. Nobe, J. Electrochem. Soc., 114, (1967), 1006.
- 139. S.M.L. Agostinho, "Influência dos ions cloreto na cinética de redução eletroquímica dos ions de Bi³⁺ e Cu²⁺ no eletrodo de mercúrio", tese, IQUSP, 1975.
- 140. J.C. Rubin, "Espectro Raman intensificado por superfície de inibidor de corrosão benzotriazol, adsorvido em eletrodo de Pt e Ag", dissertação, IQUSP, 1982.
- 141. J.M. West, "Electrodeposition and corrosion process", London, Van Nostrand Reinhold, 1965, p.126.
- 142. A. Asakura e K. Nobe, J. Electrochem. Soc., <u>118</u>, (1971), 13.
- 143. J.R. Galvele, "Corrosion", Washington, DC., (1979), Capts 5, 10 e 11.
- 144. A. Akiyama e K. Nobe, J. Electrochem. Soc., <u>8</u>, (1970), 999.
- 145. A.S. Fouda, Indian, J. Technol., 20(10), (1982), 412.
- 146. R.F. Tobias e K. Nobe, J. Electrochem. Soc., <u>1</u>, (1975), 65.
- 147. T. Keity e T.J. Sinclair, J. Power Sources, <u>6</u>, (1980), 47.
- 148. N. Eldakar e K. Nobe, Corrosion Scien., <u>36</u>, (1983), 271.
- 149. J. Bressan e R. Wiart, J. App. Electrochem., <u>9</u>(5),(1979), 43.

- 150. J.W. Diggle e A. Damjanovic, J. Electrochem. Soc., <u>119</u>, (1972), 1649.
- 151. C. Cachet, Ü. Ströder e R. Wiart, J. Appl.Electrochem., 11, (1981), 613.
- 152. M.M. Abou-Romia, M.S. E-Basiouny e A.A. Bekheet, Electrochim. Acta, 28, (1983), 1599.
- 153. A.N. Frumkin, V.V. Batrakov e A.I. Sidnin, J. Electroanal. Chem., <u>39</u>, (1972), 225.
- 154. A.N. Frumkin, in "Advances in Electrochemistry and Electrochemistry and Electrochemical Engineering, vol. 1, P. Delahay e C. Tobias, eds., New York, 1961.
- 155. C. Cachet, Ü. Ströder e R. Wiart, Electrochim. Acta, <u>27</u>, (1982), 903.
- 156. M. Brook e N.A. Hampson, Electrochim. Acta, <u>15</u>, (1970), 1749.
- 157. J.S. Drury, N.A. Hampson e A. Marshall, J. Electroanal. Chem., <u>50</u>, (1974), 292.
- 158. A. Marshall e N.A. Hampson, J. Electroanal. Chem., <u>59</u>, (1975), 19 e 33.
- 159. V.V. Bakae, V.N. Shirokov e V.N. Flerov, Elektrokhimiya, <u>7</u>, (1971), 376.
- 160. V.N. Flerov, Zh. Prikl. Khim., 30, (1957), 1326.
- 161. D.R. Gabe, Corros. Scie., <u>12</u>, (1972), 113.

