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Abstract

A spherical-harmonics (Py) method that incorporates and couples existent scalar and vector versions of the method
is developed. The scalar (group-by-group) version of method is applied to the slowing-down energy range and the
vector version to the thermal energy range. The link of coupling between these methods is the slowing-down source
to the thermal groups which becomes available once the problems for all of the slowing-down groups are solved with
the scalar method. The advantage of using the coupled Py method over the vector method when solving transport
problems defined in extended energy ranges is demonstrated in this work. © 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Until the works of Caldeira, Dias and Garcia appeared in the literature (Caldeira et al., 1998a; 1998b), the
only available option for developing spatially continuous Py solutions for multigroup transport problems was
(what we call) the vector Py method, developed and used by various authors along the years (Davison, 1957;
Lee et al., 1985; Siewert, 1993a). This version of the method solves a matrix transport equation that allows
particle transfer between any two groups in the group structure and gives a solution for all groups at the same
time (no iteration over the groups is required). This approach is clearly adequate for neutronics problems
defined exclusively in the thermal energy range or problems that involve fission, but, as will be shown in this
paper, it is not the best way of implementing the Py method for solving shielding problems defined in the full
range of energies that is of interest for fission technology (typically, 0-20 MeV). A coupling between the scalar
Py method (Caldeira et al., 1998a; 1998b) and the vector Py method in the formulation of Siewert (1993a)
seems to be the best choice for this class of problems.

The outline of this paper is as follows. In Sections 2 and 3 we summarize, respectively, the scalar and the
vector Py methods that embody our coupled method for the case of a single slab and in Section 4 we develop
the source term which is the link of coupling between these methods. In Section 5 we describe the extension of
the coupled method to multislab geometry and in Section 6 we report numerical results for a few test problems
and compare the computational performance of the methods. Finally, Section 7 consists of our concluding
remarks.

0306-4549/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
PII: S0306-4549(00)00046-3
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2. The scalar Py method

We assume that the problem we wish to solve is defined in a group structure with G groups, the first G4 of
which belong to the slowing-down range, where only downscattering is present, and the remaining G, = G—Gq4
to the thermal range, where upscattering is present in addition to downscattering, except in the highest-energy
group.

Thus, in the slowing-down range we consider, for groups i = 1,2,...,Gq, the problem defined by the
transport equation, for z € (21, zr) and p € [—1,1],

z/)l(z W) + oz, ) ZZUU ) Po(1) Pg Wiz, p)dp (1)
P

Jj=1 £=0

and the boundary conditions, for u € (0, 1],

Yizp, 1) = Li(p) (22)
and

Yilzr, —p) = Ri(w), (2b)

where the incident particle distributions L;(p) and R;(u) are supposed known. In Eq. (1), ¢;(z, p) is the
particle angular flux for group 4 at position z and direction of particle travel defined by the cosine of the polar
angle p, o; is the macroscopic total cross section for group i, and oy;(¢) is the £'th Legendre moment of the
transfer cross section for scattering from group j to group 4.

For N odd, a Py solution that satisfies the first N + 1 moments of Eq. (1) and the Mark prescription
(Davison, 1957; Gelbard, 1968) of the boundary conditions expressed by Egs. (2a) and (2b) was developed by
Caldeira et al. (1998a). This solution can be written as

N

1
Pi(z,p) = 3 Z(Zn + 1)¢in(2) Pa(p), 3)
n=0
where the Legendre moment
b= [ e P (4
can be shown to be given by (Caldeira et al., 1998a)
i K
i Z Z Me—(r](z—u)/fj,k + (- 1)"B,, ke_al(zk 2)/¢;, lc] 1](5] o) (5)
j=1 k=1

with K = (N + 1)/2. In this expression, the so-called Py eigenvalues {&;} are the K pairs of zeros of the
Chandrasekhar polynomial g; v1(€) and {g¥ (&)} are the generalized Chandrasekhar polynomials introduced
by Caldeira et al. (1998a). These polynomials must satisfy the tridiagonal system defined by

i—-1
&3 i ij ij € j
(25 h© = 0+ 02O+ 6210+ () S ©)
i i/ azy
for n = 0,1,...,N and the truncation condition q}\], +1(6) = 0 and reduce to the standard Chandrasekhar

polynomials {g;n(&x)} when the source group j is the same as the sink group i. We note that the above
formulation is valid on the assumption that 0;&;, # ;& x for k, k' =1,2,... , K, and that the case where one
or more of these conditions are not satisfied by a given pair of sink and source groups was resolved by Caldeira
et al. (1998b). In addition, we note that h;n = 2n + 1 — 035(n)/o; for n < £ and hyn = 2n+1 for n > L.
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To complete the Py solution expressed by Egs. (3) and (5), we can follow Caldeira et al. (1998a) and use
the Mark prescription of the boundary conditions expressed by Egs. (2a) and (2b), i.e.

(2L, m) = Li(ftm) (7a)
and
'(/}i(zRu _ﬂm) = Ri(/um)a (7b)
where fi,, m = 1,2,..., K, are the positive zeros of Py,1(p), along with the definitions A = zp — 2,
1N
Xil€ 1) = 5 D20+ 1)gin(€) Paln), (8a)
n=0
1N
Yi(,m) = 5 D (=12 + 1)gin() Palp), (8b)
n=0
1 N
1] —_ 'L]
X(E,p) =5 ; (2n + 1)g (&) Pa() (8¢)
and
1 N
ij — _1\» ij
Yi(E ) =5 Zﬂ( 1)"(2n + 1)g; (€) Pa(p), (8d)

to deduce the linear system of algebraic equations

K

Z [Ai e Xi(Eis fim) + By Yi(Eik, prm)e 71850

k=1
i1 K B
= [Aj kXY (&, tm) + BixY (& 1,y pim)e™ 71850 (92)
G=1 k=1
and
K
Z 1, kX 51 ks /“m) + Al Is) (51 ks lum) ng/ﬁi'k]
=1
i-1 K
= Z 50X (s m) + AjpY (€, i) e~ TA/ 5] (9b)

I

Jj=1 k=1

m=1,2,...,K, for the unknown coefficients {A; s} and {B;} of group 7. Assuming that the solutions for
groups 1,2, ... ,i— 1 have been found in previous applications of the method, the right-hand sides of Eqs. (9a)
and (9b) are known, and so, once the linear system defined by these equations is solved, we have at hand all
quantities needed to evaluate the Py solution to Eqgs. (1) and (2). We note that the scalar fluxes and currents
in group 4 are simply the first two Legendre moments ¢;o(z) and ¢;1(z) obtained by setting n =0 and n =1
in Eq. (5) and can be accurately computed using that equation. The same is true in regard to the partial
currents

H)—/l bl )
izwou“uu, (10)

which can be expressed (Garcia and Siewert, 1996) in terms of the Legendre moments ¢;0(2), ¢;1(2) and
Gin(2), n=2,4,6,...,N—1. Finally, to compute the angular flux ¢;(z, 11), Caldeira et al. (1998a) have used
the source-function integration technique (Kourganoff, 1952; Dave and Armstrong, 1974; Karp, 1981; Siewert,
1993b; Garcia, 2000) to derive postprocessed formulas [see their Egs. (21) and (23)] that effectively smooth
out the oscillations observed when one tries to use Eqgs. (3) and (5) for computing the angular flux.
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3. The vector Py method

In regard to the thermal groups i = G4+1,Ga+2,... , G, since they can all be coupled by particle transfer
we prefer to deal with the matrix transport equation (Siewert, 1993a), for z € (zr, zr) and p € [-1,1],

£ 1
I4] 1
B () + D) = 5 S PO [ P )0 + Qi) (1)
=0 -1
where
Ya+1(25 1)
Z?
‘11(27 H) _ deJrZ:( H) (12)
Ya(z, 1)
is a vector of dimension G, = G — G4 with the desired thermal angular fluxes as components, X is a diagonal
matrix of order G, with the macroscopic total cross sections o;, ¢ = G4+1,G4+2, ... , G, as diagonal elements,
0G+1,6e+1(0)  0G+1,Ge+2(0) - 0G16(E)
0Ge12,60+1(0)  0Ger2,6er2(8) .. ogaa(l)
= . . . . (13)
06610 oca2l) .. oge(t)

is a Gy x G, matrix with the ¢’th Legendre moments of the transfer cross sections as elements, and

QGd+1 (Z, H)

Qacy+2(2, 1)

Q(z,1) = (14)

QG(:ZJ‘)

is a vector of dimension G, with the downscatter sources to the thermal groups as components. Here, to
simplify our presentation, we prefer to keep the downscatter sources {Qi(z, )} as yet unspecified; explicit
expressions for these sources and related quantities will be given in the next section. In this section we only
use the fact that, since the downscatter sources are directly related to the angular fluxes in the slowing-down
range and we have used in Section 2 a Py approximation to represent these fluxes, only the first NV +1 Legendre
moments of these sources can be # 0.

At this point, we note that our formulation differs slightly from that of Siewert (1993a), who changed the
space variable in Eq. (11) to an optical variable measured in units of the largest of the mean free paths {1/0;}.
In this paper, to facilitate the coupling between the scalar and vector Py methods, we prefer to work directly
with Eq. (11). Associated with Eq. (11), we consider the boundary conditions, for x € (0,1],

W (21, 1) = L) (15a)
and
¥ (zr, —p) = R(p), (15b)
where the known vectors of incident distributions are defined as

LGd+1 (l")

Lg,+2(1)

L(u) = (16a)

LGV(N)
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and
RG.1+1(ﬂ)
Re,2(1)

R(p) = : . (16b)
Re(n)
Proceeding with our presentation, we follow Siewert (1993a) and write our Py solution to Eq. (11) as

(2, 1) = O'(z, 1) + U2, p), (17)

where W"(z, 1) denotes the Py solution to the homogeneous version of Eq. (11) and WP(z,u) denotes a
particular Py solution to Eq. (11). The homogenous solution satisfies the first N + 1 angular moments of
Eq. (11) with Q(z, ) = 0 and is given by

N
1
h _1 h
W (z,p) = 3 §(2n+ DLAOLAMN (18)
where
J
B(x) = 3 [Aje /6 1 (1) BeCr6] T, (), (19)
j=1

with J = G, x (N + 1)/2. Here, the polynomial vectors {T,(§)} obey the recurrence formula
Eh, Ty (§) = (n+ 1) T (§) +nTnoi(§), (20)

where

h ={ EZn-i—l)Z—Cn, n<L, (21)

n+1)%, n>L,

and the Py eigenvalues {%§;} are the J &£ pairs of the parameter £ that satisfy the truncation condition
Tn41(§) =0

It can be shown that the determination of the required Py eigenvalues and associated T-vectors can be
reduced to the problem of solving the eigensystem (Siewert and Thomas, 1987; Siewert, 1993a)

AT, (€) = € T.(¢), (22)
where the J x J matrix A has the structure
Yo Zo O ... 0 0 0
X2 Y, Z2 R 0 0 0
0 X4 Yy ... O 0 0
A=t o 5 B (23)
0 0 0 Yys Znvs O
o 0 o0 Xn-3 Yn_3 Zn-s
0 0 0 0 XN—l YN_1
with
X, =n(n—1)h'h !, (24a)

Y, = n?h;'h;Y, + (n+1)%h; 'hy ), (24b)
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and
Zn = (n+1)(n +2)h'h; 1), (24c)

and the vector T¢(€) of dimension J has the even T-vectors as subvector components, i.e.

To(€)
re=| "¢ | (25)
Tn-1(§)
Once the eigensystem expressed by Eq. (22) is solved, the required {¢;} can be found as the positive square
roots of the eigenvalues and T,(§;), n = 0,2,...,N — 1, as the subvector components of the associated

eigenvectors, according to Eq. (25). Of course, once the even T-vectors are established, the odd ones can be
computed by using Eq. (20) with n =1,3,..., N and the truncation condition Ty41(§;) =0

We note that the problem of computing the Py eigenvalues and eigenvectors can also be formulated in terms
of the odd T-vectors. In this alternative formulation, we have to solve (Siewert, 1993a)

BT,(£) = £2T,(€), (26)
where the J x J matrix B has the structure
Y, Z, 0 ... 0 0 0
X3 Y3 Z3 ... 0 0 0
0 X5 Y5 ... 0 0 0
=1 : : A : : : B (27)
0O 0 O Ynos Zn_s 0
0o 0 O Xn—2 Ynoo Zn_s
0 0 o0 0 Xy Y,
with
Y = N?h3'hit (28)

and the vector T,(£) of dimension J has the odd T-vectors as subvector components, i.e.

- | " (29
Tn()

Again, once the eigensystem defined by Eq. (26) is solved, the required {¢;} can be found as the positive
square roots of the eigenvalues, the required odd T-vectors can be found as the subvector components of the
associated eigenvectors, according to Eq. (29), and the required even T-vectors can be computed from Eq. (20)
withn=0,2,... ,N -1

To complete our Py solution defined by Eq. (17), we now make use of a particular Py solution developed
by Siewert (1993a). We note that his solution satisfies the first NV + 1 angular moments of Eq. (11) and can
be written as

N
1
» Z
WP (z, 1) =3 E:O(Zn +1)®2(2) Py(p), (30)
where

J
() = 3 L) + VT, (31
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Here

k=1

K -1
(Z e—2(€5) Dok —2Tox— 2(6;)) , (32)

where the tilde denotes the transpose operation and the {T} (&;)} satisfy the recurrence formula

€0, TH(E) = (+ )T} () + 7T, (6) (33)
forn =0,1,..., N and the truncation condition TL+1(§]-) =0 forj=1,2,...,J, and are related (Siewert,
1993a) to the left eigenvectors of the matrices A and B defined respectively by Egs. (23) and (27). Moreover,

Uj(z) = / u;(2)e /Gy (34a)
zL
and n
Vi(z) = / v;()e”F5d, (34b)
with
N
=D Th&)Qu(z (352)
n=0
and
N
vi(2) = D _(=1)"T(E)Qn(2), (35b)
n=0
where
Qu(2) = 5(2n+1) / Qz, 1) Pai)d (36)

Finally, as for the scalar problems, the coefficients {A;} and {B;} in Eq. (19) are to be determined from the
boundary conditions. Using the Mark version of the boundary conditions expressed by Eq. (15a) and (15b)
and introducing the vectors

N
X(E 1) = 3 D20+ DTo(€) Palh) (372)
and N =
() = 5 3 (-1 2+ DTa(Pali), (37)

we find the linear system of equations

J
S TAX(E, 1) + By Y (&5, m)e™ /5] = L) — ¥ (21, pin) (38a)
i=1
and
J
Z [BiX (&, tm) + A7Y (5, i)™ ] = R(ptm) — P (2R, —p1), (38Db)
j=1
for m = 1,2,..., K, that is to be solved for {4;} and {B;}. Once these coefficients become available, we

can compute Py approximations to some quantities of physical interest. We begin with the vector of thermal
scalar fluxes ¢(z) which is given by the sum of Egs. (19) and (31) for n = 0. We obtain

J

b(x) =) [Aje‘“““/ff + Bje GG %[Uj(z) +V;(2)]| To(&)- (39)
j=1
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Similarly, adding Egs. (19) and (31) for n = 1, we find that the vector of thermal currents J(z) is given by

J
C.
I =3 [Aje‘(z"“)/g] = BjeCr=9/8 ?][Uj(Z) = Vi(2)]| Ta(&))- (40)
=1 I
We can also generalize the one-group result of Garcia and Siewert (1996) to find that the vectors of partial
currents J*(z) and J7(z) can be expressed as

’“ (2k — 3)1

4k+1)—2k+2;

J*(2) = -'¢( Doi(2), (41)

l\-’Jl’i

k:l
where the definition (—1)!! = 1 is to be used and

Poi(2) = P (2) + Bh(2). (42)
Finally, in regard to the vector of thermal angular fluxes, we can use the source-function integration technique
in the manner of Siewert (1993a) to find the postprocessed results, for p € [0, 1],

1 /7 ,
\I’(z, ) = e~ S(z=z)/n L(p) + E/ T2 )/”Q(Z'A,,u,)dz/ + E(z, 1)

ZL

J
+ 306 [AC(z — 2 pET L MG, ) + Bye Crm /S (2 — 2 pBTL NG, p)] (43a)

j=1

and | [
Uz, —p) = e~ E(zr=2)/n R(u) + ; / E—E(z'—z)/uQ(Z/’ —u)dz’ + E(Z, _H)
J
+ D& [Ae /682 — 20 pETL N, 1) + BiC(2r — 2 - nE76)M(E;, )], (43D)
where
M(¢; 1) —2 ZCeTz(ﬁ Py(p) (44a)
=0
and ) .
N(&, ) = 557 3 (-1 CTA&) Plw), (44b)
=0
and where
) Clz: u=71,6) = diag{C(2 : 1/0G,11, ), C(2 : 106412, E)s- -, Clz : /0, €)} (45a)
an
S(z: B ,€) = diag{S (2 : 1/06,41,€), S 1/0Gy2,E)- ., S(z : 106, €)), (45b)
with
—z/n _ =2/
Clz:pe) = o (462)
p—E
and P B 1 — e /1 e2/¢
(z:p,8) = Tate (46b)

In addition, the vectors E(z, £u) required in Egs. (43a) and (43b) are given by

J

2 =3 O [ [ w@ict - um )2 Mg

=1 L

+ | Vi(2)S(z — 21 - =71, &) + /Z v;(2)e BERG (2 — 2 ,LLE’I,{j)dz'J N(Ej,u)} (47a)

ZL
and

26w =3 CJ{ [ / " (0 - 2 uE’l,éj)dZ’} Mg, 1)

+ {U]‘(z)S(zR — 2 pBThE) + /ZR ui(2)e B MG (2 — 2 BT fj)dz':| N(&;, u)} (47b)
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4. Coupling the scalar and vector Py methods

In this section, we work out the details of our way of coupling the scalar and vector Py methods summarized
in Sections 2 and 3. As already mentioned in the Introduction, the link of coupling between these methods
consists of the downscatter sources from the fast and epithermal groups o = 1,2, ... , G4 to the thermal groups
i=Gg+1,Gg4+2,...,G. Considering N > L, we find that the source vector Q(z, ) in Eq. (11) has the
components

Ga
Qz Z, l‘) Z PZ ) Z o'ia(e)gba,l(z)v (48)

a=1

which, in view of Eq. (5), can be written in a more explicit form as

a K
Qi 1) Z Pr(y) Zam Z [Agpemcalemml/én 4 (—1)! By pemorCn /o] gi0(gg ), (49)
a=1 =1 k=1
fori =Gg+1,Gq+2,...,G. Clearly, since the source vector Q(z, i) is explicitly known so are the moments

{Qu(2)} defined by Eq. (36). Thus, we can use these moments in Eqgs. (35a) and (35b) to find explicit
expressions for the quantities {U;(2)} and {V;(2)} defined respectively by Eqs. (34a) and (34b) and required
to establish our particular Py solution to Eq. (11). After inverting the order of the summations in a and 8 in
the resulting expressions, we find, for j =1,2,...,J,

G L Ga Gy
S ST oma0 (2 — 21,6)) (50a)
m=Gg+1 €=0 B=1 a=p

and

c Gy G
Z STV TE) DD omaOX (20 — 2,&5), (50b)

m=Gg+1 £=0 p=1a=p

where TZm(g) denotes the (m — G4)’th component of the vector T,‘z(f ), and we have used the definitions

K
*@0) = %Z(ﬁﬁ 1/08) [ApiC (2 : €51/ 05, C) + (1) Bp e A0k S (2 : &5 /05, 0)) 97 (6a)  (51a)
k=1

and

x

X(2,0) = & S (€p/om) [Appe 8 OI/BES (3 1 €31/5,C) + (~1) BoaClz : €a4/03, O]9 Esx).  (51b)
2k:=l

Now that the quantities {U;(z)} and {Vj(2)} are available, we can write our postprocessed results for the
thermal angular fluxes expressed by Eqs. (43a) and (43b) in more detail. Indeed, after some algebra, we can
show that the vector quantities Z(z, £pu), p € [0, 1], that appear in these equations have the components, for
i=Gy+1,Gq+2,...,G,

J £ Ga Ga (2 = 21, /0y —eeaﬂz—zL, g
o= 3 S 2 Tin(6) 2 2o 0{{ e (U8

m=Gg+1 j=1 =0 B=1a=p

+ (—1)2{/\?‘5(2R —2,&)5(z — 21, pfoi, &)

b —0i(z—2z apf
(2 — 2, pfoy) — e CETE B 3P (5 — 4y €1
" [ (1/o) +§; : }}Ni(fjvﬂ)} (52a)
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and
Gy Gy aff
C TT - E ¢ (ZR_Z /1/0'1)_)‘ (ZR_Z 6])
D= 503 @SS ot (o R )
(fpu)+{ Uz = 20,6)S (e - 2 1/, €)
« _ \ _ a—0i(zr—2)/p OB — .
. |:)\eﬁ(ZR 2z, 1/ 03) (M;Ui)<+5j)/ Xo (2R 2’5])]}Ni(§j,u)}, (52b)
where
1 L G
M'i(s,u):(g)zf’e(m S ounlO)Tim(®) (53a)
v/ =0 m=Gq+1
and

M(&u)=< )Z ) Pe(p) Z i () Tom(€) (53b)

£=0 m=Gy+1

are the (i — G4)’th components of the vectors M(E, 1) and N(§;, i), respectively, and we have used the
additional definitions

K
)= %Z(fﬁ,k/o,ﬂ)[All,kS(z t€ar/08,C) + (—1) Bare Ok C (2 1 €g1/05,0)] 977 (Go)  (54a)
k=1
and

K
(2,0 = gz (Epx/op) [Agre™ @V C (2 2 €1 /05, Q) + (—1)'BpwS(2 : €54/ 09, ()] 95" (§4)-  (54b)
k=1

In addition, we can readily show that the source integral vectors in Egs. (43a) and (43b) have, respectively,
the components, for i = G4+ 1,Gq+2,...,G,

z L Gy Gyg
/ e ETNIQu (2 e =" Pu(p) YD 0ial0)eg” (2 — 21, /) (55a)
ZL £=0 B=1a=p
and
2R L Ga Gu
/ e Q2 —p)dd =D (=1 Pu) Y D 0ia(ON (2r — 2, /), (55b)
z £=0 B=1a=p

for p € [0,1]. With the formulas reported in this section, we consider that our coupled Py solution is now
completely defined.

5. Extension to multislab geometry

So far in this paper we have treated only multigroup problems formulated as a single slab. Our extension
of the method to multislab geometry that is described in this section relies on an iterative approach which is
based on solving the problem one slab at a time and using spatial sweeps to connect these solutions and guide
them to convergence. Although the Py method can be formulated in a way that permits solution of multislab
problems without iteration, we believe that the iterative approach adopted here has the merit of being less
limited by computational resources.

To explain our way of solving multigroup transport problems in multislab geometry, we consider a system
of R slabs, as shown in Fig. 1. We assume, as before, that the group structure has a total of G = G4 + G,
energy groups, with G4 denoting the number of fast and epithermal groups and G, the number of thermal
groups. On the left and right boundaries of the system, the incident distributions of radiation are specified,
respectively, by the vectors L(x) and R(u) of G components. The problem here is to find Py approximations
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Region 1 |Region 2|+ [Region 7|--- [ Region R —1 | Region R

20 21 Zg  Zr-1 Zr ZR-2 ZR-1 ZR

Fig. 1. A system of R slabs in multislab geometry

to the vector of angular fluxes ¥, (2, 1), z € (2,-1,2-) and p € [—1,1], and related integral quantities, for the

regions 7 = 1,2, ... , R, given the boundary and interface conditions, for x € (0,1],
U1 (20, 1) = L(p), (56a)
lpr(zm:tﬂ) = \I’r+1<zﬁiﬂ)a r=12...,R-1, (56b)

and

(o, 1) = R(j). (560)
We now describe our sweep procedure. First of all, we note that, for any region r, the first G4 components of
the angular-flux vector, U,.1(z, u), Ura(2, 1), ... , Urg,(2, 1), are solved using the scalar Py method summa-
rized in Section 2, while the remaining G, components ¥, g,+1(2, 1), ¥rc 42(2, 1), - - -, ¥ra(z, 1) are solved

using the vector Py method coupled to the scalar method as discussed in Section 4. The first sweep is initiated
at the leftmost slab (r = 1) and proceeds by solving the problem for all subsequent slabs r = 2,3,... , R. After
the problem for the rightmost slab (r = R) has been solved, the sweep direction is reversed and the problems
for slabs 7 = R—1,R—2,...,1 are solved again with updated boundary conditions, as explained next. This
sequence of right /left sweeps is repeated as many times as necessary for convergence in the solution. In any of
these sweeps, the problem for slab 7 is formulated as being subject to the boundary conditions, for p € (0, 1],

\I’r(ZT—ly H/) =L, (N) (573‘)
and

‘I’r(zrv _:u) = RT(”)v (57b)

where the vectors L, () and R, (x) are either known, initialized in an arbitrary way or approximated by the
result of the previous sweep. Clearly, L (1) and Rg(u) are known for all sweeps and are given by the incident
distributions of radiation, i.e.

Ly (p) = L(p) (58a)
and
Ry (n) = R(u). (58b)

In addition, when the sweep is to the left we use, for u € (0,1],

L.(u)=90_ (z_1,p), 7=2,3,...,R, (59a)
and
R.(p) =97, (2, —p), r=1,2,...,R-1, (59Db)
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where the superscripts ¢ and p indicate angular-flux vectors computed in the current and the previous sweep,
respectively. Similarly, when the sweep is to the right, we use, for € (0, 1],

Lo(p) =¥ (21, ), 7=2,3,...,R, (60a)
and
RT(/") = ‘I’fﬁ-l(zh_#‘)’ r= 1721"' ,R— 17 (GOb)

except when the sweep is the first, in which case we make use of the arbitrary initialization R.(x) = 0,
r=1,2,...,R—1, in place of Eq. (60b).

Finally, to stop the sweep process, we have adopted the criterion that the maximum relative deviation
displayed in two consecutive sweeps by the exit fluxes Wq(20, —ftm) and Wg(zr, m) and the interface fluxes
W, (2, £pm), 7 = 1,2,..., R — 1, where {{n,} are the Mark points defined in Section 2, should not exceed a
prescribed amount (10~% was our choice for the first and third problems discussed in the forthcoming section).

6. Test problems

To evaluate and compare the performance of the scalar, vector and coupled Py methods, several test
problems (Dias, 1999) were solved in the course of this study. Here, we report numerical results for three
such problems. The first is a five-region, 20-group, downscatter-only problem with synthetic cross sections
and scattering anisotropy of 10th order that was introduced some years ago (Garcia and Siewert, 1983) to test
the Fy method for solving multigroup slowing-down problems in multislab geometry. The second (Garcia and
Siewert, 1998) consists of a concrete slab with linearly anisotropic scattering and group constants defined in
the WIMS 42-group thermal structure, and the third is a one-dimensional model of a fast-reactor shield (Dias
and Ono, 1995) that comprises seven regions, scattering anisotropy of 7th order and a 25-group structure (21
groups for neutrons and 4 for gammas).

6.1 Five-region, 20-group, downscatter-only problem
Following Garcia and Siewert (1983) and referring to Fig. 1 with R = 5, we can specify this problem by

taking A, = 2z, — 2,1 = (r + 1) cm, for 7 = 1,2,...,5, and using the synthetic cross-section set (in units of
em™), forr=1,2,...,5and i =1,2,...,20,

20\° .
ol = (7‘ ;1 ) [0.1 X 1 — 0.15(51',5 + 51,10)] (61&)
and
r+20 j . ;
o0 =+ 1) ( 21 ) [IOO(i_Jj+ 1)] (95)", j=1,2,...,iand £=0,1,...,10, (61D)

with g;; = 0.7 — (i + 5)/200. In addition, the boundary conditions for this problem are such that we have
an isotropic distribution of radiation impinging uniformly on the left boundary 2z, only in the highest (first)
energy group, i.e.

L= 0 ... 0, (62a)
and a vacuum boundary at zs, i.e.
R(u) = 0. (62b)

This problem was solved using the purely scalar and vector methods, as well as the coupled method with
G4 = 10 and G, = 10, for the purpose of comparing the computational efficiency of these three methods. In
Tables 1 and 2, we list the group albedos A} = J; (2)/Ji (20) and transmission factors Bf = J;(z5)/J; (20)
fori=1,2,...,20 and several orders of the Py approximation, along with the reference Fy results of Garcia
and Siewert (1983).
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Table 1
The group albedos A for the five-region, 20-group, downscatter-only problem
i N =19 N =39 N =59 N =199 Reference
1 5.0300(—3) 5.6651(—3) 5.7845(—3) 5.8722(—3) 5.8809(—3)
2 2.3271(—3) 2.2927(-3) 2.2855(—3) 2.2797(~3) 2.2791(—3)
3 1.3207(—3) 1.3019(—3) 1.2977(—3) 1.2943(—3) 1.2939(—3)
4 8.8058(—4) 8.6826(—4) 8.6542(—4) 8.6306(—4) 8.6280(—4)
5 8.6768(—4) 8.5642(—4) 8.5393(—4) 8.5192(—4) 8.5170(—4)
6 5.0656(—4) 4.9984(—4) 4.9820(—4) 4.9679(—4) 4.9662(—4)
7 4.0501(—4) 3.9970(~4) 3.9837(—4) 3.9720(—4) 3.9706(—4)
8 3.3417(—4) 3.2085(—4) 3.2874(—4) 3.2775(—4) 3.2763(—4)
9 2.8222(—4) 2.7862(—4) 2.7767(—4) 2.7682(—4) 2.7671(—4)
10 2.8495(—4) 2.8138(—4) 2.8047(—4) 2.7966(—4) 2.7956(—4)
11 2.1400(—4) 2.1136(—4) 2.1064(—4) 2.0998(—4) 2.0989(—4)
12 1.8852(—4) 1.8622(—4) 1.8559(—4) 1.8499(—4) 1.8491(—4)
13 1.6796(—4) 1.6594(—4) 1.6537(—4) 1.6483(—4) 1.6476(—4)
14 1.5101(—4) 1.4921(—4) 1.4870(—4) 1.4821(—4) 1.4814(—4)
15 1.3681(—4) 1.3520(—4) 1.3474(—4) 1.3429(—4) 1.3423(—4)
16 1.2475(—4) 1.2331(—4) 1.2289(—4) 1.2247(—4) 1.2242(—4)
17 1.1442(—4) 1.1311(—4) 1.1273(—4) 1.1234(—4) 1.1229(—4)
18 1.0547(—4) 1.0428(—4) 1.0392(—4) 1.0357(—4) 1.0352(—4)
19 9.7655(—5) 9.6571(—5) 9.6241(—5) 9.5906(—5) 9.5859(—5)
20 9.0783(—5) 8.9789(—5) 8.9483(—5) 8.9169(—5) 8.9125(5)
Table 2
The group transmission factors B; for the five-region, 20-group, downscatter-only problem
i N =19 N =39 N =59 N =199 Reference
1 1.0453(—2) 1.0453(—2) 1.0453(—2) 1.0453(—2) 1.0453(—2)
2 1.9995(—4) 1.9993(—4) 1.9993(—4) 1.9993(—4) 1.9993(—4)
3 6.9020(—5) 6.9014(—5) 6.9013(—5) 6.9012(—5) 6.9012(—5)
4 3.5398(—5) 3.5394(—5) 3.5393(—5) 3.5393(—5) 3.5393(—5)
5 3.5354(—5) 3.5351(~5) 3.5350(—5) 3.5350(~5) 3.5350(—5)
6 1.4901(—5) 1.4900(~5) 1.4899(—5) 1.4899(—5) 1.4899(—5)
7 1.0718(~5) 1.0716(—5) 1.0716(—5) 1.0716(—5) 1.0716(-5)
8 8.0874(—6) 8.0865(—6) 8.0864(—6) 8.0863(—6) 8.0863(—6)
9 6.3211(—6) 6.3204(—6) 6.3203(—6) 6.3202(—6) 6.3202(—6)
10 6.1280(—6) 6.1273(—6) 6.1272(—6) 6.1271(—6) 6.1271(—6)
11 4.1843(—6) 4.1838(—6) 4.1837(—6) 4.1837(—6) 4.1837(—6)
12 3.4897(—6) 3.4893(—6) 3.4893(—6) 3.4892(—6) 3.4892(—6)
13 2.9549(—6) 2.9545(—6) 2.9545(—6) 2.9545(—6) 2.9545(—6)
14 2.5336(—6) 2.5333(—6) 2.5332(—6) 2.5332(—6) 2.5332(—6)
15 2.1956(—6) 2.1953(—6) 2.1953(—6) 2.1953(—6) 2.1953(—6)
16 1.9203(—6) 1.9200(—6) 1.9200(—6) 1.9200(—5) 1.9200(—5)
17 1.6930(—6) 1.6928(—6) 1.6927(—6) 1.6927(—6) 1.6927(—6)
18 1.5031(—6) 1.5030(—6) 1.5029(—6) 1.5029(—6) 1.5029(—6)
19 1.3430(—6) 1.3428(—6) 1.3428(—6) 1.3428(—6) 1.3428(—6)
20 1.2066(—6) 1.2065(—6) 1.2064(—6) 1.2064(—6) 1.2064(—6)
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For a given N, we have confirmed that the numerical results obtained for the albedos, transmission factors
and other quantities of interest with the scalar, vector and coupled Py methods showed, as expected, a level of
agreement that was compatible with the machine precision (at least 9 figures of agreement in 16 decimal-digit
computations). In addition, as is typical of the Py method (Garcia and Siewert, 1996; Caldeira et al., 1998a;
1998b), we can see that the transmission factors converge faster than the albedos, as N increases. Finally,
in Table 3 we compare the CPU times spent by the scalar (Gq = 20, Gy = 0), coupled (G4 = G, = 10) and
vector (G4 = 0, G, = 20) methods to solve this problem on a 400-MHz Pentium IT PC, for several orders of
the Py approximation. It can be seen that the coupled method yields substantial savings in computer time
over the vector method.

Table 3
CPU times® (min.) for solving the five-region, 20-group, downscatter-only problem
N Scalar (Gq = 20) Coupled (G4 = 10) Vector (G4 = 0)
19 0.5 1.2 1.8
29 1.5 2.9 7.0
39 3.5 6.2 12.7
59 10.7 18.6 49.1

@Pentium 11, 400-MHz clock, 128-MB RAM.

6.2 Calculation of double-differential thermal albedos in 42 groups for a concrete slab

This computationally challenging problem was formulated in a recent work where the Fy method was
extended for multigroup transport problems with upscattering (Garcia and Siewert, 1998) and subsequently
used by Siewert (2000) to test his discrete-ordinates solution to the same class of problems. It consists of a
100-cm-thick concrete slab irradiated on one side by a normally incident, uniform beam of neutrons in one of
the 42 thermal groups that span the energy range from 0 to 4 €V in the WIMS group structure (Kim, 1990).
Noting that in this case G4 = 0 and G = G,, = 42, we are required to solve Eq. (11) with Q(z, p) = 0, subject
to the boundary conditions given by Egs. (15a) and (15b) with

L(p) = Fé(p — po) (63a)
and
R(p) =0, (63b)
for u € (0,1]. In Eq. (63a), uo = 1 and the vector F has components F; = d;; for i = 1,2,...,42, with
1 < 7 < 42 denoting the group of incidence.
The main results of interest for this problem are the double-differential (in energy and angle) thermal albedos
Ji (w)
(W, o) = =7, 64
b te) = ) ©y
fori=1,2,...,42 and p € (0, 1], where J; (1) = p¥;(0, —) and J;" (o) = poF;. These quantities are needed
for modelling duct wall reflections in three-dimensional duct calculations (Selph, 1973).
To solve this problem, we have adopted a formulation (Siewert, 1993a) based on the uncollided/collided
decomposition

lIJ(z,,u) = ‘IIO(Z’ IU‘) + ‘IJ*(Z,,U), (65)

where the uncollided flux vector Wy (z, 1) must solve the problem formulated by Eq. (11) with zero right-hand
side and boundary conditions specified by Eqgs. (15) and (63), and the collided flux vector ¥, (2, 1) must solve
Eq. (11) with

c

Qewr) = 5 3 PO [ P Wole st (66)

=0
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subject to vacuum boundary conditions at z; and zg. As the uncollided solution can be readily seen to be

Wo(z, p) = e ZC2/MFS (1 — pro) (67a)
and
Wo(z, —p) =0, (67b)

for p1 € (0, 1], we can write Eq. (66) simply as

(z,p) = [ZP, YCe P, uo)} (=zu)/mop, (68)

Since our solution for the collided problem was found by a mere specialization of the approach discussed in
Section 3 for the source defined by Eq. (68), we chose, to save space, not to report here the specific expressions
that were obtained for the collided solution.

We list in Table 4 our Py results for the thermal albedos a;;(i, po), ¢ = 1,2,...,42 and j = 4. These
results are in agreement, within +4 in the last figure shown, with the numerical results reported for the Fiy
(Garcia and Siewert, 1998) and discrete-ordinates (Siewert, 2000) methods. We should mention that to be
able to generate the results reported in Table 4, we had to execute our program in double precision on a
long-word machine (CRAY J90). The reason for this requirement is that the cross-section set that defines the
problem is such that the matrices A and B defined respectively by Eqs. (23) and (27) turn out to be near
defective, and, consequently, a destructive loss of precision occurs when their corresponding eigensystems are
solved in double-precision on a short-word computer. In passing, we note that we have used for this purpose
the sequence of EISPACK subroutines BALANC, ELMHES, ELTRAN, HQR2 and BALBAK (Smith et al.,
1976), and have also made an independent implementation using subroutine DGEEV of the LAPACK package
(Anderson et al., 1995). We have found that both of these packages perform similarly in terms of accuracy, but
LAPACK is more economical, since subroutine DGEEV provides the left and right eigenvectors at once (recall
that to compute the Tf-vectors introduced in Section 3 we need the left eigenvectors of A or B). Thus, to
avoid the excessive loss of precision that occurs in the computation of the eigenvalues and eigenvectors for this
problem without having to adopt a more complex methodology (singular value decomposition, for example),
we have decided to perform the calculation in a much higher precision level (the 32 decimal digits provided by
the CRAY J90 computer) than that targeted for the eigenvalues and eigenvectors (9 decimal digits, at least).
We note that Siewert (2000) has reported the occurrence of a similar difficulty during his implementation of
the discrete-ordinates method for solving this problem.

6.8 One-dimensional model of a fast reactor shield

This shielding problem is defined, as shown in Fig. 2, by seven material regions and an isotropic neutron
flux that leaves the reactor core and strikes the left boundary of the system. The energy distribution of the
incoming neutrons is taken to be that of fission neutrons and is described by a 21-group representation of
the Watt spectrum. In addition, we note that on the right we have a vacuum boundary and that the region
dimensions and compositions are given in Table 5.

To define a cross-section set for the problem, we have performed a preliminary calculation with a modified
version of the discrete-ordinates ANISN-W code (Soltesz and Disney, 1970), using a nonuniform spatial dis-
cretization with a total of 1061 mesh intervals, quadrature order 16 and fine-group cross sections from the
VITAMIN-B6 library (White et al., 1994). This library has a group structure with 199 neutron groups in
the range 107° eV-19.64 MeV and 42 groups in the range 1 keV-30 MeV for gammas resulting from (n,y)
reactions, and includes Legendre moments of transfer cross sections of order up to £ = 7. The results of the
preliminary ANISN-W calculation were subsequently used to collapse the cross sections to a 25-group structure
consisting of 21 neutron groups (12 fast and 9 thermal) and four gamma groups (numbered 22 through 25),
the upper and lower limits of which are given in Table 6, along with the components L;, i = 1,2,...,25, of
the vector L that defines the incident particle fluxes.
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Table 4
Pgg results for the double-differential thermal albedos a;j(p, o) with j =4 and po =1

pn=0.1 pn=02 pn=03 pn=04 pn=0.5 pn=0.06 n=0.7 pn=038 n=0.9 p=10
3.953(—10) 8.996(—10) 1.462(- 2.050(—9) 2.642(—9) 3.225(-9) 3.790(—9) 4.332(—9) 4.848(—-9) 5.337(-9)
1.956(—7) 4.425(=7) 7.023(=7) 9.578(=7) 1.201(—6) 1.426(—6) 1.634(—6) 1.822(—6) 1.991(—6) 2.143(—6)
1.197(—4) 2.180(—4) 2.938(—4) 3.489(—4) 3.856(—4) 4.061(—4) 4.124(—4) 4.062(—4) 3.891(—4) 3.624(—4)
1.818(—2) 3.096(—2) 3.896(—2) 4.290(-2) 4.339(-2) 4.097(-2) 3.607(-2) 2.904(-2) 2.017(-2) 9.706(-3)
1.794(-2) 2.463(—2) 2.990(—2) 3.391(-2) 3.680(—2) 3.871(-2) 3.978(-2) 4.009(-2) 3.975(-2)
1.017(-2)  1.428(-2) 1.762(-2) 2.024(-2) 2.221(— 2) 2.358(—2) 2.441(-2) 2.477(-2) 2.470(-2)
1.530(-3) 2 104( -3) 2.533(—3) 2.824(—3) 2.988(—3) 3.037(—3) 2.984(—3) 2.837(—3) 2.608(—3)
(- (- )
(= (=
(-
(-
(-

.

1.422(-3) 951(—3) 2.340(—3) 2.596(—3) 2.729(— 3) 2.752(—3) 2.674(—3) 2.506(—3) 2.258(—3)

© B NG W N =
©
>
<
S
|
&

2.541
2.474

1.383(—3) 18)5( 3) 2.268(—3) 2.509

-9)
)
)
)
)
) )
) )
) )
) ) 3) 2.627(—3) 2.634(-3
10 7.227(—4) 1.358(—3) 1.862(-3) 2.228(-3) 2.462
) )
) )
) 3)
)
)
)
)
)
)

(- ) 2.357(—3) 2.091(—3)
(-3) 2.283(=3) 2.010(-3)
2.369(— ) 2.188(—3) 1.927(-3)
2.202(—3) 2.119(-3) 1.871(-3)
2.319(—3) 2.153(—3) 1.911(-3)
2.194(—3) 2.052(—3) 1.838(—3)
4.102(—3) 3.864(—3) 3.496(—3)
6.796(~3) 6.538(—3) 6.086(—3)
9.000(—3) 8.856(—3) 8.480(—3)
2.530(-2) 2.572(—2) 2.561(—2)
2.812(—=2) 2.950(—2) 3.043(-2)
(-

(-

(-

(-

(-

3) 2.574(—3) 2.575(—3

1.201(~3) 1.773(=3) 2.125(-3) 2.351(—3) 2.460(-3) 2.463(-3

1.236(~3) 1.701(=3) 2.042(-3) 2.264(—3) 2.373(-3) 2.379(-3

1.232(=3) 1.700(=3) 2.045(-3) 2.272(-3) 2.387(-3) 2.400(-3
2.237(—3) 2.259(—3
4.137(-3) 4.197(-3
6.648(—3) 6.839(—3
8.510(—3) 8.892
2.269(—
19 4.458(—3) 9.102(~3) 1.350(—2) 1.746(—2) 2.092(~2) 2.385(—

)
)
3)
14 5983(—4) 1.137(-3) 1.575(-3 )
)
)
)
)
)
20 4.141(-3) 8.641(-3) 1.3()8( 2) 1.725(-2) 2.107(-2) 2.447(-
)
)
)
)
)
)
)
)
)

1.902(—3) 2.120(-3
15 1.086(—3) 2.073(—3) 2.880(—3) 3.490(-3) 3.906(-3
16 1.659(—3) 3.195(—3) 4.482(-3) 5.485(-3) 6.203(~3
17 1.999(—3) 3.895(3) 5.525(-3) 6.840(—3) 7.831(-3

18 4.808(—3) 9.560(—3) 1383( 2) 1.747(-2) 2.042(-2

)

)

(=3)

(-3)

(=3)

(=3)

(=3)

(=3)

(-3)

(=3)

(=3)

(=3)

(=3)

2) (-2)

2) (-2)
2) 2.745(-2) 3.001(-2) 3.215(-2) 3.390(—2)
21 2.351(—3) 4.980(—3) 7.639(-3) 1.021(-2) 1.262(-2) 1.484(-2) 1.684(-2) 1.864(-2) 2.021(-2) 2.158(—2)
22 1.530(—3) 3.267(=3) 5.048(-3) 6.793(~3) 8.454(—3) 1.000(—2) 1.143(-2) 1.273(-2) 1.389(—2) 1.493(-2)
23 1.081(-3) 2.319(=3) 3.601(—3) 4.867(-3) 6.083(—3) 7.229(—3) 8.294(-3) 9.272(-3) 1.016(—2) 1.096(—2)
24 1.140(—3) 2.456(—3) 3.829(—3) 5.196(-3) 6.518(—3) 7.773(—3) 8.950(=3) 1.004(-2) 1.104(—2) 1.195(-2)
25 1.843(=3) 3.994(—3) 6.250(—3) 8.534(—-3) 1.076(-2) 1.289(—2) 1.490(-2) 1.679(-2) 1.855(—2) 2.017(-2)
26 2.057(—3)  4.488( 3) 7031( 3) 9.719(—3) 1.233(—2) 1.486(—2) 1.730(—2) 1.961(—2) 2.178(—2) 2.382(-2)
27 3.281(-3) 7.229(-3 152(~2) 1.596(—2) 2.043(—2) 2.486(—2) 2.919(—2) 3.338(—2) 3.741(—2) 4.126(—2)
28 4.483(—3) 1.001(— 2) 1616( 2) 2.271(-2) 2.947(—2) 3.634(—-2) 4.321(-2) 5.003(=2) 5.675(—2) 6.333(~2)
20 7.244(-3) 1.640(-2) 2.690(—2) 3.836(—2) 5.052(~2) 6.318(—2) 7.616(~2) 8.935(—2) 1.026(—1) 1.159(—1)
30 5.715(-3) 1.306(—2) 2.162(~-2) 3.113(—2) 4.138(—2) 5.220(-2) 6.347(—2) 7.505(—2) 8.687(—2) 9.884(—2)
31 4.926(-3) 1.131(—2) 1.881(-2) 2.721(-2) 3.633(-2) 4.603(~2) 5.618(—2) 6.669(—2) 7.747(—2) 8.845(2)
32 4.087(—3) 9.402(—3) 1.567(-2) 2.272(-2) 3.041(-2) 3.861(—2) 4.724(-2) 5.619(-2) 6.540(~2) 7.480(—2)
33 4.123(—3) 9.494(-3) 1.585(—2) 2.300(—2) 3.083(—2) 3.920(—2) 4.802(~2) 5.720(—2) 6.666(~2) 7.633(—2)
34 4.565(-3) 1.052(—2) 1.756(—2) 2.552(—2) 3.424(-2) 4.358(-2) 5.343(—2) 6.371(-2) 7.432(—2) 8.519(-2)
35 4.269(—3) 9.830(— 3) 1.642(~2) 2.387(—2) 3.203(—2) 4.080(-2) 5.006(—2) 5.973(—2) 6.973(—2) 8.000(—2)
36 3.143(—3) 7.231(—3) 1.207(-2) 1.755(—2) 2.355(—2) 3.000(~2) 3.683(—2) 4.396(—2) 5.135(—2) 5.894(—2)
37 3.131(-3) 7.193(— ) 1.200(~2) 1.743(-2) 2.339(—2) 2.979(—2) 3.658(—2) 4.367(—2) 5.103(—2) 5.859(—2)
38 3.011(-3) 6.901(—3) 1.149(—2) 1.668(—2) 2.236(—2) 2.848(—2) 3.496(—2) 4.174(—2) 4.878(=2) 5.603(—2)
39 2.748(-3)  6.275(— ) 1.042(~2) 1.510(—2) 2.022(—2) 2.574(=2) 3.158(—2) 3.770(—2) 4.406(—2) 5.062(—2)
40 2.293(—3) 5.203(=3) 8.605(—3) 1.243(-2) 1.661(-2) 2.111(—2) 2.588(—2) 3.088(~2) 3.609(—2) 4.147(—2)
41 1583(—3) 3.552(—3) 5.828(—3) 8.369(—3) 1.114(-2) 1.412(-2) 1.727(-2) 2.058(=2) 2.403(—2) 2.760(—2)
42 5.923(—4) 1.297(-3) 2.091(-3) 2.965(—3) 3.909(-3) 4.916(—3) 5.982(—3) 7.101(—3) 8.268(—3) 9.480(—3)

We have solved this problem with our coupled Py method, using the scalar method for the 12 groups of fast
neutrons and the vector method for the 9 groups of thermal neutrons and the 4 groups of gammas. Therefore,
the group structure has Gy = 12 and G, = 13. In Table 7, we report our Ps; postprocessed results for the
group angular fluxes exiting the right boundary of the system along four values of the direction variable p that
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are ordinates in the Sy approximation used by the ANISN-W code to generate the results labeled as Sy in
the table. The ANISN-W results are based on the same spatial discretization scheme that was used for the
preliminary calculation (1061 intervals). It can be seen that the Py and Sys results agree very well, with a
maximum relative difference of less than 0.16% between these results.

C | BsC Tron Carbon Sodium || Iron

‘Watt
Spectrum

o

@@ED ® ®

Sodiu

Fig. 2. One-dimensional shield model of the REARA experimental fast reactor

Table 5
Region dimensions (cm) and material densities [atoms/(barn.cm)]
Region # Component Dimension Carbon Boron-10 Sodium Iron
1 Reflector 16.85 2.1305(—2)
2 Removable Shield 17.73 1.5671(—2) 1.2394(-2)
3 Coolant 34.00 2.2521(—2)
4 Core Barrel 1.25 5.3231(—2)
5 Shield 67.50 8.0233(—2)
6 Coolant 30.00 2.2521(—2)
7 Reactor Tank 5.08 5.3231(-2)
Table 6
Group structure and incident particle fluxes for the shielding problem
Upper Energy Lower Energy Upper Energy Lower Energy
i (eV) (eV) L; i (eV) (eV) L;
1 1.9640(-+7) 2.3069(+6) 0.0011 14 1.8554(+0) 1.0800(+0) 0.0024
2 2.3069(+6) 1.4227(+6) 0.7264 15 1.0800(+0) 8.0000(—1) 0.0019
3 1.4227(+6) 7.4274(+5) 0.9717 16 8.0000(—1) 5.0000(—1) 0.0016
4 7.4274(+5) 3.3373(+5) 1.0000 17 5.0000(—1) 2.7500(—1) 0.0012
5 3.3373(+5) 1.9255(+5) 0.8421 18 2.7500(~1) 1.2500(—1) 0.0009
6 1.9255(+5) 8.2503(+4) 0.6619 19 1.2500(—1) 4.0000(—2) 0.0006
7 8.2503(+4) 2.4176(+4) 0.4358 20 4.0000(—2) 1.0000(—2) 0.0003
8 2.4176(+4) 3.0354(+3) 0.2259 21 1.0000(—2) 1.0000(—5) 0.0001
9 3.0354(+3) 5.8295(+2) 0.0830 22 3.0000(+7) 5.5000(-+6) 0.0
10 5.8295(+2) 4.7851(+1) 0.0347 23 5.5000(+6) 1.3400(+6) 0.0
11 4.7851(+1) 1.7604(+1) 0.0112 24 1.3400(+6) 2.0000(+5) 0.0
12 1.7604(+1) 6.4760(+0) 0.0066 25 2.0000(+5) 1.0000(+3) 0.0
13 6.4760(+0) 1.8554(+0) 0.0036




A.F. Dias R.D.M. Garcia| Annals of Nuclear Energy 27 (2000) 1607-1626

1624

(g-)gg0°T (g-)9g0°1 (e-)900'1 (g-)900'T (7—)992°8 (7—)69L'8 (7—-)689°L (¥—-)169°2 (¥-)218°9 (7—-)612°9 14
(z—)90r'1 (z—)901'1 (z—)se01 (z-)ge0'T (6—)999'L (-)999°2 (6-)857°'s (e-)ssvs (e-)vv9e (e-)wvoe 14
(g-)¥e9°L (g-)¥e9°2 (e=)19¥"L (e=)19¥L (e-)611°9 (e-)611°9 (e—)osze (e-)182°¢ (e-)se01 (e—)ge0'T €2
(g-)e1Le (g-)z1Le (£—-)999°C (e-)g99c (€-)L09C (g-)20972 (e-)196°1 (g-)196°1 (7—)1109 (¥—)s10'9 44
(¢-)168°¢ (g—)968°¢ (5-)¥68°C (5-)668°C (g—)8e8'1 (g-)198'1 (g-)ste1 (g—)ote't (9-)88T1°6 (9-)6%1'6 1¢
(—)esc'L (—)062°2 (7-)¥s89 (7—-)652°9 (7-)298°¢ (7-)1L8e (7—)es9°c (7—-)559°% (F-)6LLT (7—)osL1 0%
(g-)0z9°1 (g-)1289'T (e=)L1¥7°1 (e-)8191 F-)pL06 (7—)080'6 (7—-)6€89 (v—)eve9 (F—)9sT¥ (P—)es1¥ 61
(r—)egge (r—)esse ((AIIARS (7-)oLte (7-)671°C (7—)os1T (7—-)s05°1 (7—)80g'1 (7=)200°1 (7—)2001 8T
(g—)etrs (g—)p1T°2L (5-)z159 (g-)s15'9 (5—)LeLy (s-)6gL¥ (g—)ozre (g—-)sere (g—)ooee (g-)1087T L1
(g—)L80°% (g—)680% (g—)1LL'8 (g-)eLLe (g—-)¥6LC (5-)g6LT (g—)9v0°C (-)270 (g—)oLe1 (g-)LL8T 91
(g-)20LT (g-)e0LT (5—-)g05°C (g-)v0s (g-)pL8°1 (g—)eL8'T (g—)ose'1 (g—)osgt (9-)e62°6 (9-)262°6 91
()T (g—)etrg (5-)waLy (g—)9sLy (g-)665°¢ (g—)109°€ (5—)€99°C (5-)v99°2 (g-)w6L1 (g—)g6L1 i
(F—-)ss1'L (r—)esT'1 (7—)180°1 (7—)180°1 (g-)sves (5-)6¥5'8 (g—)oz1°9 (g—)gz19 (g-)very (5—)9z1¥ €1
(g-)g6e'8 (g—)665'8 (g—)9s8'L (g-)098'L (g-)2¥09 (¢—)og0'9 (g=)¥05% (g—)905¥ (g—)9go'e (g-)280°¢ 1
(g—)esgL (g—)68g°L (g—)s0T°L (g—)¥11L (g—)96¥°g (g-)109°s (g-)eory (g—)901'¥ (g—)89L°C (g—)oLLe 1
(7-)9gs'1 (7—-)Le91 (F-)Levt (7—)sev'1 (7—)9or'1 (7-)201T (g-)6ee'8 (g—)orzs (g—-)ss5°g (5—)095°s 01
(g-)612°¢ (g-)ezze (s-)oLee (s-)vL6C (g-)LL18 (¢—)os1e (g=)1281 (g-)6L9'T (g-)8g0°1 (g-)6g01 6
(g-)912°C (g-)812% (s-)¥50C (g—)L50°T (g—)s9g°1 (¢-)29g'T (g—)ost'1 (g=)181T (9-)766'L (9-)¥00'8 8
(g=)eer'1 (g—)ger'T (g—)geeT (g—)9se'T (g—)950°1 (g-)290°1 (9-)zr18 (9-)s718 (9-)675°¢ (9-)egg's L
(g-)910°T (g=)L10'T (9-)257'6 (9-)g97'6 (9-)LerL (9-)eeTL (9-)ss1'8 (9-)88T'g (9-)e6e'E (9-)968°e 9
(9-)p28°g (9-)088'g (9-)127°g (9-)aLvs (9-)681°% (9-)e61¥ (9-)t1te (9-)p1te (9-)290C (9-)690C S
FILL (9-)t8LL (9-)66T°L (9-)g0z°L (9 :mw g (9-)zv9s (9-)oLe¥ (9-)9LeF (9-).86'C (9-)066'2 i
(9-)88L% (9—)z6LF (9-)v0T¥ —)80%F (9— (9-)8LLT (9-)z16°1 (9-)e16°1 (9-)9zz°1 (9-)LzT'1 €
(9-)evLe (9-)svLT (9-)910C (9-)810% (L— v@a& (L-)ser 6 (L—)960°G (L=)oot'g (L-)v18c (L-)e18C 4
(8-)z18°1 (8-)a18'1 (8-)9ge't (8—)L8e'T (6-)e819 (6-)¥81°9 (6—)18¢°€ (6—)188°¢ (6—)958'1 (6-)9581 1
TtNg Nd 1+Ng Nd T+Ng N TtNg Nd THNg Nd ?
012286670 =1 16.8506°0 = 1 LyeeLLs o =1 629€L8¢°0 =11 208€2£0°0 =1

LY = N 10] p[erys o3 jo Lrepunoq 1y3u o) 3uryixe sexnyj remsue dnoid ayJ,

L 9Iq®L



A.F. Dias R.D.M. Garcia| Annals of Nuclear Energy 27 (2000) 1607-1626 1625

In Table 8, we show, for several values of N, the execution (CPU) times for running this problem on a
350-MHz Pentium II PC and the maximum percent deviations observed in the total fluxes and currents with
respect to the Pg3 results. First of all, we note that the Sgq calculation of ANISN-W did not converge for
reasons unknown to us, and this is why the Sy columns in Table 8 do not carry the corresponding N = 63
entries. In addition, we have found, for this and other problems that we solved, that the Py method is
more economical than the Sy.; method in low order but, after a certain value of N (near 31 in this case), it
becomes more time consuming. We believe that this observation can be explained by noting that a substantial
portion of the computer time in the Py method is spent computing eigenvalues and eigenvectors and solving
full linear systems with Gaussian elimination, which are essentially N*® processes (with the exception of the
eigenvalue calculation in the scalar method which is a N? process), while the computer time in the Sy
method should, in principle, grow with N somewhere between N and N2. Indeed, for this test problem, we
have concluded from the times displayed in Table 8 that the ratio between the increase in computer time
for, say, approximation N = N, to that for approximation N = N; (both with respect to the time spent by
approximation N = 7) follows a pattern roughly o< (N2/N1)*™ for the Py method, while in the worst case of
the Sy41 method (N, = 47 and N; = 15) this ratio turns out to be = (47/15)%7.

Table 8
CPU times® and maximum percent deviations for the shielding problem
Py SN+1
N Time (s) Max. Dev. (%) Time (s) Max. Dev. (%)
7 34.8 65.9 554.9 69.9
15 158.6 23.2 652.8 47.4
31 960.0 3.9 820.8 4.6
47 2739.7 1.2 1215.0 1.3

63 6338.2 — — —
@Pentium II, 350-MHz clock, 512-MB RAM.

7. Concluding remarks

We have reported in this paper a new version of the spatially continuous Py method for solving multigroup
transport problems in plane geometry that is based on a coupling of previously reported scalar and vector Py
methods. From the solutions for the first and third test problems analyzed in this work, we were able to confirm
in practice the notion (Caldeira et al., 1998a) that the use of the scalar method in place of the vector method
when dealing with the slowing-down part of the calculation yields a substantial reduction in computer time
requirements. Still from the point of view of computer time, in order to make the method competitive in high
order with methods based on spatial discretizations of the transport equation, we believe that an additional
effort should be directed to devising and implementing more economical ways for computing the eigenvalues
and eigenvectors for the vector version of the method (perhaps by making use of the banded structure of the
eigensystems) and for solving the linear systems that result from the application of the boundary conditions.
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